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Roots Structure 

1. Introduction 

Soil compaction during farming operations, particularly under wet condi- 
tions, eliminates many of the large diameter 'transmission pores' that serve 
simultaneously as the major pathways for the drainage of water, the exchange of 
gases, especially oxygen, between atmosphere and soil, and the unrestricted 
penetration of roots. Few transmission pores are present in naturally structure- 
less soils dominated by fine sand or silt-sized particles, and the continuity of 
pores is interrupted by natural or induced pans and surface crusts in a wider 
range of soil types. When the soil becomes excessively wet, the lack of porosity 
soon interferes in soil aeration and plant vegetative growth and crop yields are 
adversely affected 22,32. This paper reviews (i) the conditions under which the 
supply of oxygen to plant roots from the soil becomes insufficient for growth and 
metabolism, (ii) the consequent mechanisms of injury to the vegetative growth of 
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plants that are not adapted to wetland habitats, and (iii) physiological 
mechanisms by which wetland and non-wetland species acclimatize to a lack of 
oxygen in the root environment. 

2. Oxygen deficiency and the supply of oxygen to roots in soil or solution culture 

2.1 Occurrence of anaerobic conditions infield soils 
In well-drained land with adequate soil porosity, the flux of  oxygen into the 

soil in response to respiration by roots and soil micro-organisms can be as much 
as 3.5 to 17 1 per day for each m 2 of land surface during the summer in temperate 

climates, dropping to about one-tenth of this rate during the winter 1~ This flux 

compares with the volume of  O2 contained in the soil air to a depth of 1 m which 
would be about 60 1 (soil bulk density 1.0 g cm 3, volumetric moisture content, 
0.3), sufficient for about 3 days' respiration. Except for plant species that are 
structurally adapted to allow the internal transfer of oxygen by diffusion from 

the above-ground parts (see section 5.2 below), oxygen used in root respiration is 
supplied almost exclusively by the root environment. Although some movement 
of oxygen into the soil takes place by convection due to fluctuations in air 
temperature, atmospheric pressure and wind speed, or dissolved in rain 36,43,67, 

usually these are of minor importance. The principal mechanism is by gaseous 
diffusion, along gradients of concentration or partial pressure created by the 
respiratory activity of roots and soil organisms. Well-structured, drained soils 
provide a sufficiently large cross-sectional area of gas-filled pores that relatively 
shallow concentration gradients into the bulk soil are adequate for oxygen 
diffusion, and even at depths of  1-2 m, 02 partial pressures can be around 
0.15 atm, compared with 0.204 atm for water-saturated air. 

With flooding, the soil pore space is totally water filled, and gas exchange 
between soil and atmosphere is virtually eliminated because of the very small 
diffusivity in water. The oxygenated zone at the soil surface may be confined to a 
depth of  only a few mm. Depending on soil temperature and respiration rates, the 
rate at which dissolved oxygen in the soil water (about 1.9 1 m 3 soil) is depleted 
depends sensitively on the soil temperature and the respiration rate of roots and 
micro-organisms. With warm temperatures and appreciable amounts of organic 
matter, or in soil mixed and incubated in the laboratory, depletion may be 
complete in only hours 112,116. When temperatures are low and soil respiration is 
slowed, the concentration of oxygen in the water may decline but slowly. During 
winter waterlogging of cereals in a clay soil, 13 days elapsed before the 
concentration of dissolved soil oxygen at 20 cm depth had declined to 0.02 atm. 
The same change required only 3.5 days in spring ~3. 

Flooding and the development of anaerobic conditions in the field is usually 
non-uniform. When the soil water content exceeds field capacity and approaches 
saturation, an increasing proportion of the micropores in aggregates and peds 
become water filled. Depending on temperature and its influence on the rate of 
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soil respiration, it can be shown from diffusion theory that the centres of  the 

aggregates 1-2 cm may then become anaerobic but surrounded by a shell of  
aerobic soil 29,4~ Wet soils can thus comprise volumes of anaerobic soil 

(anaerobic microsites) surrounded by a well-drained macroporous system in 
which the soil air contains the gaseous products of  anaerobic metabolism (e.g. 

N 2 0 )  and, paradoxically, 02 almost at atmospheric concentration. Alternatively, 
poor aeration of the soil may arise by surface crusting, or because of  a pan 

beneath the surface. Either effectively seals the deeper soil from the atmosphere, 

although initially there can be an appreciable air volume trapped beneath the 

surface water. Less extreme oxygen deficiency can occur where water slowly 
trickles through the flooded soil so that oxygen concentrations in the rooting 

zone are much smaller than air saturation, but fully anaerobic conditions are 

avoided. Thus plants may be subjected in all or part of  the rooting zone to 
anaerobic conditions or to oxygen concentrations ranging from fully air- 

saturated to anaerobic. 

