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Abstract 

The Navier-Stokes equations are solved for the pressure and flow of the surface currents in the North Sea. The solution algorithm applied 

is the nodal adaptive mesh and adaptive time method. The Navier-Stokes equations are split in four equations which are solved sequentially. 

The first equation, which is solved implicitly, is the diffusion equation. The second equation, which is solved explicitly, is the convection 

equation. The third equation, which is solved implicitly, is the pressure correction equation and the fourth equation, which is solved 

explicitly. is the velocity correction equation. The two equations, the diffusion and the pressure correction equation which are solved 

implicitly, are symmetric, linear and positive definite. The implicit equations are therefore solved by a symmetric conjugate gradient 

algorithm. 

The symmetric conjugate gradient algorithm is performed node by node without storage of the equation matrix. The nodal solution 

algorithm therefore permits the solution of larger problems as compared to algorithms which apply an assembled and stored equation matrix. 

The coefficients in the equation matrix in the nodal algorithm are generated whenever needed in the matrix-vector multiplication in the 

conjugate algorithm. 

The initial finite element grid is obtained by adapting the grid to the coastline. A solution is first obtained at a low Reynolds number. The 

solution is then scaled and used as a start vector for the computation at a higher Reynolds number. At several time steps in the iteration 

process, the Reynolds number and the Courant number are computed for each element. An element is refined if the element Reynolds 

number is greater than 1 and an element is recoarsed if the element Reynolds number is much less than 1. The time step is adjusted 

simultaneously with adapting the grid to the solution. The time step is computed to ensure that the largest element Courant number is less 

than 0.5. 

The simulation results demonstrate that vortices may develop at the coasts outside England and outside Germany. 0 1998 Elsevier 

Science S.A. All rights reserved. 

1. Introduction 

The development and the properties of the nodal adaptive finite element method have previously been 
described in several papers [l-5]. The advantages of the method presented are that no equation matrices need to 
be stored [6] and fineness and coarseness of the grid are adapted to the solution. 

Grid adaption algorithms have also been investigated by other researchers Kallinderis [7] and Greaves et al. 
[E&10]. Kallinderis uses both rectangular and triangular elements and applies the velocity gradient as 
refinement-recoarsement indicator. Both Kallinderis and Greaves use quad tree data structure in their grid 
generation. 

Iterative equation solution algorithms [I l] are an important part of the nodal operator splitting solution 
algorithm. Both robustness and efficiency are required in the solution algorithm. Operator splitting algorithms 
which split the Navier-Stokes equations in three equations have been investigated by Ren and Utnes [12] and 
Codina [13]. The algorithms investigated proved to be promising. 

A posteriori error estimation [14] has proved to be an important parameter in grid refinements. However, the 
author believes that the element Reynolds number is an equal adequate parameter which in addition has the 
property of stabilizing the equation system by linearizing the equation system. 

0045.7825/98/$19.00 0 1998 Elsevier Science S.A. All rights reserved 
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The test problem during the development of the nodal adaptive finite element method has been the driven 
cavity flow problem in both two and three dimensions. The aim of the present work is to demonstrate that the 
method also exhibit advantageous properties for domains with substantial irregular boundary contours. The 
simulation problem selected is the ocean currents in the North Sea. 

2. Governing equations 

In order to study sea water currents in detail, the differential equations should be three-dimensional and 
contain variables for salinity, density and temperature. However, as a first approximation, the present work is 
limited to the two-dimensional and simplified Navier-Stokes equations given below. These nonlinear Navier- 
Stokes equations are, 

pg-~VzO+pu.VU+Vp=O in 0 

-v.v =0 in 0 
(1) 

where v is the velocity vector, p is the pressure, p is the viscosity coefficient and p is the density. The first 
equation is the equation of motion which contains time, diffusion, convection and pressure terms. The second 
equation is the equation of continuity. 

3. The velocity-pressure operator split algorithm 

The original Navier-Stokes equation is reformulated into four equations, 

dV 
p-j-pV’v+Vp=O in 0 

p~+pv.vv=O in [J 

~v~p-pv.~=O in R 

p$+vp=o in .f2 

The finite element formulation of the velocity-pressure split equations becomes, 

Fd = pL,$+@Li.Vv-VLip da- 
1 I 

dV 

BQ 
,uL,xd80=0 

F, = pL,~+pL;vTv da=0 1 
6h.J 

F, = pL,V. x + VL,Vp 1 I dP 
da - sI1 L; an d60 = 0 

F,,, = pLig+Vp do=0 
1 

The four equations, Fdr F,, F, and F,,,, which are linear, are solved by the nonlinear Newton algorithm 

