
Artificial Intelligence 78 (1995) 289-326

Artificial
Intelligence

Recognition of object classes from range data

I.D. Reid*, J.M. Brady
Department of Engineering Science, lJniversi@ of Oxford, Oxford OXI 3PJ, UK

Received September 1993; revised October 1994

Abstract

We develop techniques for recognizing instances of 3D object classes (which may consist
of multiple and/or repeated sub-parts with internal degrees of freedom, linked by parameterized
transformations), from sets of 3D feature observations. Recognition of a class instance is structured
as a search of an interpretation tree in which geometric constraints on pairs of sensed features not
only prune the tree, but are used to determine upper and lower bounds on the model parameter
values of the instance. A real-valued constraint propagation network unifies the representations
of the model parameters, model constraints and feature constraints, and provides a simple and
effective mechanism for accessing and updating parameter values.

Recognition of objects with multiple internal degrees of freedom, including non-uniform scaling
and stretching, articulations, and sub-part repetitions, is demonstrated and analysed for two differ-
ent types of real range data: 3D edge fragments from a stereo vision system, and position/surface
normal data derived from planar patches extracted from a range image.

Keywords: Object recognition; Parametric objects; Range data; Stereo

1. Introduction

Consider a robot performing a task in an unknown or partially known environment.
If it is to react to that environment in other than a haphazard “trial-and-error” fashion,
the robot must learn about its surroundings using sensed data. Perhaps the simplest
requirement is to avoid obstacles; for this task the robot need know nothing more about
obstacles than roughly their positions and extents. A considerably more complicated
task involves finding and manipulating a specific object in the environment. In this case
the robot must not only locate an object, but also recognize it. Recognition demands
the use of both sensed data and prior knowledge about the object in order to detect its

* Telephone: +44-1865 273168. Fax: +44-1865 273908. E-mail: ian@uk.ac.ox.robots.

0004-3702/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved
SSDIOOO4-3702(95)00062-3

290 I.D. Reid, J.M. Rrud.v/Artijbal Intelligence 7X (1995) 289-326

Fig. I Two typical pallets. The one the left is considerably larger and has six slats and four struts. The smaller

pallet has five slats and three struts.

presence, and to determine its pose (position and orientation) relative to the sensor. The
model-based vision paradigm addresses just this problem.

Model-based vision embraces a class of techniques which achieve object recognition

by encoding high-level prior knowledge about objects in models which describe the
objects’ observable properties, and comparing the models with sensed data to find a

“best interpretation” of a scene, given the sensed data. A common approach formu-
lates the problem as one of finding low-level features in sensory data (such as surfaces
or edges), determining correspondences (subject to certain matching constraints) be-
tween these features and object features represented in a model, and then computing
a transformation from a model-centred reference frame to the reference frame of the
sensor(s). Such a formulation tits into a class known as constraint satisfaction problems.
The paradigm involves some of the major research problems in artificial intelligence;
those of representation, search strategies, interpretation of sensory data, and handling
uncertainty.

The vast majority of recognition systems built to date-whether they use single
intensity views of objects, or three-dimensional range data-have been designed to
operate with geometrically fixed objects (e.g. [8, 15,22,24]) or objects with only a few
internal degrees of freedom [14, 19,401. While such systems have been successfully
applied to a number of useful robotic and automation tasks, many other applications
involve the need to recognize members of object classes for which a fixed geometry
cannot be defined a priori. A good example of such, and which has motivated the
research we report, is the use of a mobile vehicle to locate and acquire industrial pallets.
Fig. 1 depicts two such items, clearly showing that although they belong to the same

I.D. Reid, J.M. Brady/Art$icial Intelligence 78 (1995) 289-326 291

object class, they vary considerably in size, shape, and in the number of slats and struts
they have. Such object classes are common, particularly in man-made environments.
Most of the systems mentioned are unsuitable since each variation within a class would
necessitate a separate model.

To address this deficiency we develop a 3D recognition system for recognizing poly-

hedral objects which may have multiple and repeated sub-parts which may move relative
to one another, each of which may have multiple internal free parameters. Our system

takes as input a set of primitive features-currently either 3D line segment data (from,

for example, a stereo vision system) or surface patch data from a range finder (for

example, a laser range triangulation system)-and determines the pose of an instance of

a model class, at the same time placing upper and lower bounds on the parameter values
of the instance, despite the presence of significant noise and occlusion. Furthermore,
an additional level of competence allows the system to distinguish between different
instances of the same class.

The system is based on three techniques, well established in their own right in the

literature:
l interpretation tree search [171;
l binary geometric constraints [20] ;
l a continuous-valued constraint propagation network [141.

The use of the first two items in recognition systems has been well documented, par-

ticularly in [20 1. Interpretations-branches of the tree-are grown by adding matches
(or assignments) of observed features to model features which are pairwise consistent
with those already in the interpretation. Pairwise consistency is defined using a set of
viewpoint-invariant measurements (such as angles and distances) on pairs of features,

and bounds on these measurements precomputed from a model.
Our system is designed to use either surface patch data (position/surface normal

points) or straight 3D edge fragments. For either a pair of surface patches or a pair
of edge fragments, there exist four independent invariants, consisting of one angle and
three distance measurements. The sets of invariants used in our system are given in

Appendix A.
The novelty of our system comes through the combination of the first two items

above with the third item, which is a powerful way of representing and solving sets of

inequality constraints. So-called SUP/INF networks were developed by Fisher and Orr
[14 3 based on the work of Brooks [61, who, in the ACRONYM system for recognition
of 3D models from 2D images, was the first to introduce the idea of symbolic constraint
satisfaction for object recognition. A set of inequality constraints on the model and on
the viewing parameters was solved symbolically to give the pose and internal parameters
of an instance of a parametric object class. Fisher and Orr’s development was to show
how much of the work involved in such symbolic manipulation can be performed off-line
by compiling the symbolic constraints into a real-valued constraint propagation network.

They used the resulting networks to solve for object pose and some (limited) internal
transformations such as articulations, gaining an improvement in performance over the
purely symbolic approach of ACRONYM.

For linear constraints, the SUP/INF method is guaranteed to give a correct solution.
However the major weakness of both the Brooks and the Fisher/Orr approaches is that

292 I.D. Reid, J.M. Brady/Artijicial Intelligence 78 (1995) 289-326

H

W

Fig. 2. A model class of equal volume boxes: (a) a parametecization and constraints; (b) model surfaces.

constraints on object pose result in complex nonlinear inequalities which often lead to

poor (sometimes useless) bounds on the pose transformation parameters. Indeed in later
work Orr et al. have argued for a probabilistic rather than interval representation of

uncertainty in order to obtain more realistic pose computations [301.

In our method, the pose computation and internal parameter estimation are separated.
The constraint network is used to store internal model parameter values (upper and lower
bounds) and define relations between parameters, which are updated and propagated as
an interpretation grows. This parameter representation is ideally suited to the application,

as we show in later sections. However the network is not used for pose computation,
which is performed using a two-stage least-squares method by first finding a best-fit
rotation [111 followed by a best-fit translation [151. This trade-off makes full use of
the benefits of the SUP/INF network without suffering from its major drawback.

Prior to detailed description, in order to give the reader an intuitive feel for the
system’s operation, we illustrate the general principles by example. Consider the class
of equal volume boxes depicted in Fig. 2. This class is characterized by its three
free parameters, H, W and D, the height, width and depth of the box. Here, the angles
between the surfaces are constant values, independent of the model parameters. However,
for example, the distance d of a point on the top surface from the plane defined by the
front surface (invariant fi for surfaces, surf-dist-1, in Appendix A) is constrained by
0 6 d < 0, where D is the depth of the box, initially unknown.

We draw two major insights from this, which form the basis for the remainder of this

work. These are:
l d E [0, DJ is a symbolic bound. Algorithms exist for solving symbolic sets of

equations, albeit rather less efficiently than numeric ones; we exploit one such
method in our algorithm.

l The measurement actually gives information about the unknown parameter value,
namely that D > d; i.e. the measurement d provides a lower bound on the true
value of D.

Suppose then, that the system is exploring the branch of the interpretation tree shown
in Fig. 3. At Level 2 of the tree the assignment s1 -+ ,UO is considered. Initially there is

I.D. Reid, J&f. Brady/Artificial Intelligence 78 (1995) 289-326 293

Level 1

Level 2

Level 3

Fig. 3. Constraining the interpretation tree search and parameter values: (a) observations from a box instance;
(b) exploration of the interpretation tree.

no knowledge of the parameter values, i.e.:

Initially: WE [O,ca], HE [O,cml, DE [O,col.

Three distance invariants with values 1, 0.5 and 4 may be computed from the pair
of surface patch observations so and si (see Fig. 3 and Appendix A). Therefore the
pairwise consistency of the matches so -+ ~1, si + ,CQ is determined by the three
expressions:

Test: 1 E [O,ool, 0.5 E [O,col, 4 E [O,co],

which are all clearly satisfied. The match si -+ ,LQ is therefore accepted, but we now
note that this match implies that W 3 1, H > 0.5 and D > 4, thus the lower bounds
can be updated:

Update: w E [l,ool, HE [0.5,co], D E [4,m].

