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Abstract 

As an extension to the traditional dual-porosity approach, a triple-porosity model is presented 
to study the solute transport in heterogeneous porous media where the transport processes are 
distinctly different between macropores, mesopores and micropores. The distinctions in terms of 
conductance and storage in the respective pore domain are characterized by the fact that: (a) 
macropores are primary flow paths where both dispersion and convection are prevalent; (b) 
mesopores are intermediate flow paths where convection becomes dominant and (c) micropores 
are supplemental flow paths and mass storage spaces where only diffusive flow is manifested. In 
cascading coupling, the solute interchange between micropores and mesopores is maintained by 
assuming micropore diffusion as internal sources (sinks) attached to mesopore skins. A compre- 
hensive solute exchange between macropores and mesopores is preserved. A mathematical model 
is constructed in accordance with the physical conceptualization. The coupled partial differential 
equations are solved in a one-dimensional geometry using Laplace transform, and the subsequent 
coupled ordinary differential equations are circumvented via the method of differential operators. 
Semi-analytical solutions are obtained. 0 1997 Elsevier Science B.V. 
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1. Introduction 

Solute transport through heterogeneous porous media has attracted increased interest 
owing to the recognized fact that the contaminant plume development under such 
scenarios cannot be correctly predicted using the conventional theory of flow and 
transport through a homogeneous medium. The introduced heterogeneities are frequently 
recorded as ‘ ‘abnormalities’ ’ such as nonequilibrium changes, abrupt occurrence and 
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extensive tailing in solute breakthrough. These phenomena are traditionally interpreted 
as owing to either one or a combination of the following mechanisms: (a) local flow 
rectification owing to fluid transport between mobile (flowing) and immobile (dead-end 
pore) regions (Coats and Smith, 1964); (b) tortuous flow pathways as a result of 
heterogeneous grain and pore distributions (Bear, 1972); (c) variable flow channels 
owing to particle-pore clogging, size exclusion and deposition (Joy and Kouwen, 1991; 
lmdakm and Sahimi, 1991); (d) pollutant directional migration and spatial storage as a 
consequence of dominant anisotropism in permeability and variation in porosity distribu- 
tions (Noltimier, 197 1; Sardin et al., 19911; (e) regional perturbation of solute concentra- 
tion owing to velocity contrast between layered and fractured media (McKibbin, 1985; 
Houseworth, 1988), and (f) fluids and/or formation nonlinear characteristics (Bai and 
Roegiers, 1994). 

It is impractical to consider all above-mentioned factors when studying heterogeneous 
influences. Owing to the striking resemblance in the resulting solute transport, the 
research interest appears to focus on one of these influential factors, such as on the 
impact of two region flow (factor (al>. To address this particular mechanism, Coats and 
Smith (1964) provided an adequate phenomenological model in which the solute 
migration in the mobile region was modified by a “quasi-steady” flow between 
macropores and dead-end pores, useful for characterizing the medium heterogeneities. 
Using the average-volume theory, Piquemal (1992) derived a slightly different formula- 
tion, envisioning the similar scale for the selection of parameters. Coats and Smith’s 
model has been further improved by Bai and Elsworth (1995) through coupling the 
complete transport processes (dispersion and convection) within so-called “dead-end” 
pores. 

The difference between fluid flow and solute transport can be summarized as that the 
transported medium is a type of fluid for the former case, but a component of the fluid 
for the latter scenario (Bear, 1993). Aside from this difference, Coats and Smith (1964)‘s 
model is similar if not identical to the model of Warren and Root (1963) which was 
primarily used to interpret fluid flow through fractured porous media. In many cases, 
Coats and Smith’s model has received wide references in the modeling of fluid flow and 
contaminant transport through fractured porous media (Tang et al., 198 1; Bibby, 1981; 
Huyakom et al., 1983; Nilson and Lie, 1990; Rowe and Booker, 1990; Sudicky and 
Mclaren, 1992; Harrison et al., 1992; Leo and Booker, 1993). In contrast, however, 
Warren and Root’s model has been rarely mentioned in the literature of solute transport 
through micropore-macropore regions (Passioura, 197 1; Passioura and Rose, 197 1; Joy 
and Kouwen, 1991; Koenders and Williams, 1992; Joy et al., 1993; Piquemal, 1992, 
Piquemal, 1993) with an exception that Sahimi (1993) provided an implicit link between 
the two models. As a result of ineffective communication, it appears that the models 
based on the same conceptualization may have been developed independently (e.g. 
spherical block model for transport through fractured porous media by Huyakom et al. 
(19831, and for transport through micropore-macropore region by Correa et al., 1987). 
The communication needs to be improved to accelerate the information dissemination 
between the two seemingly “different” fields. 

