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ABSTRACT 
The unsteady heat transfer process involved in free convection flow along a 
vertical surface embedded in a porous medium is investigated. An analytical 
solution has been obtained for the temperature/velocity field for small times 
in which the transport effects are confined within an inner layer adjacent to 
the plate. Then, a numerical solution of the full boundary-layer equation is 
obtained for the whole transient from the initial unsteady state to the final 
steady state. Detailed results of the effect of the temperature inputs on the 
transient process are given. © 1997 FAscvicr Science Ltd 

Introduction 

Convective heat transfer process is of fundamental importance in a variety of practical ap- 

plications, ranging from mechanical engineering to geophysics and recent reviews by Nield 

and Bejan [1] and Nakayama [2] give the extent of the research information on this area. 

The unsteady convective heat transfer problems encountered in these applications are rather 

complex and they can be solved either analytically or numerically. Numerical techniques, 

such as finite differences or boundary elements, are commonly used for complex problems, 

while analytical methods leading to exact solutions are preferred for their simplicity in en- 

gineering applications. In spite of extensive effort to analyse the transient process during 

cooling or heating of a surface which is embedded in a porous medium, it appears that the 

literature is lacking of simple solutions which determine the heat transfer characteristics from 

such surfaces. 

In this paper, we present a method for determining the heat transfer quantities for 
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a vertical surface embedded in a fluid-saturated porous medium which is subjected to an 

impulsive change of the temperature of the plate. Thus, it is assumed that for time ~ < 0 

a steady temperature/velocity has been attained in the boundary-layer which occurs due to 

a uniform temperature T1 of the plate. Then at time ~ = 0 the temperature of the plate is 

suddenly changed to T2 and maintained at this value for ~ > 0. The analytical and numerical 

results show that  the transient process is strongly affected by the levels of the existing energy 

inputs. 

Basic Equations 

Consider a vertical flat plate embedded in a porous medium which is at a constant tem- 

perature T~ and the plate is maintained at a uniform temperature T1. At time 9 = 0 the 

temperature of the plate is suddenly changed to T2 and is maintained at this constant value 

for ~ > 0. Using the Darcy-Boussinesq and boundary-layer approximations, the conservation 

equations for the unsteady free convective flow are 

Ou Ov 
= 0  (1) 

913K 
u = (T - Too) (2) 

/ /  

OT OT OT O2T 
+ + = (3)  

which have to be solved subject to the boundary conditions 

u(x, oo, 9) : O, T(x, oc, ~) : Too ] 

u(0, y ,¢)  : v(0, y ,¢)  = 0, T(0, y, 9) : T~o / (4) 

v(x,O,~)=O, T(x,O,9)= T2 

for "~ > 0 and 0 < x,y  < o0. Here u and v denote the velocity components along the x 

and y directions, with x being measured along the plate starting at the leading edge and y 

measured normal to it, T is the fluid temperature and the other quantities are defined in the 

Nomenclature. 

We shall now proceed to transform Equations (1)-(3). For ~ > 0 the non-dimensional, 

reduced streamfunction, f ,  and the temperature, 0, are defined as 

T-Too  
¢ = Vc~(:c) f (~ , r ) ,  0(7,~-) - AT1 (5) 

where/kT1 = T1 - Too and 
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( 2 \ ½  ae o~ gfl K ATxx 
Y 6 (x )=x( , -~a~)  , "r-- U ¢ = - R a x .  R a . -  ( 6 )  

, - ~ ( ~ ) ,  ~ ( 6 ( ~ ) )  2'  • ~ 

Here 6(x) is the boundary-layer thickness at ~" = 0 and ¢ is the streamfunction which is 

defined by u = ~ and v = - ~ .  Substitution of the expressions (5) into Equations (1)-(3) 

yields the following equation for f:  