Furthermore, once this update from the observations is complete, enforcement of the
model constraint WHD = 10 (i.e. the equal volume condition, which is equivalent to
the two conditions WHD 3 10 and WHD < 10) leads to upper bound estimates for the
parameters:

Propagate: W 6 lO/HD =+ W 6 5,

H 6 lO/WD + H < 2.5,

D < lO/WH =+ D 6 20.

so

WE [1,51, HE [0.5,2.5], D E [4,20].

Subsequent assignments (e.g. s2 -+ ,u2) provide further evidence of the parameter
values, gradually improving the bounds.

Thus our system is based around an observe-test-update cycle, in which we test an
observation for consistency with the current size/shape estimate of the model, and if
consistent, use the observation to update the estimates of size/shape. In the following
sections these ideas are formalized and generalized, and used to build a general-purpose
parametric object recognition system.

294 1.1). Keid. J.M. Hrudy/Art$cial fnielligence 78 (1995) 289-326

Initially we consider the case of finding an instance of a single object class consisting
of one part. However in later sections we extend the system in a number of ways.
Firstly, in Section 4, we show how different instances of the same object class may be

distinguished and identified. Secondly, in Section 5 we show how the system copes with
multiple sub-parts and even variable numbers of repetitions of sub-parts. Finally, we
give a performance analysis of the system (Section 6) and show that the performance
compares favourably with systems which enforce strict model rigidity. We place the
work in the context of previous efforts in Section 7 and conclude in Section 8.

2. Principles

2. I. Interpretaticm tree search

At the highest level, the basis of‘ our system is the well known hypothesize/test

paradigm common to most recognition systems (e.g. [5,11,21,23,24]). A search of an
interpretation tree, using geometric constraints for pruning, generates pairwise consistent
matches of sensed features to model features and computes a pose hypothesis from these

matches. Previously, Grimson [201 has shown that for geometrically fixed objects, binary
geometric constraints between pairs of data to model feature matches are a surprisingly
powerful tool for pruning the exponential search space of the interpretation tree. Usually
the number of hypotheses which must be tested is reduced to a handful; often only
one. A major contribution of our work is to show that this is still
parameterized objects (see Section 6).

Formally, an object is modelled by a set M of m model features,
surfaces or edges):

the case even for

(e.g. the object’s

When observed in the world an object gives rise to a set S of n sensed features:

/=I

Only rarely will a full model feature be observed. More typically, due to occlusion and
noise, only a portion of the feature will be observed; e.g. a small surface patch or an

edge fragment. In our work we consider either type of input data: either surface data
from our in-house (Oxford/NEL) laser range finder [33,35], or 3D edge fragments
from a stereo vision system [3 I I. Surface data are represented by a 3D position and unit
surface normal, s = (p, n). This representation is rather conservative since the dense
range maps supplied by the Oxford/NEL sensor give information about surface extent
and connectivity. We discuss this further in Section 3.5. Edge data are represented by a
set of edge fragments, s = (e, M, I) ; e is a unit vector in the direction of the fragment,
m is its midpoint, and 1 is the fragment length.

Then, we define:

I.D. Reid, J.M. Brady/Art$cial Intelligence 78 (1995) 289-326 295

Definition 1. An image measurement or measurable invariant is a function f which
maps a set of observable features to a scalar, independent of the viewpoint. In our work
we make use of binary measurements (i.e. invariants from a pair of features), and in

general several such independent measurements are available, with this set denoted by
{fk}. For pairs of either surface patches (p, n) or edge fragments (e, m, I), there exist
four independent invariants. We list those used in our system in Appendix A.

Consider applying the kth invariant to a pair of observations on a pair of model

features. As the locations of the observations vary over the model features, so will the

value of the invariant. Thus each pair of model features generates an interval giving the
valid range of the kth invariant for that pair of model features. If we use the notation
u E ,U to denote an observation on a model feature (for example, a position/surface
normal point on a model surface) we can formalize the definition of this valid range:

Definition 2. Thefeature constraint interval for the kth invariant and the model features

pi and p,j is given by

This interval is a function of the model. For geometrically fixed objects, these intervals
can be precomputed as part of the object model as was done in [21]. In the case

of parameterized models, they will often be known functions of the unknown model

parameters.

Definition 3. A feature constraint table (or FCT) is a convenient storage method
for feature constraint intervals in which entry (i, j) of table k refers to the interval

zk(b‘i, pi).

Definition 4. A feature constraint is a constraint on a potential match of a pair of
sensed features to a pair of model features, st ---f pi, ~2 -+ pj:

The left-hand side of the expression is a measurement derived from observations. The
right-hand side is the feature constraint interval. The expression is true if the measured
invariant lies within the valid range for the pair of model features pi and pj and if true

for all invariants, then the match is consistent.

In practice sensing errors mean that a sensed feature s is a corruption of a true value
s^. A consistency test which accounts for this must test the likelihood of fk ($1, $2) E
zk(pi, /Lj) given an uncertain (but hopefully nearby) measurement fk(St, ~2). In Our

system we use the method of [2 1] to model errors, by constructing an interval Fk (SI , ~2)
around fk(st, ~2) which is known to contain the true value. Then, the kth feature
constraint for the potential match st -+ ,~i, s2 --f pj becomes the intersection test:

Fk(St 5 SZ) n zk(,%* Pjui) z 8.

296 I.D. Reid. J.M. Brudy/Artijicial Intelligence 78 (1995) 289-326

interpret(f,j)
,-

if j = II

verify(l);

return;

i - 0;

while i < m

!

if consistent(l,{ S,j,p;})

i

1 + 1 U (Sj3 pu,}

interpret(f,,j + 1)

i--i+1

return;

Fig. 4. Pseudo-code for a recursive version of the interpretation tree search. I is a list of data feature to model

feature matches representing the current interpretation. and j is the level in the tree. The search begins with

the call interpret({},O).

Given these definitions, the interpretation tree search for geometrically fixed objects

can be described by the pseudo-code in Fig. 4. The function consistent applies the
rule in the equation above. The reader will note that there is no mechanism for dealing

with outlying data in this search. Grimson [20] shows how this may be overcome by
adding a so-called “null” feature to the search which always matches, however at the
expense of greatly increasing the size of the search. In Section 7 and in the conclusions
we discuss ways in which the outlier and clutter problem may be overcome. However

the problem is not addressed in the work we report, this being the subject of on-going
research.

2.2. Model representation

The previous section has established the familiar framework for recognition from
either 3D edge fragments or surface patches which uses binary geometric constraints

to control an interpretation tree search. It should be clear, however, that as it stands,
this framework is insufficient for recognizing generic objects. In this section we give a
specific definition of an object class suited to many parametric object recognition tasks,
and then discuss the limitations of the framework described above with respect to this
definition.

2.2.1. Object classes
We model an object class using:
l a set of sub-parts, each with a REV-graph boundary representation [2], i.e. the

faces, edges and vertices of the sub-part, and the topological relationships between
them; each sub-part is defined relative to a local coordinate system, and has an as-
sociated transformation (possibly parameterized) which defines its position relative
to the model base-frame;

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326 297

l a set of internal model parameters;
l a set of constraints on the parameters, called model constraints;
l a set of feature constraint tables which store information about the geometrical

relationships between pairs of model features (including those which do not come
from the same sub-part) ;

l a specialization hierarchy, with each sub-level of the hierarchy corresponding to a
specialization of the parent through the addition of extra model constraints, active
for that sub-model and all its children.

Multiple and repeated sub-parts are allowed, including parameterized numbers of repe-
titions. We discuss recognition of multiple sub-part objects with parameterized tmnsfor-
mations between sub-parts and those with parameterized part repetitions in Section 5.
We now discuss the salient features of the representation and elaborate on its various
aspects.

The REV-graph of the object is used to define the underlying shape of the object.
The planar equations of the surfaces, the directions of the edges, and the positions of
the vertices, stored with the REV-graph, are all functions of the model parameters. For
example in the box example of Fig. 2 the vertices would be described by the coordinates
{(O,O,O), (O,O,D), (w,O,D), (%O,O), (O,KO), (O,H,D), (KH,D), (w,H,O)}.

If the model is geometrically fixed then we have numeric values for W, H and D and it
is straightforward to compute numeric upper and lower bounds on the binary invariants
for storage in feature constraint tables (see Section 2.1). However, if the boundary
features are functions of unknown parameters this computation must be performed
symbolically, and entries in the feature constraint tables must be uninstantiated symbols
rather than numbers. We discuss this in Section 3.1.

Model constraints are inequalities involving one or more of the model parameters
(note that equalities may be represented by two inequalities). They are used for two
separate purposes:

l to enforce dependencies between parameters;
l to impose size/shape constraints on the model.

Consider the square pyramid class shown in Fig. 5. A possible parameterization of the
class is the set (6, h, 8). This parameterization is not independent, containing the implicit
constraint tan B = 2h/b. This is an example of the former use of model constraints. An
example of the latter is the constraint 3h > 6, which restricts the shape of the class

somewhat.
It should be clear that the mechanisms described in the preceding sub-sections (based

on the work of Grimson and others) are incapable of recognizing instances of such a
model class. Models can no longer be represented by constant feature constraint tables;
the bounds are now functions of the uninstantiated model parameters. For example, if
we define a class which is fixed but for a uniform scale factor, o (the simplest possible
parameterization), then each distance constraint now involves the unknown value of the
parameter ff.