Owing to the existence of physical and mathematical analogies in modeling flow and 
transport through fractured porous media and through micropore-macropore media, the 
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multiporosity/multipermeability model proposed by Bai et al. (1993) can be made 
applicable to solute transport through multi-pore regions. Parallel effort has been made 
recently by Gwo et al. (1995) to discretize the partially saturated heterogeneous media 
into three regions: (a) micropore, (b) mesopore, and (c) macropore, where the inter-re- 
gion flow is activated in accordance with the state of fluid saturation. In this paper, a 
complementary effort has been made to provide an alternative triple-porosity analysis 
for solute transport through fully saturated heterogeneous porous media where the 
geometric correlation among micro-meso-macro pore regions is more explicitly ex- 
pressed. 

2. Physical conceptualization 

In the theory of contaminant transport through homogeneous porous media, the 
mechanical dispersion is included in the evaluation of total mass flux of the solute to 
account for the spreading of the solute owing to variations in the seepage velocity 
(Shackelford, 1993). On a microscopic level, velocity variations will result owing to the 
tortuous nature of the flow paths existing in nearly all porous materials. On a 
macroscopic level, the mechanical dispersion may be caused by the variations in flow 
rates resulting from heterogeneities over a regional scale. An example is that the fluid 
flows through the bulk sand medium interrupted by the existence of low permeable clay 
lenses. In the solute transport, the total mass flux of the species can be attributed to the 
fluxes owing to convection, diffusion and dispersion. Luxmoore et al. (1990) defined 
that macropores and micropores are those with equivalent pore diameters (EPD) greater 
than 1 mm and less than 0.01 mm, respectively. Gwo et al. (1995) further divided the 
pore structures into three regions by adding a mesopore region with the corresponding 
EPD between 0.005 mm and 1 mm. From practical aspects, it appears that soils 
consisting of a continuous distribution of pore sizes can be segregated into macropores, 
mesopores, and micropores, which is analogous to the particles where their size 
distribution is classified into sand, silt, and clay (Gwo et al., 1995). 

While the EPD may be one of the important factors to determine the transport process 
in porous media at various scales, the effect of heterogeneities with irregular shapes can 
be more pronounced, especially at greater depths and for fully saturated media. A 
triple-porosity medium is conceptualized in Fig. 1. Within the selected representative 
elementary volume (REV) in an aquifer, mass transport primarily occurs through 
macropores where both hydrodynamic dispersion and convection can be dominant. 
Mesopores co-exist within the domain of macropores, where the convective flow is 
prominent owing to both velocity and permeability contrasts between flow channels and 
solids. Dominant mesopore convection has been experimentally identified by House- 
worth (1988) and by Bouhroum and Bai (1996). Sub-discretizing the mesopore areas 
into micropore regions is necessary in order to envision the dominant diffusive flow 
process within micropores. Depending on the relative concentration differences between 
mesopores and micropores, micro-replenishment may occur in lieu of micro-diffusion 
(analogy to conventional reverse matrix diffusion; Bai and Roegiers, 1995). This 
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Fig. 1. Schematic triple-porosity scenario. 

conceptualization provides a more explicit spatial relationship than the one associated 
with the multiple-pore-region theory. 