(31 

dF; 
av Avni’ = -F; 

dF” 
+ Au”” = -F,” 

dF" 
+Q,“+’ = _F; !$vn+l = _F: 

(4) 

Divergence free flow is achieved by replacing the pressure by d” = p” - p”-’ [ 121. The Newton formulations of 

the pressure split equations are 
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i[ 
L, 

W Au = - 
n 

pi, K + ,uVL,VL, 1 I R [,uVL, .Vv” + VL,p”] d0 

I 
Lj 

R 
pL,,tdnAv=- R 

I 
pL,v” -Vu” do 

V.v” 
VL,VL, da Ap = - PLi 7 + VLi’d” d0 1 

(5) 

Lj 
pL,KdfiAv=- 

Let nd be the spatial dimension, then the exact integrals above can easily be computed both in two and three 

dimensions by the formula [15] 

i 
LYLPL’ = 

a!P!y! 

R ’ ’ k (a+p+y+n,)!nJo (6) 

The advantage of using the nonlinear Newton formulation for solving linear equations is that the boundary 
conditions for the correction introduced in the equation system are always zero, while the actual boundary value 
is inserted in the initial solution vector. 

When the velocity field is found, the final pressure is calculated from the Poisson equation with the 

appropriate boundary conditions included. The Poisson equation is derived from the differentiation of the 
Navier-Stokes equations and by substitution of the continuity equation. 

4. Solution adaption 

There are two important parameters in the solution algorithm for the Navier-Stokes equations. These 
parameters are the Reynolds number and the Courant number 

Re = Plb -4 co = Plb *‘tivl 
Pllv*vll ~ C3V 

PTrt II /I 

(7) 

The Reynolds number is defined as the ratio of convection to diffusion. The Courant number is defined as the 
ratio of convection to acceleration and the Dissipation parameter is defined as the ratio of diffusion to 
acceleration. The Reynolds number is reflecting the degree of non-linearity in the equation system and the 
Courant number is indicating the degree of hyperbolicity. 

4.1. Grid adaption 

The element Reynolds number Re, is computed for each Tri-Tree element from the expression given below. 
Let Lr be the linear basis function evaluated at the geometrical center of the element. Then the different 
parameters become 

Niv . Vu d0 

< 'Re (8) 

VL, . Vu d0 

Numerical experiments, Wille [4], have shown that l Re < 10 in two spatial dimensions and eRe < 30 in three 
dimensions in order to obtain a converged solution for the Navier-Stokes equations. In the present work, the 
element Reynolds number limit is l Re = 1 for refinement and recoarsement of the grid. 
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4.2. Time uduption 

The element Courant number Co, and the element Diffusion parameter Dp, are computed for each Tri-Tree 
element. 

For explicit time schemes, it has been shown theoretically that the time marching scheme remains stable if 
l c, < 1. These values have been derived for whole geometries where characteristic length and mean velocity are 
applied in the derivations. The element Courant number has experimentally, been found to be in the range 1 .O to 
2.5 when divergence occur. In the present work, the Courant number limit is chosen to be 0.5. The length of the 
time step is computed from 

At < 0.2 At,/MaxtCo,) 

5. Generation of the North Sea grid 

The generation of the initial grid is shown 
165 X 150 matrix. The matrix contains zeros 
sea. The contour of the coastline is obtained 

The triangulation of the coastline Fig. 1 is 

(10) 

in Figs. 1-3. The data describing the North Sea is available as a 
indicating land and negative numbers indicating the depth of the 
from this matrix. 
obtained by traversing the coastline in the depth matrix. At each 

point in the matrix the Tri-Tree is searched and the level of refinement of the triangle containing the point is 
compared to a preset value. If the refinement level is larger than the preset value, the Tri-Tree triangle is 
refined. As seen from the figures, not only the triangles at the coastline is refined to a preset value, but also the 
triangles in a predefined vicinity, Fig. 2. The triangles outside the computational domain are then removed. 

The grid in Fig. 2 is then balanced in the sense that every triangle in the Tri-Tree grid has neighbor triangles, 

Fig. 1. The figure shows the coastline of the North Sea (left) and the coastline of the North Sea circumscribed by four initial triangles 

(right). 
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Fig. 2. The figure shows the refinements of the Tri-Tree triangles of the coastline (left) and the triangulation of the North Sea after the 

removal of the triangles outside the sea (right). 

Fig. 3. The figure shows the balanced Tri-Tree triangles (left) and the finite element grid (right). 

Fig. 3 (left), which only differ in refinement level by 1. The balanced grid is thereby triangulated to the 
computational finite element grid, Fig. 3 (right). 