03f + (_1+ 2.r~) 02f ( Of) 02f 
Or?--- ~ 0 - - ~ +  f - 2 ~ ' ~  ~ = 0  (7) 

where ~ = 8. Equation (7) has now to be solved for ~" > 0, subject to the boundary 

conditions AT2 Of ~-) 0 (8) f(o,~-) = o, (o, ~) = h-~' ~(o~, -- 

where AT2 = T2 - T¢~. For the steady boundary-layer at ~" = 0 one can write f(~?, 0) = f0(~?), 

so that, from Equation (7), f0(~) satisfies the ordinary differential equation 

]o" + fof~' = 0 (9) 

along with the boundary conditions 

/o (0)  = O, f~(O) = I ,  fo(OO) = 0 (10) 

where primes denote differentiation with respect to 7/- 

Small Time Solution, ~- << 1 

In this case there exists an inner boundary-layer and in order to study this layer it is conve- 

nient to use the new variables 

f(~, .)  =.½F(~,T), ~ = ~---~- (11) 
2~-~ 

as in [3, 4]. Equation (7) then becomes 

io~---~+~ - l + , N  o-2-g+ ~ -  N / 5 - ~ - = o  (12) 

which has to be solved subject to the boundary conditions 

OF AT2 (13) F(0,~-) = 0, ~ - ( 0 , r ) =  2~-~  

The solution in this growing inner layer is taken to match the outer steady boundary- 

layer, which at small 7/can be approximated by the series expansion 
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1 2 1 4 1 2s 
f0(~) ~ 77 + ~a~ - ~ a ' 7  - Z-T6 ~ 7/ + 0(76) (14) 

where a = f~'(0) = -0.62756, see [5]. The substitution of expression (11) into Equation (14) 

yields, for large values of ~, 

l 2 4 3 F(,L',-) ~ 2~ + 2 a ~  - ~,~ -,-~ - 4 ~,~.,_~ + o ( - A )  (15) 

The behaviour of the inner layer as ~ --~ oo is to be matched with the steady outer solution 

(15). Therefore, the solution of Equation (12) within the inner layer results as follows: 

F( ( ,T )  = Fo(() + ~½ FI(~) ÷ "r~ F2(~) + v2F3(() ÷ O(~-~) (16) 

The functions F~(~), i = 0, 1 , 2 , . . . ,  can easily be obtained from Equations (12), (13) and 

(15). The resulting expression for of is given by 

o{ ~ - = 2 - 2 -  4a~'½ ( 1 - ~ )  [2;2 1 ~-~2 

÷ ÷ - ÷ (17) 

where erfc is the complementary error function. Under the transformation (11) the resulting 

veloci ty / temperature  function is given at small times T by 

Also, the non-dimensional heat flux from the plate can be calculated from the expression 

q ~ ( ~ ) =  0'7 ~1~-0= ~ + - - - -  ~ 
_ h ~ J  ~ "  ~ ~ + o ( J )  (19) 

Numerical Solution 

The governing partial  differential Equation (7), or its equivalent form (12), are parabolic 

and can be integrated numerically using a step-by-step method similar to that  described 

by Merkin [6], provided that  the coefficient of ~ or °~f remain positive. This marching 

method gives a complete solution for ~- < ~-*, where T* is the maximum value of ~- reached 

aT~ The matching of the in the numerical scheme, which is less than the exact t ime v = ~T~" 

solution at ~- -- ~-* to the asymptot ic  steady state solution may now be achieved using a 

variation of the method first described by Dennis [7]. 

In order to accurately evaluate the non-dimensional heat flux from the plate initially 

we apply the step-by-step scheme to Equation (12) and begin the numerical solution at the 
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small time r = r0 using the profile given by expression (17). The evolution of the function 

@ = ~ is governed by the integro-differentiai equation 

r(1-r@) O@-~r - 7 ~ - ~  O@[l{_raleO@ ({ ,r)d{'lj (9.0) 

which has to be solved subject to the boundary conditions 

= ' a & , ' - )  = 9. 

where the undisturbed state f~ is enforced at a large value of ~, denoted by ~oo. The step- 

by-step procedure of Merkin [6] is now applied to Equation (9.0) for ~(~, r )  in precisely the 

form described by Harris et al. [4]. Thus the finite-difference equation 

S ~ I , j +  } --  9.S/{,,,4+1 --[.- S~_I , j+~.  -i t- _ , 
(9.2)  