However, as we observed in the introduction, the invariant measurements are functions
of the parameters of the instance being observed and, in principle, we should be able to
recover the model parameters from observed data during the interpretation tree search.
Grimson [20,221, in extensions to the RAF system [2 11, describes a method for coping

298 I.D. Reid, J.M. Brudy/Art#cial Intelligence 78 (1995) 289-326

Fig. 5. A square pyramid class. parameterized by the set {h, h, B}.

with simple parameterizations-uniform scale and stretching and simple articulations-
of 2D models. The method involves solving for parameter values explicitly from image
measurements and modifying the search algorithm accordingly. The generalization to

arbitrary parameterizations and 3D models was never achieved. Grimson states [20, p.

4231 that,

The main difficulty . . is finding a clean way of representing the parameterized
constraints, especially in a manner that will easily allow the computing and

updating of feasible ranges for each of the parameters.

In summary, the extensions required in order to cope with arbitrary and compound
parameterizations are:

l a representation for model parameters;
l a way of defining and representing constraints on model parameters;
l a way of computing symbolic feature constraint tables off-line and then instantiating

these at run-time;

l a way of updating parameter estimates based on sensed data (specifically, from
invariant values) ;

l a way of determining if the constraints have been violated.
To this end we next present a representation for parameters and model constraints

based upon Fisher’s network implementation [12-141 of the SUP/INF method [4,6].
In addition to handling all the cases Grimson describes, the representation is general
enough to specify arbitrary scaling (not only uniform scaling) in full 3D, articulations
and other linear and nonlinear constraints on model parameters.

2.3. SUPANF algorithm

The SUP/INF algorithm, devised by Bledsoe [41 and refined by Brooks [6,7], is a
method for solving symbolically a set of inequality constraints. It is based on recursive

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326 299

application of two functions, sup (Supremum) and inf (Infimum), which find upper
and lower bounds, respectively, on the free variables in the constraints. The goal of the
algorithm is to determine whether or not a solution can be achieved, and if so, over

what ranges of the variables the constraints can be satisfied.
Brooks first used this algorithm in the ACRONYM system [6] for recognition of

3D objects from 2D data. In ACRONYM the recognition problem was formulated
as a constraint satisfaction problem involving constraints on the model and on the
viewing parameters. A constraint manipulation system (CMS) evaluated the constraints
symbolically at run-time using ribbon cues extracted from an image.

The principle behind the operation of the CMS is as follows. An inequality of the form
x < (expr) means that (expr) is an upper bound for x, or equivalently, supx = sup(expr).
The SUP/INF method recursively applies sup and inf to (expr) until it consists of atoms
and sups and infs of atoms; e.g.

* supx = sup-y

* supx = -infy.

An inconsistency is encountered if the system determines that supx < infx for any x,
in which case there is no solution to the problem. For sets of linear inequalities the
algorithm produces both necessary and sufficient conditions for a solution, however the

introduction of nonlinearity to the inequalities means that the result of the algorithm is
no longer a sufficient (though still necessary) condition.

The nature of the measurable invariants in our domain makes the use of this algorithm

attractive, since the knowledge of upper and lower bounds on variables is made explicit.
We have developed a CMS based on Brooks’ rule-base [6] with extensions for trigono-

metric functions, using the symbolic manipulation tool Mathematics [42]. The system

takes a set of model parameters, and model and feature constraints and applies strategic
substitutions to obtain simplifications where possible. The type of parameterizations laid
out in Section 2.2 may be implemented using the operator set described in Table 1 (the

symbol NaN denotes “undefined”).
Unfortunately, as with most automatic symbolic computation, evaluation of the ex-

pressions is slow-this, indeed, was a major drawback of ACRONYM. Fisher and Orr
[141 showed how to transfer the much of the cost to an off-line procedure; constraints
are reduced off-line by a CMS as much as possible without knowing variable values

and then compiled into a network whose topology derives from the SUP/INF constraint
expressions. A SUP/INF network is built from nodes and directed arcs, where each

node is one of:
0 a constant;
l a variable, V, with associated interval [inf V , sup V] ;

l an operator which performs a given operation on its input(s).
The allowable operator set in a network is as above, i.e.: f, -, *, reciprocal, signed
reciprocal, min, max, sqrt, the three main trigonometric functions and their inverses,
integer rounding functions (used to ensure that integer variables remain integral) and
the constants fco and NaN.

300

Table I
Operator set

I.D. Reid. J.M. Br&/Artificial Intelligence 78 (1995) 289-326

Operation

Minimum

Domain Sup/ lnf

supmin{x,,v} = min{supx,suPv}
infminlx, v} = minfinfx. inf v1

Maximum supmax{r,v} = max{supx, supy}

infmax{x, y} = max{infx,infy}

Unary minus sup --x = - inf x

inf -x = - swx

Addition SUP(X + v) = supx + supy

inf(x + v) = infx + inf v

Subtraction

Multiplication

Square root

sup(x - v) = supx - inf,v

inf(x -. v) = infx - sup y

sup xv = max{inf x inf y, inf x sup y. sup x inf y, sup x sup y}

inf xx = min{inf x inf .v. inf x sup y. sup x inf y. sup x sup y}

If inf.1 i 0 Then NaN

Else sup ~5 = &i@

inf&= %I&&

Reciprocal supl/x= I/infx

infI/x= I/supx

Signed reciprocal

Sine x E I-7r.xI

If 0 E linfx,supx] Then NaN

Else inf 1 /x = I / sup x

supl/x = l/infx

If ~r/2 E [infx,supx]

Then sup sin x = I
Else sup sin x = max{ sin inf x, sin sup x}

If -r/2 E] inf n, supx]

Then inf sin x = -I

Else infsin x = midsin infx. sin SUD xl

Cosine xE I-7r.7rI If 0 E Iinfx,supx]

Then supcosx = 1

Else sup cos x = max{cosinf x, cos sup x)

infcosx = min(cosinfx.cossuDx1

Tangent YE I-?7,7rl If +rr/2 E Iinfx,supxl

Then NaN

Else sup tan x = tan sup x

inftanx = taninfx

If a variable’s bounds change, the change is propagated via the network to other
variables. Convergence requires that bounds on each variable y = f(x) be evaluated as
infy = max{infy,inff(x)} and supy =min{supy,supf(x)}. This ensures that bounds
only ever improve. A further requirement is that there be a small, but nonzero threshold,
to interrupt asymptotic convergence.

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326 301

Operation Domain Sup/Inf

Aresine L-T, %-I If 0 E [infx,supx]

(Range) Then sup arcsin x = P - arcsin sup n

inf arcsin n = -7r + arcsin inf x

If infx > 0

Then sup arcsin x = ?r - arcsin inf x

inf arcsin x = arcsin inf x

If supx < 0

Then suparcsin x = arcsin sup n

inf arcsin x = -w + arcsin SUD n

Arccosine F--r. PI
(Range)

sup arccos x = arccos inf x

inf arccos x = - arccos inf x

Arctangent I--~>~1
(Range)

If 0 E [infx,supn]

Then sup arctan x = R + arctan inf x

inf arctan x = arctan inf x

If infx > 0

Then sup arctan x = arctan sup .r

inf arctan n = -37 + arctan infx

If supx < 0

Then sup arctan n = ?r + urctan sup x

inf arctan n = arctan inf x

Integer supint x = [supx]

infint n = rinfxl

3. Coping with parameterizations

We now show how the SUP/INF algorithm and SUP/INF networks may be used to
satisfy the five requirements laid out in Section 2.2.

3.1. Feature constraint tables

The generation of FCTs from geometrically fixed models is a simple matter. It is
significantly more difficult for parameterized models because the feature constraints are
functions of the parameters which are not necessarily quantifiable until run-time. Our
feature constraint tables therefore consist of both numeric (where possible) and symbolic
entries. For each feature constraint fk and for each pair of features pi and pj we must
compute the interval

For example, consider the feature constraint surf-dist-2 (see invariant fs in Appendix
A) applied to a pair of surfaces ~1 and ~2 shown in Fig. 6. The inf and sup for this

302 I.D. Reid. J.M. Brady/Artijiicrul lntellip!nce 78 (1995) 289-326

Fig. 6. ‘rho parxm~ric model surfaces

measurement-i.e. the upper and lower bounds on the interval Z~(,LL~ ,,uz)-are given

by

:; {~uoo--us) .n2,(UI --zy) .n2.(z’2 ~- US) .n2,(u7 -us) .n2}.

Upon substitution for vertex coordinates and face equations, they are simplified sym-
bolically (off-line) by the CMS using the constraints:

w, w’, w 3 0,

0 < 8 < n-12.

w = M’ + w’.

/z/w’ = tan 0

to the expressions

0. w sin 8.

If an expression is not atomic (as is the case for w sine) then a new variable is
created, and a new model constraint added to the model. For example, we would create
a variable (I and add the constraint U = wsin 0. The entries in the feature constraint
table for surf-dist-2 are 0 and II, indicating that

inf&(~l,kb2) =O, SUPZ3(~l>~2) =supIl.

I.D. Reid, J.M. Brady/Art@cial Intelligence 78 (1995) 289-326 303

Fig. 7. A sample network, generated from the constraint 3h > b.