The grids used for the computations at each Reynolds number is shown in Fig. 4. The initial grid to the upper 
left is adapted to the coastline. The velocity and pressure field is first computed for Reynolds number 4. The 
solution for the higher Reynolds number is computed by scaling the solution for Reynolds number 4 by the 
factor 2 and applying the scaled solution as a start vector for the iterations at Reynolds number 8. The iterations 
are thereby guaranteed a good start vector. The grid at each Reynolds number is refined if an element Reynolds 
number is greater than 1 and the grid is recoarsed if the element Reynolds number is less than 0.5. 

The time step in solution algorithm is adapted to the solution every time a grid refinement and grid 
recoarsement occur. 
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Fig. 4. The figure shows the grids for Reynolds number 4, 8. 16, 32, 64 and 128. 



S.0. Wille I Comput. Methods Appl. Mech. Engrg. 166 (1998) 379-390 

. Fig. 5. The figure shows the velocity vectors for Reynolds number 4, 8, 16, 32, 64 and 128. For the two highest Reynolds numbers a 

random selection of velocity vector is shown. 
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Fig. 6. The figure shows the velocity vectors in the area of the vortices for Reynolds number 4. 8. 16, 3_, 7 64 and 128. For the two highest 

Reynolds numbers a random selection of velocity vector is shown. 
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Fig. 7. The figure shows the pressure isobars for Reynolds number 4. 8, 16, 32, 64 and 128. 
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Fig. 8. The figure shows the three-dimensional pressure isobara for Reynolds number 4. 8, 16, 32, 64 and 128. 

The computational parameters for the time steps and the grid resolution for a converged solution are shown in 
Table 1. The diffusion equation and the pressure equation are solved implicitly by a symmetric conjugate 
gradient algorithm. The number of conjugate gradient iterations for solving the diffusion equation is fixed to 3 
and the number of conjugate gradient iterations for solving the pressure equations is fixed to 50. The reason for 
more pressure iterations than diffusion iterations is that the velocity-pressure operator splitting algorithm 
requires an accurate pressure solution [12]. During the conjugate gradient iterations, the coefficients in the 
matrix-vector products are computed whenever needed. This implies that no equations matrix needs to be stored 
neither in central memory or at disks. The algorithm therefore permits a considerable increase in size of 
problems to be solved. 

Table I 
The table shows the length of the time steps, the number of element nodes, the number of grid elements, the number of Tri-Tree nodes and 
the number of T&Tree elements for Reynolds number 4, 8, 16, 64 and 128 

Computation parameters 

Reynolds no 4 8 16 32 64 128 
Time step 3.8 X 10” 1.9 x IO” 9.5 x IO’? 1.4 x IO“ 3.3 x 10” 4.8 x 10”’ 

Element nodes 831 831 1010 2363 708 1 13959 

Grid elements 1459 1459 1815 4516 13932 38456 
Tree nodes 1162 1162 1342 269.5 7413 19695 

Tree elements 2801 2801 3185 6449 18217 49397 
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The number of outer split iterations is fixed to 400 for all Reynolds numbers. At every 20 split iterations, the 
grid is refined and a new time step is computed according to the solution at that time. Since time consumption 
for grid refinement and grid recoarsement is only a few per cent of the computational time, the overall time used 
is not very sensitive to frequent grid adaption [4]. 

6. Numerical simulations 

The boundary conditions for the ocean current simulations are that a parabolic velocity profile is specified in 
the English channel, the velocities are specified to be zero along the coasts and the normal derivatives of the 
velocities are fixed to zero at the outlet. The pressure is also fixed to zero at the outlet boundary. 

The results of the ocean current simulations are shown in Figs. 5-8. Fig. 5 shows the velocity fields for 
increasing Reynolds numbers. At Reynolds number 16 two vortices begin to develop. One vortex is located at 
the coast of England and the other one at the coast of Germany. The water transport is taking place in a central 
core through the North Sea (Fig. 5). In Fig. 6 the velocity field of the vortices is enlarged. Fig. 7 shows the 
pressure isobars. A local high pressure sone is appearing at the site of the vortex outside England for the highest 
Reynolds numbers. The high pressure sones are more clearly seen in Fig. 8 which is a three-dimensional 
drawing of the pressure isobars. 

7. Discussion 

The present work demonstrate that the nodal adaptive finite element method developed is well suited for flow 
problems with complex boundary geometries. The nodale adaptive method does not require storage of large 
equation matrices. The equation systems to be solved implicitly are symmetric and positive definite. The nodal 
adaptive method can resolve the resolution in both predetermined interesting areas and in area with high 
convection. 
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