2.2 Oxygen diffusion rates in soil 
As long as appreciable concentrations of  oxygen remain in the soil water, the 

respiration o f ' unadap ted '  roots is controlled by the diffusion of oxygen through 

the soil to their surfaces. Early attempts to estimate minimum oxygen diffusion 
rates (ODR) through the soil to roots, using cylindrical Pt electrodes 79'm9 were 

severely criticized ss on the grounds that the fundamental principles concerning 

the valid use of  oxygen electrodes in soil has not been thoroughly established, 
especially under unsaturated conditions. Particularly damaging was the recogni- 

tion that reduction of  H + must have contributed to the current measured in soils 

at the voltages used by many workers. Thus, many published values of  minimum 

ODRs in soil are unlikely to be fundamentally based. 

Such criticism in no way diminishes the importance of diffusion as to a 

mechanism of oxygen supply in soil containing small concentrations of  oxygen. 
More recently, oxygen flux to Pt microelectrodes in water-saturated soil has been 

measured, taking care to use voltages at which only the flux of oxygen to the 
electrode surface could contribute to the measured current 3,~4. In laboratory 

experiments, oxygen concentration in the soil at 10C  slowly declined, while 

frequent measurements were made of the extension of the seminal roots of  oats 
(observed through inclined, transparent, container walls) 14. Oxygen flux to 

electrodes located in the soil near the extending roots was also monitored. The 
time at which the rate of  root elongation first declined was that at which oxygen 
flux to the electrode diminished to 56 ng cm -2 rain t, a flux that calculations 

suggest would be just sufficient to maintain the oxygen consumption rate of  the 
root apex. When oxygen flux to the Pt electrode was effectively zero, root 
extension ceased ~4. Such observations suggest that in unstirred, water-saturated 
media the electrode method can, with appropriate safeguards, give a reliable 
estimate of  the maximal potential supply of oxygen to a root surface. 
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2.3 Models  o f  oxygen diffusion to and in roots 

Quantitative estimation of the conditions under which oxygen diffusion 
through the soil to the root surface would be likely to limit respiration were 
developed by Lemon 78 and by Luxmoore et al. 84-87. The latter model also took 

account of the longitudinal diffusion component within intercellular spaces, 
radial leakage, and respiratory oxygen consumption within the root. Unfortuna- 
tely Luxmoore et al. assumed that the latter relation was adequately described by 
their measured rates of oxygen uptake by root segments in a respirometer, in 
which half-maximal oxygen uptake occurred at 0.08 atm (maize) and 0.16 atm 
(rice) oxygen partial pressure. The data obtained from their calculations was 
called in question by Armstrong and Gaynard 2 who pointed out that respir- 
ometer oxygen concentrations refer to the external gas phase and such 
concentrations are greatly in excess of the critical oxygen pressures (see below) 
defined with respect to intercellular oxygen concentrations in their own 
investigations. It would be interesting to re-examine the model of Luxmoore et 

al. 84 using revised boundary conditions. 
More recently, Armstrong and co-workers 4 have used an electrical analogue to 

simulate oxygen diffusion and consumption in the plant-soil system. Oxygen 
concentrations reaching cells in the meristematic zone of the root, a critical 
consideration for root growth, are reduced by: the length of the diffusion path 
from the shoot; by fast radial leakage from the root to the surrounding medium; 
by a small gas-filled porosity; and by rapid respiration of cells along the diffusion 
path. On the assumption that root growth (cell division and expansion) would 
cease when the partial pressure of  oxygen bathing the meristematic ceils declined 
to 0.02 atm, Armstrong 1 calculated the maximum length to which roots would be 
expected to extend in anaerobic media. For  roots of the dimension of wheat, with 
an internal porosity of  15~ and slow respiration, maximal extension would be 
about 17 cm (Armstrong 1, Fig 17F). This compares well with the maximum 
length of wheat aerenchymatous roots observed in anaerobic soil (20 cm) ~ ~2 and 
anaerobic solution culture (12 cm) 114. 

3. Oxygen requirements of roots in solution culture 

The oxygen concentration in the outer solution at which oxygen consumption 
rates begin to be slowed by oxygen shortage is defined as the critical oxygen 
pressure (COla) 9'23. Knowledge of  the COP for different species was at one time 
judged important because it was anticipated that roots of wetland and dryland 
species would display contrasting values. Additionally, by comparing the COP 
with the oxygen concentration in the rooting medium it seemed that a simple 
means was available for assessing the oxygen supply to roots that was equally 
relevant to studies in soil and in solution culture. 