<,,')= - < , , + , ) [ , - , -  _-o 

1 represents an approximation to Equation (20) at ~ = (i - 1)h ~ and r = rj + 51Xr5, where 

i - 1  

S,~,j+½ = ¢~,J+~ + @~,J, i,j+½ - ~ t,°~,j+½ '~ ~ /  i,=2 '~*~ 
i - 1  

ei,i= g ( ( I h , . / + @ i i ) + Y ] @ e j ,  A =  + 1  
i*=2 

h ~ = ~ and the boundary conditions require that 

AT2 

(9.3) 

(24) 

This system of nonlinear algebraic equations is solved iteratively using the Newton- 

Raphson method and by employing the method proposed by Doolittle to decompose the 

associated Jacobian matrix into the product of a lower-triangular and an upper-triangular 

matrix. This iterative process is repeated until the absolute difference between successive 

approximations reaches a value less than some tolerance q .  The initial time increment At0 

at time r = r0 is set to some prescribed small value and a time step doubling procedure 

is adopted. Each time step is covered using first one and then two time increments. If the 

absolute difference between the two solutions is less than a preassigned tolerance e2 then the 

time step is doubled. 

The size of the discretised ~-space under consideration, 0 _< ~ _< ~oo, increases with time. 

we regard • ---- r/oo to correspond to ~/ = oo then at the nearest time "~ below r -- ( ~ ) ~  it If 

is necessary to transfer to a version of the step-by-step procedure which uses a constant mesh 

width, provided that  this time @ is less than r = ~ equivalently, R = ~ < 2 (~-)~ 2AT2 o r ,  AT1 ~ " 

In such cases we retain the current parameter values for the time increment and tolerances 



548 S.D. Harris, D.B. Ingham and I. Pop Vol. 24, No. 4 

and apply the step-by-step method to the non-dimensional temperature function 0 = 

satisfying the integro-differential equation 

o,rO0 0200772 ~00 [" .( 2rr ~_~r ( ~00 , (1 2,tO) - + Jo , ,r)) (25) 

and subject to the boundary and initial conditions 

AT2 1 

- 2 ¢ ( ~ ' ~ )  ~= --~r 
O(0,,r) AT1' 007°°'z) = 0, O0?,'?) = (26) 

2 ¢  2 

where the initial profile for 77 > 2~½ remains the undisturbed state. The finite-difference 

equation 

+(h")  2 (S:"+I,j+½- ~'--x,y+½)[¼(1- 2X)~2:~+½ + )~O:,i] = 0  

can then be derived to approximate Equation (25), where S1j+½ -aTe, SN+I,j+½ = 0, 

h" =~-6"°° and the remaining terms are defined analogously to expressions (23). The resulting 

nonlinear system of equations is then solved as described for Equation (22). 

The matching of the steady state similarity solution 

= Rf0(~R~ ) (28) 0(,7, oo)  ' 1- 

w h e r e  R = a TzT at large times with that which is valid at z = ,r * is now achieved using an 

adaptation of the method of Dennis [7]. The system of equations 

Of 0, 020 00 00 (29) 

where 

of 
p(~,'r) = f - 2TTN, q(~,T) = 1 - 2,r0 (30) 

must now be solved subject to the boundary conditions 
l ! 1 1 

001,T*)=0"(~7) , 0(rl,,r~)=_Rf;(~/R~), f (r / ,~ '~)--R~f0(T/R~)~ 
(31) / f ( 0 , , r )  = 0, 0(~oo,,r) 0, 0(0, ,r)  = R, ,r* < ,r < ,r~ 

where Too is some large but finite time corresponding to "r = oo. By replacing 7? derivatives by 

central-differences and oe by either a backward or forward difference depending on whether 

q(r/,,r) > 0 or q(r/,-r) < 0, respectively, Equation (29) becomes 

( l + 2 h P i j ) 0 i + l j + ( 1 - 1 -  0 (2 ~-~2 'q~J']~ 0ij : - + , (32) 

where 0i* J = 0ij+l if qij < 0 and 0~,j = -0i,j-~ if qi,j > 0. The iterative solution of the system 

(32) throughout the domain is-achieved using precisely the procedure described by Harris et 

aL [41. 
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Results and Conclusions 

The restr ict ion to finite dimensional  ( and 7 spaces was achieved by taking ( ~  = 10 and 