3.2. Model parameters and constraints

Parameter values at run-time, and the constraints between them, are represented using
a SUP/INF network. Model parameters are variables in the network, as are the variables

created during FCT construction. Network paths represent:
l the functions that relate the FCT entries to the model parameters (see the example

in the previous sub-section, U = w sin 6);

l implicit constraints between dependent model parameters (see the example in Sec-
tion 2.2, tan 0 = 2h/b);

l other model constraints for model restrictions (see the example in

3h 2 b).

Section 2.2,

This latter constraint would be parsed and simplified to the two equations

h > fb =+ infh = iinfb,

b<3h+supb=3suph.

and compiled to the network shown in Fig. 7.

3.3. Algorithm

The interpretation tree is a dynamic structure, growing as consistent assignments
are added and shrinking if they are found to be inconsistent. The variables in the

(static topology) network hold the current estimates of the parameter values and feature

constraints for the current state of the interpretation tree. Fig. 8 shows a recursive version
of the modified interpretation tree search algorithm, explained in further detail below.

Consistency of assignments sr -+ pi, s2 + pj is checked (by function consistent)

by enforcing each of the feature constraints

Fk(st,s2) n [infL,supUl Z 0,

where the L and U variables are the appropriate FCT entries, and therefore their sup
and inf are readily available. Note that L and U need not refer to the same variable; a
measurement may be bounded below by one parameter and above by another.

304 I.D. Reid, J.M. Brud~/Artijicial Intelligence 78 (1995) 289-326

interpret(f,Rj)

if ,j = 0

[

verifytl, P);

return;

i - 0;

while i < HI

if COnSiStent(l,P,{s,,,lIi})

I

P’ -- update(/,{.si,pui}, P)

if P’ f 8

I

I- 1 lJ (s,, p,}

interpret(I, P’, j f 1)

i-i+1

return:

Fig. 8. Pseudo-code for the modified interpretation tree search: the basic structure of the search is the

same as in Fig. 4. The major difference is the addition of P, the current network state, which describes a

multi-dimensional rectangular space. The function consistent returns true if each feature constraint satisfies

the consistency test described in the text. The new function update applies the update rules given in the text

to the current network state and then allows the network to converge. The condition P’ = 0 represents that

the upper and lower bounds of a network variable crossed during network iteration.

If an assignment is consistent then the image measurements derived from it are used
to update the network. The lower bound L must be less than the measured value, so a
correct update for L is:

supL = min{supL,sup F~(.sI, ~2) 1

and the upper bound must be greater than the measured value, so a correct update for
U is:

Including the previous values in the update rule ensures that bounds can only ever
remain stable or improve. Thus progressive refinements of the legal bounds of the image
measurements are performed. The function update performs the updates above for each
invariant measurement, and then propagates the effects to all other variables in the
network.

If, at any stage, a variable’s bounds cross, then an inconsistency has been found
and the interpretation tree search backtracks. If not, once the network has converged,
the search proceeds downwards with the new improved model parameter and feature
constraint estimates.

Thus we have satisfied the requirements that we be able to determine the feature
constraints at run-time, that we be able to determine when constraints have been violated,
and that we provide a mechanism for updating parameter estimates based on the image
measurements.

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326 305

hl

Fig. 9. A parameterization for a chimney object.

After the interpretation tree search, each complete branch of the tree constitutes a
feasible hypothesis. The pose is then computed using a two-stage least-squares approach

by first finding a best-fit rotation using the quaternion method of [111, followed by
a best-fit translation [15,281. Finding the pose via least-squares avoids the problems

encountered by ACRONYM and by Fisher’s system IMAGINE which both attempt to
solve for pose using the SUP/INF method. The complex nonlinear constraints imposed

by the pose computation often result in poor or even useless bounds being placed on the
pose parameters. Our method provides a compromise in which the SUP/INF method
recovers internal parameters, to which it is well suited, while the least-squares pose
computation provides a stable, accurate pose estimate which is crucial for any subsequent
tasks making use of the results of recognition. Further details, and descriptions of the

hypothesis verification procedures used may be found in [341.

3.4. System operation

We now present an example of the system in operation. Fig. 9 depicts a class of

chimney objects. The class is parameterized by the set:

two angle and fourteen size parameters. A synthetic range image of an instance of the
class is shown in Fig. 10(a), and six position/surface normal data estimated from the
range data are indicated by small vectors and a point number, i, for observation (pi, ni),
Uncertainty in these points is due only to slight aliasing effects; thus uncertainty in the
computed parameter ranges is attributable almost entirely to a lack of evidence rather
than noise.

306 I.D. Reid, J.M. Brady/Artificial intel&ence 78 (1995) 289-326

(a)

I 0.00 0.40 0.80 1 .‘O I .60

hl.

112.

h3,

114:

w I :

W?:

w3,

,.I

w5.

~6: -

(bf

Fig. IO. Chimney recognition: (a) a range image with position/surface normal data extracted, and the

computed pose/size superimposed; (b) the computed parameter ranges.

Legal interpretations for these data, and valid parameter ranges were derived using
the constrained search and network propagation algorithm described in previous sec-
tions. Four legal interpretations were found corresponding to the symmetries around the
principal axis, thus they are all equivalent (i.e. there is only one truly unique interpre-
tation).

A wireframe for the class instance is shown superimposed on the range image in
the computed pose (Fig. IO(a)) . The parameter ranges for the distance parameters are

shown graphically in Fig. lO(b). Intervals for the angle parameters, 8 and cy, were
computed to be:

B E [2.585,2.650] (true value = 5~/6 zz 2.618),

LY E [2.255,2.461] (true value = 37~/4 M 2.356).

In some cases very good bounds have been computed; e.g. dj, h3, ~2. We can see
why this is so by considering, for example, the surf-dist-2 feature constraint (invariant
fs) applied to the matches SO + ,UO. s:! -+ ,Us, which results in the constraints

[infh3,suph?l nJ?(so,s2) + 0,

where F3 (SO, ~2) is the error interval around the measurement n2. (p. - p2), and hence
the updates

infhs = max(infhs, infFs(sa,ST)), sup h3 = min{sup h3, sup F3(so, ~2)).

I.D. Reid, J.M. BradyIArtijCcial Intelligence 78 (1995) 289-326

Thus h3 can be determined up to some small error. The final computed range was

h3 E [0.068,0.088] (true value = 0.075).

307

However for many other parameters the lower bound is a poor estimate, and no
upper bound has been found. Consider the parameter dt . Here, surf-dist-1 (invariant

f2) applied to the matches SO -+ ~0, ss --) ~1 gives the constraint

[infMdl,Ol flF2(~5,~0) + 0,

where Mdt is a variable defined such that Mdt = -dt and F2 (ss, so) is the error interval
around the measurement n5 . (p. - p5), hence the subsequent update is:

sup Mdl = min{sup Mdl, supF2 (~5, SO)}.

The final range for Mdl was [-00, -0.351 and hence for dl:

dl E [0.35,x1] (true value = 0.45).

3.5. Improving parameter bounds

Grimson and Lozano-Perez [2 1] first advocated the use of sparse point-based features

for recognition in order to avoid the problems caused by noise, occlusion and deficiencies
in segmentation algorithms, leading to over-segmentation. Because it is a minimalist

representation and because the IT search is data-driven (i.e. multiple observations may

match to the same model surface) it copes with data fragmentation gracefully. A second
major advantage of this data representation is that it leads to convenient, simple and
elegant invariants and feature constraints. However a drawback of the representation
is that it leads in many cases to the computation of overly conservative bounds. For
example, the computed range for dl is [0.35, co], while inspection of the range image
in Fig. 10 clearly shows that much tighter bounds could potentially be computed. The
reason for the conservative bounds stems from the fact that a position/surface normal is
not a particularly good representation of a large surface. Fortunately, minor extensions
to the search strategy can compensate for the representational deficiencies.

Firstly, for points which lie on the same observed surface patch, a connectivity con-
straint is enforced during the search, simply by requiring that they all match to the same
model surface. Usually only a few key points delimit the patch entirely, and these will

provide the best possible lower bound size estimates. As well as improving parameter
estimates this has the obvious virtue of providing better constraint during the remainder
of the search, leading to improved performance.

Secondly, if a point is known to lie on an occluding boundary (this can be de-
termined easily from the range data since it corresponds to the point lying on the

near side of a depth discontinuity), then the point must lie on two model surfaces,
albeit one of them invisible. Having established a match for the point in the cur-
rent interpretation a secondary match is sought from amongst the adjacent model
surfaces. Because the surface is invisible, no surface normal is observed, meaning

308 I.D. Reid, J.M. Bmd_v/Art@cial Intelligence 78 (1995) 289-326

(a)

0.80 I .20 I .60

d4:

hi:

h2

h3-

h4:

WI:

w2:

W3:

w4:

WS:

w6:

.

-

(b)

Fig. I I. Improved chimney recognition: (a) range image with position/surface normal data extracted, and the
computed pose/size superimposed; (b) the computed parameter ranges (see text for details),

three of the four invariants cannot be computed. The fourth however (one of the
surf-d& constraints) can still be computed, and it is this which provides an upper
bound estimate. A further advantage of secondary matching is that a point matched
on an occluding boundary constrains two of the three translational degrees of free-
dom of the object’s pose (as opposed to only one for a point on the interior of a
surface).

