
Int J. Heat Moss Transfer. Vol. 19. pp. 925-929. Pergamon Press 1976. Printed in Great Britain 

EQUATION OF MOTION OF AN EXPANDING 
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Abstract-Using the description suggested by Sideman for the internal evaporation of a drop with the 
.growth of a liquid sheath suspended from the lower part of the expanding bubble, an equation describing 
the motion of such a system is derived. The equation is solved numerically, and the results are compared 
both with experimental data given in [2] and the authors’ own experimental results. There is good 

agreement between experiment and theory. 

NOMENCLATURE 

dimensionless constant; 

coefficient of frontal resistance, equation (4); 

PL* density of continuous phase [g/cm3]; 
pL,,, density of evaporating liquid [g/cm”]; 

PO? vapour density [g/cm”]. 

constant, equation (7a): 

specific heat of evaporating liquid 

acceleration of gravity 

actual position of system [cm] ; 
initial’position of system [cm] ; 
constant in equation (12); 
coefficient of equation (3); 
constant of equation (12); 

heat of vaporization 

constant of equation (12); 
molecular mass, 

Jacob’s number [dimensionless1 ; 
din 

tension of saturated vapour _ ; I 1 cm2 
dimensionless constant; 

internal pressure of bubble 

bubble radius [cm] ; 
effective radius [cm] ; 
temperature [“K] ; 

-- 
startmg time of system LsJ; 

velocity of system - ; 

[“l S 

initial volume of drop [cm”]. 

Greek symbols 

B> opening angle [radi; 

(i?. coefficient : 
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INTRODUCTION 

IN OUR previous work [I] dealing with the mechanism 
of evaporation of a liquid drop immersed in a super- 
heated (with respect to its boiling point) immiscible 
liquid medium, we pointed out that depending on the 

ratio of surface tensions of both liquids there must be at 
least two completely different mechanisms of eva- 
poration. 

The first is connected with the evaporation of liquid 

into a drop which thus takes the shape of a flat sheath 
suspended from the expanding vapour bubble, and the 
other is connected with the removal of vapour nuclei 

from the surface of the superheated drop to the sur- 
rounding liquid. Different mechanisms exhibit different 

degrees of effectiveness of membraneless heat exchange. 
Explanation of the functioning of these mechanisms 
might have considerable theoretical and practical im- 
portance. The mechanism of internal evaporation of a 
drop with the growth of a liquid sheath suspended 
from an expanding vapour bubble has been described 
by Sideman et al. in several works ([2,3] among others). 

Basing on the results of his experimental studies of 
the motion of expanding bubbles, Sideman derived 

the following empirical formula for the water-pentane 

FIG. 1. Expanding vapour drop: (1) 
vapour; (2) evaporating liquid; (3) con- 

tinued phase. 
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system describing the relationship between position of 
the bubble and time: 

H = Ho+B.tP (1) 

where H is the position of bubble after time r, Ho, the 

position at the time instant to (separation from the 
capillary), r, time, and B, p are constants. 

MATHEMATICAL DESCRIPTION 

In this work we attempt to derive analytically the 

equation of motion of a system composed of an ex- 

panding bubble with a suspended sheath of evaporating 
liquid. In order to do this we consider the system as 
moving in a uniformly superheated liquid. In accor- 
dance with experimental observations, we assume that 
Ihe upper part of the system while going upwards has 

a spherical shape, and the loading of the suspended 
liquid up to about 90:‘” of evaporation prevents the 

lower part of the system from being deformed to the 
shape of a “mushroom”. 

The momentum balance of the moving system: 

The momentum of the moving system is made up of 
the following components: pu&R3V, momentum of 
vapour bubble: m(t). V, momentum of suspended 
liquid; &&rcR3 V, momentum of external liquid forced 

upwards with the bubble [ 121. 
From the above balance we get the following differ- 

ential equation: 

where m(t) is the mass of suspended liquid, and p is the 
“opening angle” of vapour phase defined in Fig. 1. 

The coefficient q in the last part of the equation 

determines the quantity of evaporating liquid from unit 
surface in unit time for given pressure and tempera- 
turc. From the molecular-kinetic theory of gases [4], for 
moderate values of external pressure (approaching 
atmospheric pressure) the coefficient (p can be deter- 
mined from the following relationship: 

(3) 

where M,; is the molecular mass of evaporating liquid 
and P. the vapour pressure of saturated evaporating 
liquid. 