Oxygen consumption rates decrease hyperbolically as the oxygen concentra- 
tion decreases below the COP. With excised roots, the COP is appreciably greater 
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Table 1. Critical oxygen pressures for respiration of 
onion (Allium cepa) root segments as a function of 
temperature* 
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Root segment: distance 

from tip (mm) 

Temperature ('C) 0--5 5-10 10-15 

15 0.15 0.10 0.10 

20 0.20 0.15 0.15 

30 0.50 0.20 0.10 

35 0.50 0.40 0.20 

* Values in the Table show the oxygen partial pressure 

Jr: the manometer flask in atmospheres (air=0.21). 

Data from Berry and Norris 9. 

for the apical 0 5 mm segment which has the highest oxygen uptake rate 9. As the 

temperature is raised from 15'~C to 35 'C (Table 1), the COP for any segment 
increases. At 35~ maximal respiration rates are not attained until the oxygen 

partial pressure equals or exceeds that in air. At partial pressures below the COP, 

the respiratory quotient (volume CO2 emitted/volume 02 consumed) becomes 
progressively greater, suggesting that extra CO2 is produced by anaerobic 

respiration in at least part  of  the tissue. Berry and Norris 9 concluded that when 

the oxygen concentration falls below the COP, the rate of  oxygen consumption is 

limited by diffusion across the tissue. Thus, an outer 'sleeve' of  fully aerobic tissue 

may surround a central 'core'  of  anaerobic cells. Although the presence of an 

'anaerobic core' has yet to be demonstrated directly, strong support  for the 

notion is given by the sharp rise in the production of ethanol (or alcohol 
dehydrogenase activity) together with the appearance of 'anaerobic polypep- 

tides' (stress proteins characteristic of  anoxic cells) in wheat roots when the 
oxygen partial pressure is reduced to 0.10 atm or less 11. 

The partial pressures of  oxygen at which various root functions that are 

dependent on concomitant respiration begin to be restricted show a wide range in 
different investigations. In vigorously stirred solution, root extension rates in 
tobacco and soybean at oxygen concentrations as low as 0.02-0.03 atm were 
almost as rapid as in air-bubbled solution 46. Uptake of ions 46 and water t24 were 

also nearly maximal at these low oxygen concentrations. By contrast, root 
extension observed by other workers lIA2'83A~7 was slowed at concentrations 
about  half that in air, i.e. 0. ! atm. It is difficult to know whether such a range of 
oxygen partial pressures is simply a consequence of the efficiency of  stirring of the 
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nutrient solution. Although measurement of  the oxygen concentration in the 
outer solution is widely accepted as a relative measure of the supply of oxygen to 
the tissues, it becomes of doubtful value in comparing different experimental 
conditions or species with precision. Unstirred layers of solution at the root 
surface will impede gaseous diffusion and affect the concentration gradient, 
especially at low oxygen concentrations. In some species, appreciable wall 

resistance is offered to gaseous diffusion, so that the internal concentration can 

be much lower than in the bulk solution. An unknown contribution to oxygen 
supply may originate by internal diffusion through intercellular spaces connect- 
ing with the shoot. Furthermore, only a fraction of  the oxygen consumption may 
be associated with oxidative phosphorylation, and this could vary with the 
environment and stage of development of the root tissue. In conclusion, it is 
difficult to make a general prediction concerning the oxygen requirement of roots 
based on the external concentration of  oxygen. 

In an attempt to overcome the above uncertainties and define the critical 
oxygen pressure with greater precision, Armstrong and co-workers 2,121,m used 

cylindrical Pt electrodes placed around the root tip to obtain estimates of the 
oxygen concentration in the intercellular spaces and so deduce the COP at the 
cellular or tissue level. They found that for two wetland species, rice and cotton 
grass (Eriophorum angustifolium), respiration in the root cortex would be 
maintained by oxygen concentrations as small as 0.001 atm, while the more 
tightly packed cells in the apical meristem and stele might require 0.02 to 0.026 
atm oxygen concentration in the internal gases. These values are very similar to 
estimates 12~,~22 (0.002 to 0.0207 atm) of the internal COP for roots of pea (Pisum 
sativum), a species that is particularly susceptible to flooding 21,49, suggesting that 

the poor tolerance of the latter cannot be attributed to a greater oxygen 
requirement for respiration. 

Although the internal COP in roots is much smaller than the oxygen 
concentration in air-saturated water, it is still appreciably greater than the 
concentration at which the binding of  oxygen to cytochrome oxidase within 
mitochondria would be virtually saturated (Km about 0.1 #MtS, compared with 
the concentration of dissolved oxygen in water at 15~ and 0.206 atm partial 
pressure which is 314 #M). This suggests that diffusion of dissolved oxygen from 
the intercellular spaces across the cell to mitochondria adds a further appreciable 
resistance to the overall pathway of oxygen diffusing from the outer solution. 