Fig. 11 (a) shows the range image of Fig. IO with a number of additional surface
points extracted from the near side of steps in the image. The improved wireframe
estimate is superimposed on the image in the computed pose. The real improvement is
apparent from examination of the parameter ranges, shown in part (b) of the figure,
which gives from top to bottom: the original ranges from Fig. 10(b) ; ranges from
boundary observations-note the improvement in lower bounds; ranges from boundary
observations with secondary matching-note the significant improvement in both upper
and lower bounds.

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326

I

h2

dsi”

309

hl

Fig. 12. A parameterization of a “widget” class.

4. Discrimination and identification

Part of the model definition given in Section 2.2 was a specialization hierarchy. Each

sub-level of the hierarchy corresponds to a specialization of the parent through the
addition of extra model constraints, active for that sub-class and all its children. ’

Consider the class of “widgets” shown in Fig. 12 parameterized by the set:

An exemplary specialization hierarchy is given in Fig. 13. At each level of the tree extra
model constraints specialize the previous level, until, at the leaf nodes, three different

widgets, A, B and C are completely geometrically determined.
Having established a set of legal interpretations using a high (general) level of the

hierarchy, it is then a simple matter to check lower levels for sub-class membership. This
can be performed as a straightforward depth-first traversal of the hierarchy. However a
more informative search tests each child of a parent node before descent to consistent
children; a useful feature of this method is that we obtain directly the most specific level
of the tree with which the observations are consistent. Note that neither of these methods
is the same as finding an interpretation at each level of the model hierarchy; checking

’ Brooks [6] discussed a similar representation with respect to ACRONYM, although this was never ade-

quately demonstrated experimentally.

310 I.D. Reid, J.M. Brady/Arfijicial Intelligence 7% (1995) 289-326

d2 = 25s
d5 = 25s
hl = 50s
h2 = 25s
wl = 75s
w2 = 25s

____.___. _____.___.____.__.__._---_
t

I Widget A

1 dl = 75
d2=25
d5=25
hl=50
h2=25
wl = 75
w2=25

0.5dl <= WI <= 1.5dl
0.4~1 <= hl <= 1.0~1

w2 c= 0.6~1
h2 >= 0.45h 1

\
0.9h3 c= d2 <= l.lh3

dl = 70s dl = 52s
d2 = 18s d2= 18s
d5 = 35s 1 d5 = 18s
hl=36s hl = 53s
h2 = 18s h2 = 35s
wl = 72s wl = 72s
w2 = 36s w2 = 37s

.__.___.___.___..___--, . _. ._._______.________..---.--

Widget B Widget C

dl = 70 dl=52
d2= 18 d2= 18
d5 = 35 d5= 18
hl=36 hl=53
h2= 18 h2=35
wl = 72 wl = 72
w2=36 w2=37

Fig. 13. A model hierarchy for the widget class. and three instances of the class, consistent with the leaf

nodes of the tree.

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326 311

a specialization is a cheap operation. The specialized constraints are precompiled along
with the most general ones, but only invoked during the specialization process. Only
a handful of network iterations are then required to find a subset of the rectangular
parameter space, indicating either the new parameter ranges, or if the space is empty,
that no interpretation of the observations exists for the current node in the model
hierarchy. Even if an exact identification or sub-class membership cannot be established,
the parameter ranges can be used to distinguish between instances simply by testing for
non-intersecting ranges of the same parameter in the different instances.

Fig, 14(a) shows the left camera view from a stereo pair of the three widgets jumbled
together, and the 3D line segments found by the TINA stereo vision system [3 11. Fig.
14(b) shows the computed pose and size of the three widgets superimposed on the
left-hand view (alternative views of each are shown below). Each has been correctly
identified using the parameter ranges shown in Fig. 14(d).

5. Objects with multiple and repeated sub-parts

Sub-parts are defined in a model relative to a coordinate frame local to the sub-
part, and by a REV-graph, a set of sub-part model parameters, and a set of model
constraints. In addition, each sub-part has an associated transformation, possibly param-
eterized, which gives the location of the sub-part relative to the global model frame.
The transformation is given by terms (either numbers or parameters) specifying:

0 an axis of rotation;
l an angle of rotation about the axis;
0 a translation.

In contrast to other recognition systems which search separately for different sub-parts,
then test the consistency of the poses of the sub-parts with an overall model [10,14,19],
our system attempts to match over the whole model immediately. This has the advantage
that in instances where there is insufficient evidence to hypothesize the presence of
individual sub-parts, it may still be possible to hypothesize the presence of the model
as a whole.

Each sub-part also has an associated number of repetitions. Usually this will be a
constant (frequently equal to one), but on occasions it is useful to define an object in
terms of a parameterized number of repetitions; the pallet, which we use as an exemplar
here, is one such object. This is achieved by defining the number of repetitions to be a
parameter constrained to take on integer values, and defining the transformation between
local and global coordinate systems to be a function of the sub-part number.

Although the model is defined in terms of sub-parts, the search algorithm operates
on a “flattened” version of the model. This is created when the system first reads in
the model. For each part encountered in the model definition, r copies of the part are
created, where r is the maximum number of repetitions of the sub-part allowed (this is
specified in the model). The copies are identical except for a sub-part number (from 1
to r) and the local to global transformation for each (which is a function of the sub-part
number). In addition r copies of each feature in the part are created, identical except
that each maintains a record of which sub-part it belongs to.

(a> (b)

Cd)

-

Fig. 14. Pose and identification from stereo edge fragments: (a) the left view from a stereo pair of images

of widgets A, B and C with stereo edge fragments superimposed; (b) the computed pose, size and identity

of each widget superimposed; (c) alternative views of each widget and the edge fragments used; (d) the

computed parameter ranges in millimetres-the solid bars indicate the ranges for each parameter for the three

objects (from top to bottom: widget A, B and C)

I.D. Reid, J.M. BradylArtiJcial Intelligence 78 (1995) 289-326

interpret(I, P, j)

[if j=n

II verify(Z, P);

return;

313

i +-- 0;

while i < m
r

if pXllXIl(/&) < SUP

t +- inf r(&)

r(k)

inf r(&) +- max(t,pnual(~i))

if COIlSiSteIlt(Z,P, {Sj,&})

1

P’ + update(I, {Sj,/Li}, P)

if P’ # 0

[

1 + 1 U (sj9 Pi}
interpret(l, P’, j + 1)

_inf I(/Ji) f-t

i+i+l

1 return;

Fig. 1.5. Pseudo-code for the extended search: the basic structure of the search is the same as those in Figs. 4
and 8. The new condition involves a function pnum(p) which returns the sub-part number of the part to which
feature p belongs, and r(p) which returns the current upper and lower bounds on the number of repetitions
of the sub-part to which feature p belongs. The variable t is temporary storage for the value of inf r(p;).

By insisting that the maximum number of repetitions is known in advance, we can

create a list of all features which are in the maximu set of model features and guarantee
that an instance of the model is a subset of the maximal set. Feature constraint tables

are computed and stored for the maximal model.
An extended version of the search is given in Fig. 15. The additions in this algorithm

correspond to the following tests and associated actions:
l If the current sub-part number of the sub-part to which the feature belongs is greater

than the maximum allowed (which may be dependent on the current interpretation)
then the match is invalid: i.e. if it has already been established through various
constraints that the model is a proper subset of the maximal model, then there is
no need to test matches to features not in the subset.

l If the current sub-part number of the sub-part to which the feature belongs is
greater than the minimum allowed (in the current interpretation) then update the
current minimum: i.e. if we match to a feature from a sub-part not in the current
minimal set, but in the current maximal set, then henceforth in this interpretation
the minimal set must be expanded to include the extra sub-part.

In order to illustrate the use of these extensions, we now return to the specific
example used to motivate our work, that of recognizing industrial pallets in NEL range
data (for other examples, including recognition of articulated objects, refer to [341). A

314 I.D. Reid, J.M. Brudy/Artijiciul Intelligence 78 (1995) 289-326

ht

Fig. 16. The simplified pallet model: the model contains a top surface, parameterized by {w, ht. d}, and a

set of struts parameterized by { wr, A,, d}. The strut positions relative to the top surface are governed by the

overlap at each end, R. and the strut separation, S. The figure shows only three struts, however in the model a

fourth is possible; the number of struts, II. being an integer parameter of the model.

pallet consists of several parallel, equal-sized top and bottom slats, which are long, Rat

rectangular prisms, and several equal-sized struts of similar dimension to the slats but
running perpendicular to the slats. Typical examples were shown in the introduction in
Fig. 1.

In the recognition examples in this section we consider a class of pallets which have
an arbitrary number of slats (all slats are modelled as a single solid board instead of

individual slats), and which have either three or four struts (a parameter&d quantity).
The bottom slats are omitted from the model. A further simplification comes from

the observation that in most poses of the pallet many of the surfaces defined by the
REV-graph cannot be reliably detected in an NEL range image. These surfaces, which
include the ends and sides of the slats and the strut ends are marked in the model as
secondary model features, meaning they are not considered during primary matching,
but are eligible as secondary matches.

Two sub-parts are defined in the model: a top, parameterized by {w, ht, d}, and a
strut parameterized by { w,, h,, d}. The number of struts is parameterized by an integer
parameter, y1 E [3,4], and the transformation of each strut is the translation [li,O,OIT,
where li is defined by the constraints:

I, = g + is, Yli = 0,. . , II - I

(g is the overhang of a slat at the edge of the pallet and s is the strut separation).
The simplified model, parameterized by the set

{n,w,h,d,s,wc,h,,ht,g}

is shown in Fig. 16 (an annotated version of the model definition appears as an appendix
in [34]).