Saturated vapour pressure P in the expression (3) 
requires further discussion. This pressure is not con- 
stant in time. It depends on the surface curvature of 
the sheath, that is on the bubble radius and on the 
hydrostatic pressure, that is on the position of the 

bubble. The average value of this pressure. however. 
does not differ from the extreme values by more than 
IO”,,. which gives us the right to assume that over this 
range of accuracy the average value of pressure is 
constant. 

The coefficient of resistance C,, in the last but one 
element of the equation is defined as: 

resistance 
c,,= _~ _~ ~_ ~~~ _~~ 

frontal surface (C’z;‘2g) 
(4) 

As shown in [5], the cocf5cient CD is a complex 
function of a number of parameters. Some cases of 

motion ofsystems with regular shapes have been solved. 
For large bubbles (R 3 0.07 cm) whose shape in nearly 
spherical, it is most convenient to determine the co- 

efficient of resistance from the relationship given in 
[6.7], that is: 

where 0 is the surface tension at the bubble-surrounding 
liquid boundary. 

In order to solve equation (2) the rate of change of 
the bubble radius should also be determined. 

The temperature conditions in the sheath of the eva- 
porating liquid can be regarded as fixed. One can. 
therefore, describe the growth of this bubble by means 

ofexpressions analogous to Rayleigh’s equation related 
to bubble growth by evaporation of suspended liquid 
surrounding the bubble. 

The temperature at the internal surface of the liquid 
is equal to the temperature of saturation of the cva- 
porating liquid, a heat flux of constant density is flowing 

from the surrounding liquid to the liquid sheath. 
Rayleigh’s equation describing the growth of the 

bubble when evaporation occurs over the whole in- 
ternal surface takes the following form : 

where Us is the surface tension at the evaporating 

liquid-vapour boundary. 
From the solutions of this equation presented in 

[&lo] it follows that the form of the function R(t) can 
be assumed to be as follows: 

where 

N,. = or>,, CL~,( L - KM,. .L 

T, being theinternal temperature of superheated liquid 
and T, the temperature of saturation. 

Some authors. depending on the assumptions taken, 
give solutions somewhat different from the form (7). 
Nonetheless the relationship always takes the following 
form : 

R = (‘.t’ z, Ua) 

The differences concern the value of C. 
As has already been mentioned equation (6) deals 

with the growth of the bubble in the case of evaporation 
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from the whole surface of the sphere. In our case, eva- initial equation (2) will take the form : 
poration takes place from a part of the surface, that is dV 3 dR 
from a layer of suspended liquid whose surface area is 

univocally determined by the opening angle p. Intro- 
dt + i z-’ V 

ducing this modification into equation (6) we get a form 2pL.g .R 
=2g------- 

vz _ 3g(PLp -PL)1/0 

analogous to equation (7a) with a somewhat different 1.82a 2pLrrR3 

coefficient C. From the energy balance of the expanding 
system, it can be shown that the opening angle over 

+39(PL,,JJL)U +cosB).v t 

---‘R (l I)? 

the whole range of evaporation is a constant. From 
PL,, PL 

the values of opening angle observed by Sideman [2], Incorporating into equation (11) the relationship (7), 

the error due to the above mentioned simplification and transforming it, we obtain: 

does not exceed the range of variability of the constant dV 
C as obtained from different solutions of equation (6). dr+:vr’:Z -2g+KV2~“2+~,.~-3’2+M.~“2 = 0 

The rate of radius change is determined from (12) 
equation (7) where : 

112 

Let us now discuss equation (2). 
L = &(PL,. -PL) 

900 

This equation is valid for the time range to-t where 8r\i,,3(3r/~)~” 

to is the starting time of system and t is the time of 
complete evaporation. 

M = _3(1 +cosP)~kJL,,-PL) 

The sum of expressions 
4pL,, ~pLNo(Wn)1'2 

Initial condition : 
p;+nR3+m(t) = mo 

on the LHS of equation (2) is equal to the initial 
mass of the drop and, during evaporation, is a constant. 