3. Mathematical formulation 

Assuming constant porosity and using the average velocity L: (L: = u * /n, u * is the 
intrinsic interstitial velocity), also assuming the quasi-steady rate exchange proportional 
to the concentration gradients between the three continua (Bear, 1972; Bai et al., 1993; 
Gwo et al., 1995) the general governing equations of solute transport for a triple-poros- 
ity system can be described as: 

(1) 

(3) 

where subscripts 1, 2 and 3 represent macro-, meso- and micro-pores, respectively; 
subscripts i and j are coordinate indices, c is the solute concentration, t is the time after 
inception of the transport, xi is the coordinate, Dij is the hydrodynamic dispersion 
tensor, ui is the average flow velocity, n is the porosity, and 5 is a concentration 
exchange coefficient characterizing the mass transfer among the pores of various scales. 

A first approximation can be made by considering that: (a) the solute exchange 
between macropores and micropores is rather indirect and insignificant; (b) the mechani- 
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cal dispersion is prominent in macropores; (c) the convection is dominant in mesopores 
(McKibbin, 1985; Houseworth, 1988; Bouhroum, 1993); and, (d) the diffusion or 
replenishment is pervasive in micropores, as depicted in Fig. 1. As a result, Eq. (l)-(3) 
can be simplified as: 

; DKjg -,,ig=2+5”(c,-c2) ‘I i I I n1 

ac2 ac2 t2, 5 
-U2iax. = -&- + --(c-z -c,) + -+c2 - c3) 

I n2 n2 

; @.!$ =Z+k(c,-c2, 

!l I J n3 

(4) 

(6) 

where 0;” is the mechanical dispersion coefficient, 0: is the effective diffusion 
coefficient incorporating the factor of tortuosity. 

Further approximations can be made by assuming: (a) one-dimensional transport; (b) 
constant dispersivity and diffusivity; and, (c) spherical block structure of micropore 
aggregate (Huyakom et al., 1983; Correa et al., 1987). As shown in Fig. 2, this spherical 
block represents an equivalent micropore domain with the outer bounding surface being 
defined as the mesopore skin. After dropping the superscripts for D, and D,, Eq. (41, 
(5) and (6) can be modified as: 

azc, ac, 
D,-1 --UP 

ac, 512 
BX ax =z+n,(c,-4 

ac, aC2 t2, 
-+-g = x + -(c2 - 

3n34 ac3 

n2 
c,)+- - 

[ 1 n,R ar r=R 

(7) 

(8) 

(9) 

where r is the radial distance from the center and R is the radius of the equivalent 
spherical micropore block, respectively. It may be noted from Eq. (9) that the transport 
in micropores is decoupled from that in mesopores. However, the coupling is restored in 

Fig. 2. Spherical block structure for micropores. 
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Eq. (8) by placing the flow in micropores as internal sources (sinks) for mesopores. 
For more general solutions, the following dimensionless terms are introduced: 

where subscripts i and j = 1, 2; but j # i; L is an arbitrary length which may represent 
the length of testing core sample or the distance of pollutant migration from the source. 

Incorporating all dimensionless terms, Eq. (7), (8) and (9) are rewritten as: 

ac, ac, dc3 --=b2--g+a2*(c2-c,)+a* jy 
dY [ 1 (12) 

Z= R/L 

1 

i 

a2c, 2 ac, ac, 
2 a22 -+za,=a7 i 

(13) 

For the step injection at the inlet and constant flux (zero flux for this case) at the 
outlet, boundary and initial conditions may be described by: 

/ c, = C? = co (y=O) 
ac, -= 0 
a?l (Y’l) 

c 
c3 = finite (z=O) 

cj = c2 (z=R/L) 
0 

Cl = c, c2 = c2” cj = c; (T=o) 

( 14) 

where co is the concentration at the source, cp, ci and ci are the initial concentrations 
in macropores, mesopores and micropores, respectively. The boundary conditions 
expounded in the above equations are applicable to the injected solute transport through 
a finite core column made up from a triple-porosity medium, as described in Fig. 3. 