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326

(b)

(cl

Fig. 17. A scene containing two pallets of different sizes and a cardboard widget: (a) an intensity image of
the scene with a small pallet on the left and a large pallet on the ground; (b) an NEL range image of a
similar scene in which lighter represents closer, and white means no valid range data;(c) pose and size results
for both pallets and the widget.

A complex scene involving two pallets, one substantially occluded, and a large widget,
is shown in Fig. 17. The pallet on the left has three struts and the one on the right has
four, but the furthest strut has not been detected by the range sensor.

The recognition algorithm was run for each of three sets of surfaces, corresponding
to the two pallets and the widget. These surfaces were extracted automatically from the

range image but the selection of which surfaces to use was made manually. The searches
for the two pallets each generated four legal hypotheses; two symmetric interpretations

316 I.D. Reid, J.M. Brudy/Arrijiciul Intelligence 78 (1995) 289-326

with three struts, and two symmetric interpretations with four struts. The widget gener-
ated two legal interpretations corresponding to the symmetric interpretation of its width

and depth. The correct interpretations are shown superimposed on the range image in

Fig. 17(c).
In the case of the smaller (upright) pallet, the three strut interpretations are the

correct ones. However the system makes no use of negative evidence which might rule
out the four strut interpretation. Likewise, one of the two widget interpretations could

be ruled out by considering global evidence about the scene since in this interpretation
the size computed requires the base of the widget to extend below the floor. The correct
interpretations for the larger pallet are the four strut ones, but the lack of evidence

(no fourth strut was detected by the sensor) makes it impossible for the system to
rule out the three strut interpretation. These results present a strong case for both the
use of negative and global evidence, and intelligent sensing strategies to follow up

initial guesses in order to resolve ambiguities, which will form the basis for future

research.

6. Performance

For the case of parameterized models, the ability of geometric constraints to prune

the search space of the interpretation tree is hampered by the lack of knowledge of
parameter values, particularly early in the search. It is therefore crucial in assessing
the practicality of the algorithm we have presented to study the effectiveness of the
constraints and how the search performance is affected.

Our experiments have confirmed the intuition that a data driven search such as the
one we use, is better suited to surface data since the breadth of the tree is determined
by the number of model features, which is considerably smaller for surfaces than edges.
Furthermore, the edge invariants (see Appendix A) tend to result in more complex
networks. Therefore as a performance gauge, we consider the experiment shown in
Section 4 of widget recognition from stereo data which represents close to a “worst-
case” scenario.

In order to provide a meaningful set of comparisons between the various levels
of model specialization (the limit being geometrically fixed models) we invoked the
search for each of the levels separately. Fig. 18 shows three graphs, one for each of
the interpretations of the segmented data, plotting the number of consistent assignments
against the level of the interpretation tree. Each graph contains four plots, each one
corresponding to a complete search using one level from the model hierarchy. Although
the performance of the parameterized models is considerably worse than for fixed models
early in the search, the most striking feature of the graphs is that they show that the
search has been brought under control (i.e. the number of tests is no longer increasing)
after 2 or 3 matches, and has comparable performance to the fixed models after 4 or 5
matches. Also note that despite the combinatorial increase in the search over the first
few levels, the effort is still much less than the worst case for this model of 0(24”+‘)
(the model has 24 edges and n is the level in the tree search).

I.D. Reid, J.M. Brady/Art@cial Intelligence 78 (1995) 289-326 317

q level 1 (fully parameter&d)
. level 2 (fully parameterbed)
W level 3 (scale only)
x level 4 (fixed)

1200

1100

1000

900

600

700

600

500

400

300

200

100

0

1200

1100

1000 0 level 1 (fully parametarized)
.

900
level 2 (fully parameterizad)

w level 3 (scale only)

600
X level 4 (fixed)

700

600

500

400

300

200

100

0
0 1 2 3 4 5 6 7 6 9 IO 11 12 13 14 1.5 16

12001

(b)

0 level 1 (fully parameterized)
n level 2 (fully parameterbed)
w level 3 (scale only)
x level 4 (fixed)

700

600

500

400

300

200

100

0
0 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16

(cl

Fig. 18. Number of assignments made during the tree search for each widget in the scene. The horizontal axis
corresponds to tree level, and the vertical axis to the number of consistent assignments made: (a) widget A;
(b) widget B; (c) widget C (see text for details).

Fig, 19. Percentage of false positives allowed by each feature constraint plotted against at each level of the tree

search for each of the four edge constraints: (a) edge-angle, (b) edge-dist, (c) edge-proj-I, (d) edge-proj-2

(see text for details).

We have measured the pruning power of each of the feature constraints by considering
the percentage of false positives accepted by each feature constraint at a given tree level,
calculated as

c-t
lOO----

c

(where, for a given level of the tree, c is the number of times the constraint was tested

and t number of correct matches). This percentage has been plotted against the level
of the tree in Fig. 19 (for the widget C example). These graphs show the expected
effect: for the edge-angle constraint there is little difference between the fixed and the
parameterized cases (since in this experiment the mode1 angles are fixed even in the

parameterized model), and the performance of the distance constraints, edge-dist, edge-
proj- I and edge-proj-2, is poorer for parameterized models over the first few tree levels,
but improves to give approximately the same performance as for fixed models thereafter.

Performance statistics for all the results given in this paper are summarized in Table
2, giving the network size, size of the tree search required, number of interpretations,
network statistics (number of iterations and total network flops), and time for recogni-
tion. These latter times reflect the total time for recognition for the algorithm running
on a SunSparc-2 workstation including all algorithm steps except network compilation
(which, in any case, is negligible).

Table 2

I.D. Reid, J.M. Brady/Art$icial Intelligence 78 (1995) 289-326 319

System performance summary

Experiment Network Search
size size

(nodes) (IT nodes)

Interpret-
ations

Total
network
iterations

Total
network

operations

Time
(CPU sets)

widget A (Fig. 14) 699 693 1 1984 357516 8.38
widget B (Fig. 14) 699 1443 1 3783 616380 14.10
widget C (Fig. 14) 699 2553 1 7202 1177030 28.37

chimney (Fig. 10) 4094 67 4 237 350378 2.86

chimney (Fig. II) 4094 99 4 326 383412 3.43

pallet3 (Fig. 17) 2328 115 4 277 333425 3.49

pallet4 (Fig. 17) 2328 145 4 529 709792 4.69

widget (Fig. 17) 699 980 2 2573 196978 4.03

7. Relationship to previous work

The extensive literature on three-dimensional object recognition has concentrated, for

the most part, on geometrically fixed objects, since it was realised that such objects led to
powerful constraints which could be exploited in numerous ways to achieve recognition
and localization. We begin this section with a brief tour of the seminal work in the area

of fixed 3D object recognition, particularly from 3D data, paying particular attention to
work which has influenced our own. A full survey of these techniques is beyond the

scope of the paper (an excellent, though dated, survey can be found in 131). and we
therefore concentrate on the considerably less common systems for parametric object

recognition.

7.1. Fixed 30 object recognition

A popular approach, and one adopted in our work described in the previous sections

is that of hypothesis generation, through a search of the object-model feature space
seeking appropriate matches followed by a global verification stage.

Grimson and Lozano-Perez developed the RAF system [20,211 based on a data-
driven search of an interpretation tree which we have already discussed in detail in

earlier sections. Developments from their work, using the same principles of geometric
constraints and interpretation tree search were made by Murray and Cook [28] using
scale invariant constraints on 3D edge fragments and by Flynn and Jain in the Bonsai
system [151 using unary and binary constraints on planar and quadric surfaces from
range data.

A useful refinement of the IT is based around the concept of alignment. In this

approach an object pose (i.e. a transformation which maps a model into the sensor
coordinate frame) is computed as soon as possible, and then a search initiated to provide
support for the hypothesized pose. Faugeras and Hebert developed such an approach
using model-driven rather than data-driven tree search [111. A major disadvantage of
the model driven approach is that the nature of the search restricts each model feature

320 I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326

to match to at most one data feature. In practice, occlusions and poor segmentation
often lead to fragmented data features which ideally all match to one model feature.

The work of Bolles and Horaud, who developed the 3DP0 system [5] replaced the first

few levels of the interpretation tree search with so-called feature foci-features which

when matched would determine, or greatly restrict the pose of the object. The IT search
was replaced by an equivalent algorithm, that of finding maximal cliques in a graph,
for obtaining hypothesis support subsequent to pose estimation. Generalizations of the
feature focus idea have appeared in 3D recognition systems developed by Chen and
Kak [81 using range data, and Pollard et al. [32] who combined ideas from 3DP0

and RAF systems in which feature foci were groups of 3D edge fragments such as
three concurrent 3D line segments. Lowe’s SCERPO system [24] was based on similar

principles but used 2D intensity images. Matching was constrained by the viewpoint
consistency constraint, and proceeded once an initial pose had been estimated from a

perceptual group (another term for feature focus) such as a parallelogram formed by

edge segments in the scene. Other notable work on recognition of 3D objects from 2D
images using object-feature match search techniques subsequent to alignment includes

that by Goad [181 and Huttenlocher and Ullman [23].
An alternative to search through feature-match space was proposed by Thompson and

Mundy 1381 who used vertex-edge pairs (two edges with a coincident vertex and a

further vertex) to estimate a transformation from model to scene under affine projection.
Each vertex-edge pair casts a vote in transformation space for a particular transformation

with the true one(s) estimated as peaks in this space.
Finally, we briefly mention the relatively recent developments of recognition through

the use of projective invariants, pioneered by Weiss [41], and best illustrated in the
system developed by Rothwell et al. [16,371. To date most of this work has concentrated
on planar objects. Only recently [361 have extensions to three-dimensional objects been

achieved (for objects which can be “caged” by polyhedral point sets, and objects with
bilateral symmetries), and it is too early to tell how robust and amenable these methods
will prove to full automation.