7~ "-~ 10, respectively, where the precise value of 7~ = 2x/~(oo is dependent  on the final 

t ime ~ reached in the  first s tep-by-step solution. The effect on the numerical schemes of 

variations from these values of ( ~  and 7¢o, while keeping h ~ and h" constant, respectively, 

was invest igated and it was concluded that  any larger values of (oo and 7oo produced results 

which were indist inguishable from those presented in the figures. Thus the application of 

the s tep-by-step method  in 7 and -r variables is only required when R < 2. The values of 

the tolerances el and e~ as average errors over the unknown grid points were taken to be 

el = 10 -4 and e2 = 10 -~. The initial  t ime To and first t ime increment A~-0 were assigned 

the values TO = 5 × 10 .8 and AT0 = 10 -6. More restrictive values of these parameters  were 

considered and discovered to produce numerical  results which did not show any significant 

variation. The main  source of deviat ion in the solutions for the fluid tempera ture  arises by 

considering changes in the number  of grid spaces N ~ and N ". It was observed that  as N ~ and 

N ~ increased, and consequently h ~ and h" decreased, the initial development of the numerical  

solution for the  non-dimensional  heat  flux from the plate approached that  of the small t ime 

solution. 

Figure 1 shows the variat ion of the  profile of 0(7 , T) at various t imes T calculated using 

h ~ - 0.0125, h '  = 0.025, N ~ = 800 and N" = 400 for ratios of surface temperatures ,  R = 0.5 

and 2, where refinements in the spatial  mesh produced an insignificant improvement in the 

accuracy of the  solution. The evolution of the surface heat flux q~,(T) with t ime r is i l lustrated 

in Figure 2 for R = 0.5 and 2. The numerical,  transient solution is shown to develop closely 

following the small  t ime solution (19) and is graphically almost identical when ~ < 0.9 and 

r < 0.2 for R = 0.5 and 2, respectively. 

The matching method  solution over the finite region T* < ~- < too is achieved by enforcing 

the s teady s tate  solution to apply at Too = 12 and the convergence criterion was set by assign- 

ing the  value e3 = 5 x 10 .9 for the  average absolute error in 0. No significant improvement 

in accuracy was achieved by either increasing Too or reducing e3. The op t imum value of the 

relaxat ion pa ramete r  was found to be w = 1.5. Solutions for 0(7 , r )  were found for the grid 

spacings h ~ 0.025, k ~ 0.05; h ~ 0.025, k ~ 0.025 and, for R = 2, h ~ 0.0125, k ~ 0.025. As 

the mesh size was reduced, and consequently the computat ional  t ime increased, the numerical  

solution was observed to change only marginal ly over the solution domain. Thus h ~ 0.025 

and k ~ 0.05 were used so tha t  n = 400 and m = 221 and 235 for R = 0.5 and 2, respectively. 
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The evolution of the heat  flux at the surface q~(z) from ~- = T* to ~- = ~-oo is displayed in 

Figure 2 and shown to proceed past  local minimum and maximum values near ~" = T* to 

the s teady s tate  solution at large t imes for R = 0.5 and 2, respectively. A single oscillation 

of q,,(-r) was observed for the case R = 2, a feature which is imperceptible  in Figure 2 but  

whose existence in such problems was remarked upon by Harris et al. [4]. 

Nomenclature 

f 
F 
h 

K 
m 

?% 

N 
p, q 
q~ 
R 
Ra~ 
S 
T 
T1 
T2 
A T  
ILiad 
uc 
x , y  

non-dimensional,  reduced streamfunction 
t ransformed function 
step length for 0 < T < aT~ 

- -  2~r2 
step length in the z/-direction for ~ < T < %0 

2LXT2 

non-dimensional t ime increment for ~ < T < %0 2ZxT2 
permeabi l i ty  of the  porous medium 
number of grid spacings in the ~'-direction for a_Tt_T < ~- < Too 

2 A T 2  

number of grid spacings in the ~-direct ion for ~ < ~- <~oo 
2AT2  

number  of grid spacings for 0 < ~- < ~T~ 
-- 2AT2 

variable coefficients in the governing equation for ~ < r < Too 2Z~T2 
non-dimensional heat flux at the plate 
rat io of the final surface tempera ture  to the initial surface tempera ture  
local Rayleigh number 
sum of numerical  solutions for tempera ture  over consecutive t ime steps 
t empera tu re  of the fluid 
ini t ial  surface tempera ture  (~- < 0) 
final surface tempera ture  (r  > O) 
characterist ic  t empera ture  
velocity components along x -  and y-axes,  respectively 
characterist ic  velocity 
Cartesian coordinates along the plate and normal to it, respectively 