Fig. 3. Column injection for a triple-porosity medium. 
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Applying Laplace transform to Eq. (ll), (12) and (13), one has: 

where s is a parameter in Laplace transform. 
Boundary conditions in Laplace domain are changed to: 

I 
co ;, z&c- 

.~ (Y =o> 
d, 
-s 0 
drv 

(y=l) (18) 

I C3 = finite (z=O) 
c zz? 3 ? (z=R/L) 

C3 can be derived independently from Eq. (17). Following a similar procedure 
proposed by Moench (1984), one has: 

(19) 

where 4 = dry; s . 
Substituting Eq. (19) into Eq. (161, then: 

(20) 

where, 

I *, = a* +oth( 4R/L) - ; 
I 

4 
*z= -, 

Eq. (15) can be rewritten as: 

1 cf”C, dz, 
- ___ - - = (b,s + q2)‘, - a,,c2 - h,c: 
YI &’ 4 

(21) 

(22) 
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The coupled Eq. (20) and (22) can be solved using the method of differential 
operators defined as: 

(23) 

where i indexes an arbitrary variable, and fi is the order of the differential equations. 
Applying the differential operator, Eq. (20) and (22) become: 

(D+*‘+,-%,G = -315 (24) 

1 
-D2-D-+3 C, +a,,?,= -b,cp 1 YI (25) 

where, 

i 

$3 = b, s + ~12 

$4 = b, s + ~21 + $1 

$5 = Wb2 - b2c; 

Eq. (24) can be reformulated as: 

C, = $[(D+W2++51 

(26) 

(27) 

(28) 

(29) 

Substituting Eq. (27) into Eq. (25), yields: 

D*C, = 0 4 

where, 

‘D* =D3+6,D’+62D+t13 

0, = *4 - YI 

( 02 = - m3 + 4%) 

03 = Yda,2a2, - 4J3*41 

\4 = Y1@3315 - a2,bd) 

The solution C2 of Eq. (28) can be expressed as: 

c2 = z;,” + 22” (30) 

where .$’ and Tg are the homogeneous and nonhomogeneous solutions, respectively; 
where i$’ can be derived as: 

c2 -” zzz fj;‘e, (31) 

For homogeneous solutions Zl, the roots of D* in Eq. (28) can be derived as 
follows. Let: 

Di = Zi - ; (32) 
where i = 1, 2, and 3. 
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Substituting Eq. (32) into Eq. (28) gives: 

z3+pz+q=o (33) 

where, 

Three roots of Eq. (33) may be described as follows: 

I 

Z, = B, + B2 

Z,=o,B, +w2B2 

Z, = w?B, + w,B, 

where, 

I B,=(-;+fi)‘, B2=(-+)’ 

1 fi 1 fi 
u,=--+--i, w,= ---p-i 

2 2 2 2 

(34) 

(35) 

(36) 

As a result, the roots of D* in Eq. (28) can be derived. Because A in Eq. (36) may 
have three different signs, the solutions should be expressed individually. For briefness. 
the detailed derivation of Cr and C2 in accordance is given in the Appendix. 

After deriving C2 from Eq. (28), T, can be obtained by substituting ?, into Eq. (27). 
The solute concentrations in the original space for macropores c, and for mesopores c7 
can be obtained through numerical inversion (Stehfest, 1970). 

4. Parametric study 

Field observations appear to support the existence of the triple-porosity transport 
phenomenon. Measurements on a forested watershed in eastern Tennessee revealed that 
about 70% of ponded infiltration was transported by a pore region with pore diameter 
greater than 1 mm, or the macropores, and about 20% of the flux was transported by a 
pore region with EPD between 1 mm and 0.005 mm, or mesopores (Watson and 
Luxmoore, 1986). Micropores with EPD smaller than 0.01 mm may occupy a relatively 
large space but contribute indirectly to the regional flow through predominant diffusive 
process. While the availability of field data for the triple-porosity media may be rather 
restricted (Gwo et al., 19951, the derivable parameters for the dual-porosity media and 
the proposed experimental procedures to determine these parameters can be referred to 
Berryman and Wang (1995). 
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Table 1 
Selected dimensionless parameters 