7.2. Parametric object recognition

The systems above were all designed to operate with fixed, rather than parametric
objects. Some of these have been extended more recently to cope with internal degrees
of freedom. We discuss these, and other systems designed for parametric objects below.

The best known of all parameterized object recognition schemes is ACRONYM [6],
designed to find instances of 3D models in single 2D views (i.e. intensity images).
ACRONYM consisted of three distinct parts massaged together:

l a powerful representational scheme which used generalized cones (volumetric prim-
itives each defined by an axis, a cross-section and a sweeping rule which determines
how the cross-section changes as it sweeps along the axis) as the basic building
blocks and a frame-based, semantic network [27] of objects, parts and sub-parts
and a hierarchy of models and sub-models;

l a symbolic inference engine, CMS, which was based on the SUP/INF algorithm
of Bledsoe [41, for the propagation of symbolic and numeric constraints;

I.D. Reid. J.M. Brady/Artificial Intelligence 78 (1995) 289-326 321

l a prediction mechanism which used ribbons (the two-dimensional equivalent of
generalized cones) observed in an image to hypothesize the presence of generalized
cones and set up constraints appropriate to the observed data.

Although there is a multitude of good ideas within ACRONYM, it was slow (owing to
the nature of symbolic computation). More seriously, it was only ever demonstrated on a
handful of images meaning that many of its potential uses were never tested (including
objects with repeated sub-parts, as demonstrated in this paper). This was a result of the
difficulty in extracting data from intensity images useful for constraining the size and
positions of the generalized cones representation.

Grimson [19,201 described how to extend the RAF system for simple parameteriza-
tions of 2D objects, dealing with the cases of uniform scale, uniform stretching along
one axis, and rotation about a common axis. The former two were incorporated by treat-
ing each as a special case hard-coded into the search algorithm itself, and the latter by
recognizing sub-parts and then finding parts consistent with a rotation about a common
axis. The system thus lacked generality, a limitation overcome in the work we have
described in this paper.

Ettinger [lo] generalized the latter part of Grimson’s strategy, building a system
based on a bottom-up hierarchical search, in which primitive features (in this case
components of the cu~ature primal sketch [l] located in 2D images of 2D models
such as road-signs) are built into sub-parts which ultimately are linked to recognize
objects. A limited amount of parameterization was allowed.

Fisher’s IMAGINE system [12,141 also allows the definition of objects in terms of
sub-parts, and parameterizations are introduced in the form of rigid motions between
sub-parts-although sub-parts may not have internal degrees of freedom such as scale
or stretch. Like Ettinger’s system, IMAGINE recognition is based on a bottom up
approach using feature clusters, similar to the feature foci mentioned above, formed
using topological constraints and matched to sub-parts. A SUP/INF network is used
to solve for the transformations between sub-parts and the overall model to sensor
transformation.

Vayda and Kak [40] have demonstrated a system for recognition of generic postal
objects from range data. Individual items are recognized in scenes of piles of postal
objects. The system’s geometric reasoning algorithms consider not only information
about single objects but about the entire scene (for example, intersection tests are
performed between hypothesized objects in the scene). However the success of the
algorithms used depends largely on the limited scope of the representation; objects are
modelled as either a box with three scaling degrees of freedom or cylinders with two
scaling degrees of freedom.

The major research on 3D parametric object recognition from 2D data has been
conducted by Lowe [251 (an extension of the SCERPO system) and Nguyen et al.
[29]. Both methods use gradient descent from an a priori estimate of parameter values
(including pose parameters) to solve simultaneously for pose and parameters. Such
systems are extremely useful for tracking articulated objects from a dense sequence
of frames where the previous frame gives a good guess for the current frame, as
demonstrated in [26], or in human-computer interfaces where a good initial guess can
be provided by a user, as in [291. However the problems with gradient descent in non-

322 I.D. Reid, J.M. Brudy/Arti’ciul Intelligence 78 (1995) 289-326

convex spaces is well documented, and the major problem with these methods is their
reliance on prior estimates combined with inability to self-bootstrap unknown parameter

values.

Recent work by Umeyama [391 bears closest resemblance to the work we have
presented. In common with our work he represents parameters by intervals, and bases
recognition around depth-first search of an interpretation tree with simultaneous solution
for parameter values. General parameterizations such as combinations of articulations

and arbitrary scaling and stretching are allowed, however a major limiting factor is that

it operates only with 2D models from points found on silhouettes (formed under parallel
projection).

8. Discussion

As we have mentioned earlier, most previous recognition systems have been designed

to work with fixed objects. This is a clear limitation in many environments and to
address this deficiency we have developed techniques for recognizing instances of 3D
object classes (which may consist of multiple and/or repeated sub-parts with internal

degrees of freedom, linked by parameterized transformations), from sets of 3D feature
observations. Recognition of a class instance is structured as a search of an interpretation
tree in which geometric constraints on pairs of sensed features not only prune the tree,

but are used to determine upper and lower bounds on the model parameter values of the
instance. A real-valued constraint propagation network unifies the representations of the

model parameters, model constraints and feature constraints, and provides a simple and

effective mechanism for accessing and updating parameter values.
We have examined a number of different cases using real 3D data of two different

types-3D edge fragments from a stereo vision system, and position/surface normal data
derived from planar patches extracted from a range image-and shown that the system
is effective in determining object pose and parameters. Although the cost associated

with recognition of parametric objects is greater than for fixed objects, our experiments
demonstrate that in many cases this is a price worth the flexibility gained.

As it stands, the system is based around a very general interpretation tree search, as
used in, for example, [21,281. However currently the system is limited to determining
the pose and parameters of an object in a non-cluttered scene. One way around this
problem is to introduce the notion of a “null feature” which always successfully matches,

as suggested by Grimson and Lozano-Perez in [22]. The price paid when using this
technique, however, is unacceptable, as it results in combinatorial explosion in the
number of interpretations [201. We noted in Section 7 that a great increase in efficiency
can be gained through a more strategic search, seeded by a focus feature or perceptual
group [5,8,32]. The effect of this is to direct the search to specific areas of interest,
avoiding many problems associated with excessive scene clutter, currently a limitation
of our system. A major target of our future research will therefore be the incorporation
of these tools into the parametric framework we have described. One point of particular
interest raised by such an extension is that the search could be controlled strategically
to minimize uncertainty about parameter values.

I.D. Reid, J.M. Brady/Artificial Intelligence 78 (1995) 289-326 323

A second obvious way of improving the performance of the system is to exploit
the potentially parallel nature of many aspects of the method. To this end we have
explored distributing both the tree search and the network evaluation throughout a

MIMD processor network [93.

Acknowledgements

We are indebted to David Murray for many useful discussions. We are also grateful
to Steve Pollard of Sheffield University for the use of the TINA stereo vision system,

and to an anonymous referee for some insightful comments. Ian Reid was supported by
a Rhodes scholarship.

Appendix A. Binary geometry constraints

This appendix specifies the feature constraints (i.e. the fk) used in our system.
Two types of data may be input: either surface data from our in-house (Oxford/NEL)
laser range-finding system [33,351, or three-dimensional edge fragments from a stereo

system [31]. Below we give sets of feature constraints for each of these data types.
Demonstrations of the system working with both types of data are given in Sections 4
to 5.