By introducing the quantity m. into equation (2) and 
transforming it we obtain: 

2pLgR =2g-p V2 _ 29(PL,> - PL) 

1.820 2pLnR3 
v, 

1!2 

(13) 

Equation (12) of the Ricatti type with the condition (13) 
is a univocally formulated differential problem. In the 
general case, however, it is not analytically solvable 

[ 111. The problem was, therefore,solved using Merson’s 
procedure with the help of an Odra 1204 computer. 

The obtained curve V = V(t) is regular, and for times 

t > 0.5 s it is flat. 
Since in direct experimental measurements one gets 

the curve of time-dependence of position, it would be 
more convenient to compare these data with the 
numerical solution of the form H = H(t). 

The curve is obtained by numerical differentiation 

Since R is a time function [relationship (7) and of the solution of V = V(r) in the form: 

equation (9)] it will be non-linear in the general case 
because oft, which makes its solution complicated. In H(t) = I-l,, + 

l 
V(t)dt (14) 

li, 
order to avoid this difficulty let us examine the ex- 

pression where Ho is the position at the instant of separation 

3mo 
from the capillary. 

2pL~R3 
where m. = pL,,$nR*3 

RESULTS AND DISCUSSION 

and R* represents the initial radius of drop, then : 

3mo_2~~,, R* 3 

i > 2p~nR~ pL R 
(10) 

The value of expression (10) for the liquids discussed 
I 

and for an evaporation 5 > 2,, ” is not bigger than 0.03. 
Neglecting the component 

2pL7cR 3 

we are making an error of approximately 3% of the 
coefficient value at dV/dt. After this simplification the 

Our experimental verification of theoretical results 
covered systems with different physico-chemical pro- 
perties of the liquids examined for different super- 
heating values of the evaporating liquid. The numerical 
solutions obtained were compared with experimental 
data given in [2] from where the results obtained for 
the evaporation of pentane in water for two different 
superheating values had been taken. The numerical 
solutions were also compared with the authors’ own 
data obtained from experiments conducted using the 
apparatus whose diagram is presented in Fig. 2(a, b). 

The liquid comprising the continuous phase fills a 
glass cylinder (Fig. 2a) to a certain level. The tem- 
perature of the liquid is equalized and stabilized by 
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FIG. 2(a). Diagramofmeasuringapparatus:(l)continuousphase;(2)evaporat- 
ing drop; (3) adiabatic jacket; (4) thermostat and (5) thermo-couples. 

FIG. 2(b). Optical recording system: (1) source of light; (2) photo-tube; 
(3) time recorder; (4) measurement of light line position and (5) collimator 

of light. 

means of the thermostat, 4. The heat losses into the 
surroundings are compensated for by applying a ther- 
mal jacket, 3. The temperature in the whole volume 
of the continuous phase is controlled using a thermo- 
couple circuit, 3. To the continuous phase prepared in 
this way a drop of evaporating liquid pre-heated to 
boiling point is introduced. While vaporizing the drop 
is moving upwards. Its motion is recorded by an optical 
system (Fig. 2b). The optical system is composed of the 
pairs: light source-photo-tube connected to a time 
recorder, 3. The evaporating drop while crossing the 
light line interrupts the circuit thus stopping the time 
meter. The results were obtained in the form of the 
relationship: system position-time. In their own ex- 
periments the authors of this paper examined two 

systems: water-hexane and water-carbon tetrachloride 
each at two temperatures of superheating. Due to a 
difference in physicochemical properties (Table 1) of 

the phase forming the drop, the systems seem to be 
sufficiently representative for drawing conclusions as to 
the degree of generalization of the derived equation. 
The experimental classification is presented on the dia- 
gram of Fig. 3. The straight lines in the logarithmic 
coordinate system represent the numerical solutions; 
the points marked represent the results of experiments. 
The experimental time-dependence of position of the 
evaporating drop was approximated in the logarithmic 

AT=20"C 
b) 3'C,H,,-HP AT=l2o"C 

Obl 02 
t, s 

FIG. 3. Time-dependence of position of bubble- 
suspended liquid system. 

No. 