4. Mechanisms of plant injury induced by oxygen deficiency 

4.1 Injury to roots 
Understanding of  the mechanisms by which the growth and metabolism of 

flood sensitive species are affected when the soil becomes oxygen deficient has 
been greatly influenced by the early work of P. J. Kramer 69. Kramer demon- 
strated that factors damaging to the plant may originate in the soil, or in the plant 
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Table 2. Possible mechanisms of injury to plant roots in flooded soil 

02-de/Teiency Toxic substances Toxic substances 

limits aerobic accumulate in produced by 

respiration. Lack anaerobic soil, anaerobic metabolism 

of ATP to drive e.g. organic acids, in roots, e.g. 

root metabolism. NO~, Mn 2+, Fe 2+, H2S acetaldehyde, ethanol 

Lack of respiratory 

substrates 

itself, and that the root or shoot or both may be susceptible to injury. Although 
lack of oxygen is undoubtedly the trigger for changes in the metabolism of roots 
and soil micro-organisms, oxygen deficiency may not always be the immediate 
cause of injury to the root (Table 2). Ionic species with a greatly increased 
solubility in the reducing soil environment, or intermediates in microbial carbon 
metabolism, can sometimes accumulate to concentrations that can be shown to 
be damaging to plants in solution culture (reviewed in Refs?~ Anaerobic 
respiration of roots gives rise to end products that are potentially harmful when 
accumulated in large concentrations. However, the view 27 that cell death in the 

roots of flood sensitive species under anaerobic conditions is invariably caused 
by an accumulation of ethanol arising from fermentation is now in doubt. Roots 
or isolated protoplasts are not especially sensitive to exposure even to ethanol 
concentrations one or more orders of magnitude greater than those encountered 
within flooded plants 54. The alternative view is that anaerobic respiration 
produces insufficient ATP for growth and cell maintenance. The ability of 

anoxia-intolerant roots to survive continuously anaerobic conditions is of short 
duration, ranging from 0.5-3 h for cotton tap root (Gossypium hirsutum) 47 to 
96-120 h for rice seminal root t 2. But root survival of anoxia can be extended by 
exogenous supplies of carbohydrate ~22 suggesting that cells soon use up their 
supplies of  easily-respired substrates, while further translocation of  substrates 
from shoot to root are presumably curtailed. 

Such conclusions concerning the shortage of  respirable substrates are 

supported by observation of changes in the adenylate energy charge (AEC) 
in maize root tips 1~ The AEC, given by ([ATP]+0.5 [ADP])/([ATP]+ 
ADP] + [AMP]) is a measure of  the energy status of the cell, and the effectiveness 
of respiration in maintaining i t  5'94~95. An AEC value of 1.0 would indicate that all 

the adenine nucleotides in the pool maintained by adenylate kinase had been 
converted to ATP. Healthy vegetative cells tend to stabilize the AEC in the range 
0.8 to 0.95. In freshly excised root tips of maize, Saglio et al. 1~ found that the 
AEC in air (0.9) declined within 30 minutes after transfer to a nitrogen 
atmosphere to values of  0.6. If the excised roots were allowed to age in air so that 
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their soluble sugars were depleted by respiration, the AEC declined still further to 
0.15 after 30 minutes' anoxia. However, addition of glucose caused a partial 
restoration of the energy charge, to 0.6. 

4.2 Injury to shoots 

Mechanisms of flooding response and injury in the aerial parts of the plant that 
are not submerged differ fundamentally from those in roots in that they take 
place in tissues that are not directly subjected to oxygen shortage. In broad terms, 
interference in root growth and function in the flooded soil must lead either to an 
insufficient supply to the shoots of essential substances (water, phytohormones, 
nutrient ions) or to the abnormal supply of substances, including toxins, 
originating in the anaerobic soil or in the roots themselves (Fig. 1). The possible 
mechanisms and at least some of their inter-relationships are summarized in Fig. 
1: the bottom line gives the symptom ultimately detectable in the shoot. It should 
be emphasized that not all of the above mechanisms necessarily take place in the 
same species, or simultaneously, and information concerning inter-relationships 
is incomplete. 
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In terms of plant water relations, flooding causes a decrease in the exudation 
rate ofdetopped roots 69, probably as a direct consequence of  a transient decrease 
in cell membrane permeability to the radial passage of water under anoxia 16,9~ 