Surface data are represented by a 3D position and a unit surface normal, s = (p, n).
This representation is rather conservative, since dense range maps supplied by the Ox-
ford/NEL range finder give information about surface extent and connectivity. However,

range-image segmentation remains a difficult problem, and a conservative data repre-
sentation obviates the problems of over-segmentation where noise (or other factors)
cause a single surface to be broken into multiple facets, and those problems created by
occlusions. Furthermore, it is a simple matter to transfer topological constraints such
as connectivity (when available) to the interpretation to the tree search itself, by, for

example, enforcing the constraint that data from the same scene surface must match to
the same model surface, or that data from adjacent surfaces in the scene must match to

adjacent model surfaces.
We use the same set of surface constraints as in the original 3D version of RAF. This

set of image measurements (and feature constraints) is given by:

(1) surf-angle: nt . n2.
(2) surf-dist-1: nl . (p, - p2).
(3) surf-dist-2: n2 . (p2 - p,) .
(4) surf-cross-dist:

These measurements embody all the possible constraint on position and orientation
available from two position/surface normal data points. They are depicted in Fig. A. 1 (a).
If, instead of nl . n2, we use arccos nl . n2, with the sign adjusted so that surfaces which

324 I.D. Reid, J.M. Brady/Artijicial Inrelligence 78 (199.5) 289-326

a h

Fig. A. I. Feature constraints used by our system: (a) for planar surface patches; (b) for straight edge

fragments.

face each other have positive angles and surfaces which point away from each other

have negative angles (and the same convention is adopted in the model), then sign

ambiguity is avoided. Henceforth surf-angle refers to this revised measurement.
Edge data are represented by a set of edge fragments, s = (e, m, 1); e is an unsigned

unit vector in the direction of the fragment, m is the midpoint of the fragment and 1

is the fragment’s length. From these it is straightforward to define the endpoints of the
fragment, p, = m + {le and p2 = m - k&e. Murray and Cook [28] proposed a set of
feature constraints based on edge directions. The recognition problem they considered-

edge fragments sensed from moving images-required scale independent constraints
because of the depth/speed scaling ambiguity inherent in visual motion processing
under perspective projection. For the case where scale independence is not an issue their

constraints can be extended to include distances as well. Instead of these, we propose a
new, but equivalent, set of feature constraints, listed below: *

(1) edge-angle: arccos ei . el.
(2) edge-dist:

if (si and sj parallel) sgn(ei . ei) (u . u - (u . ej)*)“* else o .
f?i A t?j

!eiA

where v = m, - m.i is a vector between the edges.
(3) edge-proj- 1:

(P,, -mj). [Ci A f$$] and (p, -m.j). [ej A a],
(4) edge-proj-2:

Image measurement edge-dist is the perpendicular distance between the lines on which
the fragments lie and edge-proj gives upper and lower bounds on the distance of edge

2 This constraint set more closely resembles those used by Pollard [321.

I.D. Reid, J.M. Brady/Arrifcial lnrelligence 78 (1995) 289-326 325

si to the plane containing Sj with surface normal ej A ei A ej. These measurements are
depicted in Fig. A.1 (b) .

References

III

121

131
141

r51

161
[71
l81

191

[101

1111

1121

[I31

[I41

I151

I161

[I71

[I81

I191

H. Asada and J.M. Brady, The curvature primal sketch, IEEE Trans. Pattern Anal. Much. Inrell. 8 (1)
(1986) 2-14.
B.G. Baumgart, Winged-edge polyhedron representation, Technical Repoti AIM-179, Stanford University
(1972).
P.J. Besl and R.C. Jain, Three-dimensional object recognition, Cornput. Surv. 17 (I) (1985) 75-145.
W.W. Bledsoe, The sup-inf method in presburger arithmetic, Technical Report Memo ATP 18,
Department of Mathematics and Computer Science, University of Texas (1974).
R.C. Bolles and P Honud, 3DPO: a three-dimensional part orientation system, Inr. J. Robotics Research
5 (3) (1986) 3-26.
R.A. Brooks, Symbolic reasoning among 3D models and 2D images, Arrif: Intell. 17 (1981) 285-348.
R.A. Brooks, Symbolic error analysis and robot planning, Inr. J. Robotics Research 1 (4) (1982) 29-68.
C.H. Chen and A.C. Kak, A robot vision system for recognizing 3D objects in low-order polynomial
time, /EEE Trans. Syst Man Cybern. 19 (6) (1989) 1535-1563.
E Chenavier, I.D. Reid and J.M. Brady, Recognition of pammeterized objects in range images: a parallel
implementation, Image Vision Compur. 12 (9) (1994) 573-582.
G.J. Ettinger, Large hierarchical object recognition using libraries of parameterized mode1 sub-parts, in:
Proceedings IEEE Conference on Computer Vision and Pattern Recognition (1988) 32-41.
O.D. Faugeras and M. Hebert, The representation, recognition and locating of 3D objects, Inr. J. Robofics
Research 5 (3) (1986) 27-52.
R.B. Fisher, From Surf&es to Objects: Computer Usion and Three Dimensional Scene Analysis (Wiley,
New York, 1989).
R.B. Fisher and M.J.L. On; Solving geometric constraints in a parallel network, in: Proceedings 3rd
Alvey Vision Conference (1987) 87-9.5.
R.B. Fisher and M.J.L. On; Geometric reasoning in a parallel network, hr. J. Robofics Research 10 (2)
(1991) 103-122.
P.J. Flynn and A.K. Jain, BONSAI: 3D object recognition using constrained search, in: Proceedings 3rd
Inrernarional Conference on Computer Vision (1990) 263-267.
D.A. Forsyth, J.L. Mundy, A.P Zisserman, C. Coelho, A. Heller and C.A. Rothwell, Invariant descriptors
for 3D object recognition and pose, IEEE Trans. Parrern Anal. Mach. Intell. 13 (IO) (1991) 971-991.
PC. Gaston and T. Lozano-P&z, Tactile recognition and localization using object models: the case of
polyhedra on a plane, IEEE Trans. Pattern Anal. Mach. Intell. 6 (3) (1984) 257-265.
C. Goad, Special purpose automatic programming for 3d model-based vision, in: Proceedings Image
Understanding Workshop (1983) 37 l-38 1.
W.E.L. Grimson, Recognition of object families using parametrized models, in: Proceedings Isr
International Conference on Computer Vision, London (1987) 93-101.

[201 W.E.L. Crimson, Object Recognition by Computer: The Role of Geometric Constraints (MIT Press,
Cambridge, MA, 1991).

[2 I] W.E.L. Grimson and T. Lozano-Pkrez, Model-based recognition and localization from sparse range or
tactile data, Inr. J. Robotics Research 3 (3) (1984) 3-35.

[221 W.E.L. Grimson and T. Lozano-P&z, Localizing overlapping parts by searching the interpretation tree,
IEEE Trans. Pattern Anal. Mach. Intell. 9 (4) (1987) 469-482.

[231 D.P. Huttenlocher and S. Ullman, Recognizing solid objects by alignment, Inf. J. Cornput. Vision 5 (2)
(1990) 255-274.

1241 D.G. Lowe, The viewpoint consistency constraint, hr. J. Compur. Vision 1 (1) (1987) 57-72.
[251 D.G. Lowe, Fitting parameterized 3D models to images, Technical Report TR 89-26, Computer Science

Department, University of British Columbia, Vancouver, BC (1989).
[26] D.G. Lowe, Robust model-based motion tracking through the integration of search and estimation, ht.

J. Compuf. Vision 8 (2) (1992) 113-122.

326 I.D. Reid, J.M. Brudy/Artijiciul Inteiligence 78 (1995) 289-326

[27) M. Minsky, A framework for representing knowledge, in: P.H. Winston, ed., The Psychology of Computer
Vision (McGraw-Hill, New York, 1975)

I28 1 D.W. Murray and D.B. Cook, Using the orientation of fragmentary 3D edge segments for polyhedral
object recognition, Int. .I. Cornput. Vision 1 (2) (1988) 153-169.

[29 I V.D. Nguyen, J.L. Mundy and D. Kapur, Modelling generic polyhedral objects with constraints, in:
Proceedings IEEE Conference on Computer Vision und Puttern Recognition (199 I) 479-485.

(301 M.J.L. Orr, R.B. Fisher and J. Hallam, Computing with uncertainty: intervals versus probability, in:
P Mowforth, ed., Proceedings of the British Machine Vision Conference (Springer-Verlag, Berlin, 199 I)
351-354.

1311 S.B. Pollard, J.E.W. Mayhew and J.P. Frisby, PMF: a stereo correspondence algorithm using a disparity

gradient limit, Perception 14 (1985) 449-470.
I32 I S.B. Pollard, J. Porrill, J.E.W. Mayhew and J.P. Frisby, Matching geometrical descriptions in three-space,

Imuge und Vision Computing 5 (2) (1987) 73-78.
[33 I G.T. Reid, S.J. Marshall, R.C. Rixon and H. Stewart, A laser scanning camera for range data acquisition,

J. Phys. D A@. Phys. 21 (1988) I-3.
1341 I.D. Reid, Recognizing parameterized objects from range data, Ph.D. Thesis, OUEL TR 1918/92,

University of Oxford (I99 I).

13.51 I.D. Reid and J.M. Brady, Model-based recognition and range imaging for a guided vehicle, image

Vision Comput. 10 (3) (1992); Special Issue on Range Image Understanding.

I 36 I CA. Rothwell, Extracting projective information from single views of 3d point sets, in: Proceedings 4th
Inrernutional Conference on Computer Vision (1993) 573-582.

I37 1 C.A. Rothwell, Recognition using projective invariance, Ph.D. Thesis, University of Oxford (1993).

I 38 1 D.W. Thompson and J.L. Mundy, Three-dimensional model matching from an unconstrained viewpoint,
in: Proceedings IEEE Conference on Robotics and Automation, Raleigh, NC (1987).

[39 I S. Umeyama, Parameterized point pattern matching and its application to recognition of object families,
IEEE Trans. Pattern Anal. Much. Intel/. 15 (2) (1993) 136-144.

[40 1 A.J. Vayda and A.C. Kak, A robot vision system for recognizing generic shaped objects, Comput. Vision
Graph. Image Process fmqe Understunding 54 (I) (199 I) l-46.

141 I 1. Weiss, Geometric invariants and object recognition, Inf. J. Comput. Vision 10 (3) (1993) 207-232.

I42 I S. Wolfram, Muthematicu: A sysrenr fijr Doing Mathematics by Computer (Addison-Wesley, Reading,
MA, 1988).