Greek Symbols 

6 
£I ~ ~2 ~ £3 

(,~ 
~,O,gZ 
0 
v 

O 

G 

T 

AT 

effective thermal  diffusivity of the fluid-saturated porous medium 
coefficient of thermal  expansion 
boundary- layer  thickness 
tolerances in the numerical  schemes 
s imilar i ty  variables 
expressions defined in Equation (23) 
non-dimensional t empera ture  function 
kinemat ic  viscosity 
non-dimensional tempera ture  func t ion  
rat io of composite mater ia l  heat capacity to convective fluid heat capacity 
t ime 
non-dimensional  t ime 
exact  value of "r where transfer to the step-by-step method in 7/takes place 
non-dimensional  t ime increment for 0 < ~- < ~T~ 

- -  2 ~ T 2  
relaxat ion paramete r  
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Subscripts 
0 
i , j  
W 

O 0  

1 .0 - -  

0 . 8  

~ 0 . 6 -  b -  

o~ 0 . 4 -  

0 . 2 -  

0.0 

s t rearnfunct ion  

value at T = 0 
eva lua ted  at the  i t h  and j t h  nodal  points  in the  ~/- and T-direct ions ,  respect ive ly  
eva lua ted  at the  wall 
ambien t  condi t ion  

Superscripts 
* poin t  where  t he  s tep-by-s tep numer ica l  solution breaks down 

associa ted  wi th  the  s tep-by-s tep numer ica l  solution in the  ~1 and T variables 
associa ted wi th  the  s tep-by-s tep numer ica l  solution in the  ~ and T variables 

0.0 

",...,., ....... Steady state solution at ~ = 0, f~(q) 
Numerical solution at r = 0.006150 

/ ~ x , ~  ~ Numerical solution eA 7 = 0.073798 
/ "~ + Numerical solution at T = 0.51!{)46 

/ ~ _ . . ~  . . . .  Steady state solution at large T Rf;(~?n½) 
t / _ _  _ _  - - - o -  , 7 - - J U \ ~ - -  ] 

' I ' ! ' I ' I ' r ' I ' I ' L 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
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2.0~ 

1.5- 

~'- 1.0- 

0.5- 

0 .0 -  

0.0 

~ , ,  [ ....... Steady state solution at ~- = 0, ]~(77) 
o Numerical solution at T = 0.003718 

[ [] Numerical solution at T = 0.045126 
/ \ ~ ,  / -~ Numerical solution at ~- = 0.203846 

. . ~ ~ , , , ,  [ . . . .  Steady state solution at large T, RJ~(~R½) 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

77 

FIG.  1 
Var ia t ion  of the  non-d imens iona l  t e m p e r a t u r e  8(7 , ~-) as a funct ion of 77 at various values of 
~" and the  s teady  s ta te  solutions at ~- = 0 and T = oo. 

qH 
( a )  a = = 0 . 5 ,  ( b )  R = = 2 .  
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4.0-[ 

3.0~ 

zo., 
t.-- 

• [ . . . . . . . . . . . . . . . . . . . .  

Numerical solutions ] 
• . . Small time solution, i.e. Equation (19) 

Steady state solution at large 7, R~f~'(0) 

"T ~ 3-= 

J 
I I i 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

3- 

i 

i 
-4.0~ / 

?( 
-8.O I~ , 

~ " -  T = T" 

Numerical solutions 
• " ' Small time solution, i.e. Equation [19) 

z_ tr 
S t e a d y  s t a t e  s o l u t i o n  a t  l a r g e  v ,  R~f~(O) 

I 
0.0 0.1 0.2 0.3 0.4 0.5 

FIG. 2 
Variation of the non-dimensional heat flux from the plate q,~(r) as a function of r ,  the small 
t ime solution and the steady state solutions at ~ = 0 and ~ = oo, where the transition 
between solution methods occurs at the indicated times. 

qH 
(a) R = ~ -- o.~, (b) ~ = g -- 2 
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