The conditions under which this change in root conductivity affects the water 
relations of the shoot is uncertain and may vary greatly between species. In some, 
there appears to be a decline in leaf water potential and wilting O c c u r s  69"70. In 

others, stomatal closure has been shown to occur shortly after the onset of 
flooding or under anoxia 44,53-54,1~ and no wilting is observed. Leaf water potential 

in flooded plants may then become greater (less negative) than in unstressed 
controls 16.53. An additional factor may also contribute to the maintenance of  the 

leaf water status. Following a period of high resistance to water movement, roots 
can become much more conducting than controls, presumably when membrane 
degradation accompanies cell death 16'69. The consequences for the leaves of  these 

marked reversals of root resistance to water uptake within the period of a day or 
so are not well understood. A rapid restoration of the water supply to the shoot 
may explain why wheat plants in anaerobic solution culture failed to show any 
decline in net carbon fixation per unit leaf area, or in transpiration, during the 
initial 8 days of treatment, presumably because stomata remained open t~4 
However, where stomatal closure induced by flooding occurs, photosynthesis is 
clearly slowed, as in Populus deltoides 9~. Wilting, and associated stress of the 
photosynthetic apparatus would also be expected to reduce the rate of 
photosynthesis. 

Although it is well recognized that roots are sources for phytohormones, their 
unambiguous influence on growth and metabolism of the shoots remains to be 
demonstrated. Thus, the supply of cytokinins and gibberellins from roots to 
shoots is blocked by flooding 19'99, but the link with visible symptoms of injury or 

with metabolic events in the shoot is tenuous: general inhibition of growth, or 
premature leaf senescence have been attributed to reduction of  phytohormone 
supplies but the symptoms are not sufficiently precise to permit a firm conclusion 
since they might be triggered by other factors 33. Spraying leaves with synthetic 

cytokinins 97 or with mixtures of  cytokinins and gibberellins 5~'~~ gave only a 
partial restoration of growth and leaf chlorophyll in the shoots of  flooded plants. 
The difficulty of maintaining physiologically normal supplies is an area of 
uncertainty: sprays of cytokinins caused abnormal wilting of leaves presumably 
by maintaining stomatal opening, so that it is clear that the spray has done more 
than simply restore the supply which would have been derived from the root. 

Among the phytohormone responses, those related to ethylene have been most 
thoroughly characterized. Leaf epinasty in tomato is stimulated by flooding the 
root system, or by root anoxia 5~ An ethylene precursor (ACC 1-aminocyclo- 
propane-l-carboxylic acid), is synthesized in the roots at an accelerated rate 
under conditions of oxygen shortage 17. The movement of ACC from the roots to 
the well aerated aerial tissues allows conversion to ethylene through an 
oxygen-requiring reaction in the stem and leaves. It has also been suggested 52 that 
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increased concentrations of ethylene in the shoots might cause a non-specific 
growth inhibition, depressing leaf extension and the associated requirements for 
water and inorganic ions at a time when the function of the root is greatly 
impaired. Abscisic acid (ABA) in leaves shows an appreciable increase when 
oxygen is excluded from around the roots 44. Extra ABA may explain, at least for 
some species, the promotion by flooding of stomatal closure and slower growth, 
but the time course of ABA increases have yet to be accurately compared with 
physiological symptoms in the shoots. Furthermore, the mechanism causing the 
release of ABA in leaves remains obscure. One possibility is that it is caused by a 
brief water stress in leaves, reflecting the early, transient decrease in root 
conductivity referred to above. 

With flooding, concentrations of nitrogen, phosphorus and potassium in the 
shoots of soil grown plants decline 72,8~ 82. In experiments with barley and wheat 
we have found that this effect is not necessarily the consequence of leaching the 
soil nutrient, or denitrification (although these may contribute under field 
conditions), but rather, the result of the inhibition of ion uptake while the shoot 
continues to photosynthesize and gain dry matter 34,112. Comparable depressions 
of nutrient ion accumulation by shoots can be brought about in deoxygenated 
solution culture 114 or in soil perfused with oxygen-depleted air 35. If we concern 
ourselves with the mineral nutrition of the plant alone, then the failure of the 
roots to supply the shoots with inorganic ions somehow leads to premature 
senescence of the older, lower leaves. Translocation of nutrients (N, P and K) out 
of the senescencing leaves to the younger emerging ones, is detectable within 2-4 
days, but the process of reallocation within the shoot is insufficient to maintain a 
favourable concentration in the younger leaves, which develop only slowly 34,113. 
With barley we found that a similar promotion of senescence in older leaves 
could be brought about under well-aerated conditions in solution simply by 
depriving the plants of a source of nitrogen (see Ref. 32 for a summary). 