Figure y1 -h a* aI2 a21 4 b2 R’ c; cp c:’ 7 .v 

4 l-100 10 
5 1 10 
6 1 IO 
I 1 10 
8 1 10 
9 l-100 10 
10 1 10 
11 1 10 

100 0.5 
100-5000 0.5 
100 0.1-l 
100 0.5 
5000 1 
100 0.5 
100 0.5 
5000 1 

1 1 2 lo-’ 0.001 0.002 0.003 0.8 O-l 
1 1 2 10-S 0.001 0.002 0.003 0.8 o-1 
1 1 2 lo-’ 0.001 0.002 0.003 0.8 O-I 
5 1 2-10 10-5 0.001 0.002 0.003 0.8 o-1 
1 1 2 10-s 0.001 0.002 0.003 0.8 o-1 
1 1 2 10-5 0.001 0.002 0.003 o-3 0.75 
1 1 2-5 10-S 0.001 0.002 0.003 o-3 0.75 
1 1 2 10-5 0.001 0.002 0.003 o-3 0.75 

Because the comprehensive probe on the experimental determination of triple-poros- 
ity parameters is beyond the scope of the present analysis, the parametric study focuses 
merely on the sensitivity analysis of certain critical parameters. The primary dimension- 
less parameters in the present model are the equivalent quantities of: (a) Peclet number 
(EPN) y, (b> micropore source (sink) strength a * , (c) solute exchange coefficient a12 
and a21, and Cd) velocity ratio b. Selected parameters are listed in Table 1 with 
associated figures. The selection of some parameters is based on the certain physical 
intuition such as b, < b, owing to u, > u2. Other selections show uncertain relationship 
because multiple parameters are involved (e.g., yi and a,>. The illustrated relative 
concentration c/c0 is referred to macropores c, where primary flow pathways are 
imbedded. The dimensionless time is referred to r, or injected pore volume. For 
comparison, single- and dual-porosity models are readily derived from the present 
triple-porosity model by independently assuming ~2,~ or a* to be zero, respectively. 

It should be noted that the designation of 7; does not reflect the influence of 
macropore velocity on the micropore transport because the velocity terms are canceled 
out naturally in the micropore equation. The selection of EPN for macropore y1 and for 
micropore 7; is rather arbitraty. If assuming that the diffusion coefficient D, is smaller 
than dispersion coefficient D,, then -yl is in general less than 7;. Fig. 4 depicts the 
spatial concentration distribution subject to the variations of the EPN in the macropores 
y,. Except at the down stream, larger y, appears to be related to the solute transport at 
more restricted regions near the source. In any case, dramatic changes in y, result in 
less substantial solute variations. 

Because the interporosity mass transport is determined by the relative concentration 
difference between various pore spaces, this process can exert significant impact on the 
fate of contaminant migration. As described by the governing equations, the internal 
solute exchange can be considered either as sources or sinks, depending on the signs of 
the concentration differences. Fig. 5 shows the spatial variations of solute concentration 
as a result of the change in micropore source (sink) strength a * . This term alone sets a 
distinction between a dual-porosity model and a triple-porosity one. It is apparent that 
the increased mass transfer between micro- and mesopores would promote a farther 
solute spreading to a more remote location, in particular at down stream. 

Solute interporosity exchange can be further examined by envisioning the transport 
process between meso- and macropores, as reflected by the magnitude of the equivalent 
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Fig. 4. Spatial concentration for various y,. 

exchange coefficients ui2 and u2,. It should be noted that a12 may not be equal to a,, 
since they consist of different porosity and velocity terms, even though t,2 = (?, . This 
uncertainty is due to the paradoxical relationship between the products of porosity n and 
velocity U, for which u, > u2 and n, > n, in general. This relationship is examined in 
Fig. 6. It appears that the greater exchange between two larger porous spaces leads to a 
more extensive solute migration. 

For more dramatic comparison, u2, is deliberately enlarged to decrease the effect of 
mesopore storativity. As expected, velocity contrasts between two primary pore spaces 
(i.e. macro- and mesopores) seem to exert a significant impact in solute transport 

Dimensionless time 

Fig. 5. Spatial concentration for various a * 
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0 

(Bouhroum, 1993). Because b, indexes the velocity ratio between macro- and meso- 
pores, an increase of b,, as depicted in Fig. 7, indicates a magnification of velocity 
contrast between the two domains. It is of interest to observe that, as b, increases, a 
dispersion dominant phenomenon is transforming to a convection dominant process with 
the increased sharp concentration front. More interestingly, variations of concentration 
slopes are readily observed at the upper stream when b, = 3 and b, = 4. This is an 
indication of mass transfer to the primary flow channels from the less permeable regions 
when the stored mass within the channels become exhausted. The behavior of variable 

Fig. 7. Spatial concentration for various h,. 
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concentration changes was frequently recorded in the experiments (Neretnieks, 1993; 
Bai and Roegiers, 1995). 