1 
2 
3 

Table 1. Physico-chemical data of the systems corresponding to the curves 1, 2 and 3 

C, Pv PL [)I.,. a vo TX T, L 
_____ 

0.591 0.003 1 0.9933 0.5763 8.9, IO-“ 22.4. IO--’ 3 10.9 309.3 85.3 
0.208 0.005 1 0.974 1.482 7.4.10-d 7.3.10-A 351.7 349.1 45.1 
0.570 0.0028 0.9778 0.9590 9.3 1o-4 7.3 1o-3 344.1 342.1 80.5 
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Table 2 

No. 1 1’ 2 2’ 3 3’ 2. 

P apt. 1.20 1.13 1.08 1.14 0.95 0.71 

P theory 1.32 1.09 1.15 1.10 0.89 0.65 
B rxp, 195 288 196 205 115 108 

&heor> 230 200 208 180 108 100 
3. 

coordinate system with a straight line applying the 

method of least squares. The method of linear re- 

gression allows to establish that through the points 

determined by experiment one can draw a straight 

line. If we assume that the time-dependence of position 

of the evaporating drop may be represented by the 

expression (1)’ then in order to compare experiment 

with theory it is enough to check the values of co- 

efficients B and p for the correlation lines and theo- 
retical lines. Such a comparison is shown in Table 2. 
As can be seen from the comparison, the theoretical 
description of the motion of the evaporating drop using 

equation (12) is in good agreement with the real motion 
of the evaporating drop. 

4. 

5. 

6. 

7. 

8. 
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EQUATION DU MOUVEMENT DUNE GOUTTE DE VAPEUR 
EN EXPANSION AU SEIN DUN LIQUIDE NON MISCIBLE 

Resume-En s’appuyant sur la description proposee par Sideman de l’evaporation interne d’une goutte 
avec formation dune enveloppe liquide suspendue a la partie inferieure de la bulle en expansion, une 
equation est form&e qui dtcrit le mouvement d’un tel systtme. L’equation est resolue numeriquement 
et les risultats compares a la fois aux donnees experimentales times de [2] et aux resultats experimentaux 

obtenus par l’auteur. On trouve un bon accord entre theorie et experience. 

BEWEGUNGSGLEICHUNG FUR EINE EXPANDIERENDE DAMPFBLASE 
IN EINER NICHT MISCHBAREN FLUSSIGKEIT 

Zusammenfassung-Unter Beniitzung der von Sideman vorgeschlagenen qualitativen Beschreibung des 
Mechanismus der inneren Verdunstung eines Tropfens mit gleichzeitiger Bildung einer im unteren Teil 
der expandierenden Blase aufgehangten Fliissigkeitshiille wurde eine Gleichung abgeleitet, die solch ein 
System beschreibt. Diese Gleichung wurde mittels numerischer Methoden gelbst. Die errechneten 
Ergebnisse wurden mit den experimentellen Daten aus der Arbeit [2] und eigenen verglichen. 

Es wurde eine gute Ubereinstimmung der errechneten und der experimentalen Ergebnissen festgestellt. 

YPABHEHHE ABWKEHWI PACTYUEl-0 nY3LIPbKA nAPA B 
HECMEIIIHBA~lIJEiiCSI WIjJKOii CPEAE 

AIlHoTalIHB - Ha OCHOBaHHH Ka’leCTBeHHOrO OIIHCaHHR npo4ecca HcnapeHHn BHyTPb naIimyIueRcn 
KaIIJIH, AaHHOrO &&IeMaHOM, BbIFJeAeHO aHanHTHYeCKOe ypaBHeHHe ABfOKeHMR paCTyIIIer0 IIy3blpbKa 

c nnS~K0i ~HAK~CTII, pacnonowteaaofi B ero HwmHefi HacTH. 
YpaBHeIIHe peIIIeH0 YHCJIeHHbIMH MeTOaaMH. Pe3yJIbTaTbI PaC’IeTOB CpaBHHBaIOTCfl C 3KCnepH- 

MeHTaJIbHblMH AaHHbIMH CameMaHa [2] II aBTOPOB AaHHOfi pa6OTbI. 
nOJIy’IeH0 XOOOIII~ COOTBeTCTBHe MeKAy PaCY~THblMH II OIIblTHblMH AaHHbIMH. 