Support for the view that interference in the normal mineral nutrition of the 
plant contributes to decreased growth during flooding or anoxia comes from 
experiments in which attempts were made to maintain the nutrient status of the 
shoot. Foliar feeding urea as a relatively non-toxic nitrogen source to the leaves 
of wheat delayed leaf senescence but failed to support shoot growth during 
flooding ~13. When a single seminal root was supplied with nutrient solution under 
well-aerated conditions, while the remainder of the root system was kept in 
anaerobic nutrient solution, there was no leaf senescence or growth retarda- 
tion 115. Furthermore, young wheat plants raised under conditions that encour- 
aged a high nitrogen status before an anaerobic treatment to the roots were 
clearly less susceptible to injury and growth inhibition than nutrient-impover- 
ished plants Ils. A relatively high concentration of nutrients in the rooting 
medium during the anaerobic treatment was also of advantage to the shoot 115, 
probably because of the greater quantities of ions leaking across the root to the 
xylem 114. Taken together, the evidence strongly suggests that the mineral 
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nutrition of  the shoot is profoundly modified by flooding, although it is possible 
that the supply of  inorganic ions exerts part of its effect through the requirement 
for phytohormones ~ 15 

By contrast to the major nutrient ions, sodium concentration in the shoots of  
cereals becomes greater during flooding of the soil s~ or when roots are made 
anoxic in nutrient solution 46. Such increases in sodium content are known 

to give rise to economically important depressions of crop growth and yield 3~. 
In salt sensitive species and varieties, sodium ions usually are prevented from 
entering the shoot in damaging amounts by the operation of an outwardly 
directed sodium pump 57.58 and by the resorption of sodium as it passes up the 

xylem in the transpiration stream by the xylem parenchyma cells that border 
the xylem 7~~ It seems reasonable to anticipate that the mechanisms 

of sodium exclusion would depend on aerobic respiration and the active 
transport of ions outwards. However, the incidence of excessive entry of sodium 
to the shoot and poor root aeration have not been systematically studied. During 
irrigation when soil temperatures are high, oxygen is rapidly depleted from 
the soil solution 4s. The effects of a short period of oxygen deficiency could 
be much more severe where the irrigation water contains appreciable salt 

concentration. 

4.3 Temperature dependence 
The rapidity with which waterlogging sensitive plants succumb is greatly 

dependent on the ambient temperature s,41,1~176176 i~. Part of the explanation of  

this effect is undoubtedly the rate at which dissolved oxygen is depleted from the 
soil water. In temperate climates, it can take as much as 13 days' waterlogging for 

the soil oxygen in the field at 20 cm depth to become depleted in the winter 
compared with 3.5 days in spring ~3. However, part of  the response to temperature 
is controlled by the plant. Laboratory experiments with controlled conditions of 
oxygen supply (which eliminate any possibility of a variable, slow decline in 
oxygen concentration) show that plant damage still becomes detectable more 
quickly at higher temperatures 8~.1 ~9. In experiments in which plants were grown 
in well aerated soil at 14~ and then subjected to different root temperatures, 
flooding the soil led to complete oxygen depletion in 12 to 48 h (temperature 
range 18~ to 6~C) 116. However, despite the relatively rapid onset of anaerobic 
conditions at all temperatures, after 14 days' waterlogging all symptoms of 
waterlogging damage (leaf senescence; slower extension of leaves, slower dry 
matter accumulation by roots and shoots) were more advanced at 18~C 
compared with aerated controls at the same temperature. But when plants were 
grown throughout at different root temperatures and then flooded and sampled 
at the same growth stage, injury symptoms developed to a similar extent despite 
the temperature differences. Thus, the apparently greater tolerance of wheat to 
flooding at low temperatures may in part be a consequence of a smaller relative 
growth rate. 
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5. Metabolic and structural adaptations to oxygen deficiency 

5.1 Metabolic adaptations 
Anoxia-intolerant plant species survive oxygen-free conditions for periods 

ranging from hours to days, but eventually degenerate. By contrast, anoxia- 
tolerant plants or organs survive much more extended periods. Seedlings of the 
wetland grasses, Deschampsia aespitosa and Molinia caerula were fully viable 
after 8 days in an anaerobic workbench in which the environment was kept 
totally oxygen-free 7. In further observations with plants kept in an anaerobic 
environment 28, the rhizomes, buds and roots of a number of wetland species that 
over-winter in anaerobic mud survived for an indefinite period of 2 months or 
more for Scirpus maritima and for 1 month or more for Schoenoplectus lacustris, 
S. tabernaemontani, Typha angustifolia, Phragmites australis and Iris pseuda- 
corus. The possibility that the submerged organs of flood-tolerant species might 
possess an alternative respiratory metabolism to that of flood-susceptible species 
has long been a subject of interest. A generalized metabolic theory of flooding 
tolerance was developed by Crawford and co-workers 25 27,38,89 In this, the 
success of flood-tolerant species was ascribed to the ability to continue to respire 
(anaerobically) by the Embden-Meyerhof-Parnas glycolytic pathway and 
regenerate NAD from the NADH produced during glycolysis, so as to maintain 
the operation of the pathway. Avoiding the synthesis of potentially injurious 
ethanol during the regeneration of NADH was thought to be of paramount 
importance. There was evidence that flood-tolerant species converted phos- 
phoenol pyruvate (PEP) to oxaloacetate and thence to malate, presumably a less 
harmful end-product than ethanol. By contrast, flood-susceptible species were 
found to respire rapidly with generation of ethanol in concentrations presumed 
to be toxic to root cells. Other end products, that may provide a non-toxic means 
for regenerating NAD, have been identified as glycerol, shikimate, lactate and 
the amino acids, alanine and glutamate 27. 

A major difficulty over acceptance of the metabolic theory has been to 
understand the means by which the energy requirements of the anaerobic cells 
could be maintained: respiration ofa  hexose sugar to the level ofmalate gives no 
net yield of ATP, and if starch is the respiratory substrate, only one mol of ATP 
would be derived for each hexose moiety. Furthermore, in complete contrast to 
Crawford's hypothesis, a number of flood-tolerant species including herbacious 
monocotyledons6,12,91,101,123 and woody dicotyledons 45,59,6~ clearly derive their 
energy from the synthesis of ethanol. This would generate 2 mol ATP per mol of 
hexose respired. Ethanol toxicity is avoided by ' i t s  removal either in the 
transpiration stream 37,54, or to the rooting medium 12,45. The significance of the 
metabolic theory must therefore remain in doubt until tested further. 

The possibility that flood-tolerant and -susceptible species might differ in the 
affinity of their terminal oxidases for oxygen has been explored by Lambers and 
colleagues using Senecio species 73 76. Because the operation of the alternative 
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pathway gives rise to much less ATP synthesis than the conventional cytochrome 
pathway 77,1~ the extent to which the alternative pathway is engaged in vivo could 

be important in roots in which respiration and ATP synthesis are restricted by 
lack of oxygen. However, susceptibility to flooding was found not to be related to 
a greater activity of the alternative (cyanide resistant) pathway, since this 
contributed to about the same extent to total respiration in S. aquaticus (flood 
tolerant) and S. jacobea (flood susceptible) 73. In pea, which is highly flood 
susceptible, the alternative pathway was found not to be operative in the roots ~2~ 
so that the majority of the oxygen consumption was presumably associated with 
oxidative phosphorylation via the cytochrome pathway. By contrast, in 
flood-tolerant Senecio aquaticus with the roots in nitrogen-bubbled solution, the 
consumption of oxygen (obtained by diffusion from the shoot) was estimated to 

fall in half the rate in air-bubbled solution, but oxidative phosphorylation was 
unimpaired v6. This would be expected if only the oxidases that contribute 

nothing to oxidative phosphorylation become inhibited at oxygen concentra- 
tions that are just below the critical oxygen pressure because of  their low affinity 
for oxygen compared with the unknown terminal oxidase of the alternative 
pathway and with cytochrome oxidase. 

In conclusion, there is no evidence to suggest that flood-susceptible species are 
less efficient in their utilization of oxygen in respiration than are flood-tolerant 
species. The mechanism by which anoxia-tolerant organs survive 7, or in the case 

of some rhizomes, exhibit leaf extension 2s, remains to be determined. Recently 
attention has turned to the possibility that the composition of membrane lipids 
(especially in relation to the synthesis of unsaturated fatty acids which is 
dependent on molecular oxygen 11~ could play a key role in anoxia toler- 
ance?4,4?,l~o. 

5.2 Structural adaptations 
The ability of herbaceous wetland species to tolerate flooding is frequently 

associated with the production of numerous adventitious roots that emerge from 
the base of the shoot ~.63. The roots develop gas-filled spaces (aerenchyma) which 
interconnect longitudinally and join up with the gas spaces of the stem base ts. 
There is thus a pathway of low resistance for the diffusion of oxygen from the air. 

It is difficult to prove that plant survival is dependent on the formation of such 
roots, since it could be argued that species or individuals that are capable of 
survival subsequently develop aerenchymatous roots. However, if it can be 
shown that such roots are functional, and replace the initial non-aerenchymatous 
roots that had grown before flooding, it is reasonable to suppose that plant 
'fitness' to the environment is improved. The response is not restricted to 
herbaceous plants. In some temperate and tropical forest tree species tolerant of 
high watertables, gas spaces form in the pith and help conduct oxygen into the 
roots and oxidize the rhizosphere 45,65~66.93. 

An ability to form adventitious, aerenchymatous roots is also evident in a wide 



192 DREW 

range of crop species that are not intentionally grown on wet sites, although the 
numbers of  such roots that are initiated from the stem base, and the fraction of 
their volume that becomes gas-filled, are appreciably smaller than in wetland 
species63,64,112,114. These features, combined with delay in their initiation and their 

low extension rate probably explain the inability of the adventitious roots to 
totally compensate for the loss of the earlier roots. By analogy with their 
occurrence in wetland species, it is reasonable to assume 56,69 that the aerenchyma- 

tous root system in non-wetland species partially offsets the degeneration of the 
initial non-aerenchymatous roots during flooding. It is clear that the aerenchy- 
matous root structure readily permits the transport of ions to the xylem and their 

translocation to the shoot (reviewed in Ref.32), despite the destruction of  much of 
the root cortex that accompanies gas-space formation. 

The mechanism controlling aerenchyma formation has at present only been 
studied in maize. Under conditions of oxygen shortage (hypoxia) but not anoxia, 
cell lysis and gas space formation take place specifically in the cortex in response 
to an acceleration of ethylene biosynthesis and increased internal concentrations 
of  the gas 2~ Aerenchyma readily develops in roots when they are fully 

aerobic while supplied with exogenous ethylene at low concentration (1 #1 1-~ or 
less) but this response can be blocked in the presence of low, non-toxic 
concentrations o fAg + which is known to inhibit ethylene action in plants. Silver 
ions likewise prevent the formation of  aerenchyma in roots subjected to oxygen 
shortage 3~. It would be interesting to know more about the processes by which an 
oxygen shortage in roots stimulates their ethylene biosynthesis, recognizing that 
the formation of the intermediate S-adenosylmethionine from methionine 
requires ATP, and the conversion of the precursor ACC to ethylene requires 
molecular oxygen tT. 

Although the occurrence of aerenchyma in roots is an important acclimatic 
feature, it is not invariably associated with an ability to survive wetland 
conditions. Of the 5 flood-tolerant tropical trees studied by Joly 61,62, tWO did not 

develop roots of  increased porosity and only one developed hypertrophied 
lenticels at the base of  the shoot (a response to flooding which can imvrove gas 
exchange and hence root aeration). 

6. Conclusions 

The response of plants to flooding indicates that a variety of  strategies have 
evolved that are conducive to survival. Some species and organs have developed 
an effective means for continuing glycolysis and fermentation so that the energy 
requirement of  cells can be at least partially maintained, while the ethanol 
produced in fermentation is lost by transpiration or by leakage to the root 
environment. The coleoptiles of rice 6A2,59,91 and of  barnyard grass ~~ seem to owe 
their anoxia tolerance to this strategy. The energy metabolism and respiratory 
pathways of  carbon in anoxia-tolerant rhizomatous wetland species has not yet 



ROOTS AND OXYGEN DEFICIENCY 193 

been  e x a m i n e d .  H o w e v e r ,  the abi l i ty  to a v o i d  r ap id  m o b i l i z a t i o n  o f  c a r b o -  

hyd ra t e s  in the  r h i z o m e  28 sugges ts  tha t  ene rgy  m a y  be  de r ived  f r o m  a s low,  

ca re fu l ly  c o n t r o l l e d  a l coho l i c  f e r m e n t a t i o n .  O n c e  the co leop t i l e  o r  d e v e l o p i n g  

s h o o t  b r eaks  the w a t e r  surface ,  f u r t he r  g r o w t h  o f  the s u b m e r g e d  o r g a n s  c lear ly  

d e p e n d s  on  in te rna l  t r a n s p o r t  o f  o x y g e n  t h r o u g h  h igh ly  p o r o u s  shoo t ,  s tem and  

roo t ,  t he r eby  a v o i d i n g  fu r the r  o x y g e n  def ic iency.  

T h e  va r i e ty  o f  surv iva l  s t ra teg ies  used by t rop ica l  t ree species has  been  well 

desc r ibed  by H o o k  and  Scho l t ens  45 and  Jo ly  and  C r a w f o r d  62. Both  g r o u p s  

es tabl i sh  tha t  f l ood ing  to l e r ance  is n o t  a s soc ia t ed  i nva r i ab ly  wi th  any  single 

charac te r i s t i c .  M e t a b o l i c ,  a n a t o m i c a l  and  m o r p h o l o g i c a l  fea tures  o f  roo t s  and  

shoo t s  c o m b i n e  to a l low v a r i o u s  degrees  o f  a n o x i a  to l e rance  o r  a n o x i a  

a v o i d a n c e .  In the  fu tu re  it m a y  p r o v e  poss ib le  to i n c o r p o r a t e  s o m e  o f  these 

f a v o u r a b l e  charac te r i s t i c s  in to  f lood- suscep t ib l e  c r o p  p lan t s  to i m p r o v e  thei r  

res i s tance  to t e m p o r a r y  f lood ing .  
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