Comparisons between the present triple-porosity model with traditional single- and 
dual-porosity models are desirable as a means to demonstrate the flexibility of using a 
higher porosity modeling approach. Owing to the difficulties associated with maintain- 
ing compatible parameters and boundary as well as initial conditions between various 
models of similar conceptualizations, both single- and dual-porosity models are derived 
from the present triple-porosity model by independently assuming u,~ = 0 for the former 
and a* = 0 for the latter case, respectively. Furthermore, both u* and a,] are adjusted 
to achieve more significant results. The subsequent comparison is shown in Fig. 8. The 
spatial concentration for the triple-porosity model appears to fall within those of other 
two models, with slight bias towards the single-porosity model. In other words, the 
effect of traditional dual-porosity phenomenon between macro- and micropores may 
have been mitigated due to the existence of a buffer zone, mesopores, under present 
circumstance. 

Related to the possibility of field measurements, it would be of interest to analyze the 
temporal solute transport at the designated location in triple-porosity media. Fig. 9 
depicts the breakthrough curves under the variation of the EPN in macropores. It appears 
that the larger EPNs tend to prolong the concentration variations with extended tailing, 
which is in clear contrast to more rapid and abrupt concentration changes with shorter 
tails when EPNs become relatively small. In addition to either dispersion or convection 
dominant mechanisms related to either former (smaller y, ) or latter (larger y, ) behav- 
iors, the added abnormality seems to be associated with the interactive multi-porosity 
processes. 

The increase of velocity ratio b, even though in relatively narrow ranges, results in 
substantial time lags of breakthrough curves, as shown in Fig. 10. Larger velocity 
contrasts between macropores and mesopores generally lead to much delayed break- 

Fig. 8. Spatial comparison for various models 
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Fig. 9. Temporal concentration for various y,. 

through, as a result of increasing mass exchange between the two interacting porous 
spaces. 

Temporal comparisons of solute concentration between single-, dual- and triple- 
porosity models are illustrated in Fig. 11. Contrary to the spatial comparison shown in 
Fig. 8, the temporal concentration change for the triple-porosity model represents the 
earliest breakthrough, as opposite to the latest breakthrough for the dual-porosity model. 
Under this situation, the mesopores promote the solute breakthrough by assisting the 
mass supply to the primary flow channels from the less permeable micropores. In 

Dimensionless time 

Fig. 10. Temporal concentration for various b, 
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Fig. 11. Temporal comparison for various models 

comparison, convective transport in mesopores for the triple-porosity media may 
overshadow the diffusive process within the micropores. 

5. Conclusions 

Based on the multiporosity/multipermeability concept introduced by Bai et al. 
(1993), a triple-porosity model has been presented to study the contaminant transport in 
heterogeneous porous media. With reference to the conductance and storage character- 
istics in each pore domain, this triple-porosity structure comprises: (a) macropores as 
primary flow paths where both dispersion and convection are prevalent; (b) mesopores 
as intermediate flow paths where convection becomes dominant; and (c) micropores as 
supplemental flow paths and mass storage spaces where only diffusive flow is manifest. 

Partial decoupling of flow between micropores and mesopores is obtained by 
assuming a purely diffusive flow within the former space. The coupling, however, is 
restored by placing the micropore diffusion as internal sources (sinks) attached to 
mesopore skins. Full coupling is maintained between macropores and mesopores. The 
coupled equations are circumvented via the method of differential operators to enable 
the semi-analytical solutions to be derived in a one-dimensional transport geometry. 

Parametric study identifies the significant influential factors such as the ratio of flow 
velocity and the equivalent Peclet number. In comparison with traditional single- and 
dual-porosity models, the presented triple-porosity model may offer an efficient means 
to validate existing numerical models for similar complex systems and may provide 
additional flexibility in matching pertinent experimental data. 
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Appendix A. Derivation of Cl and Cz 

A.Z. Solutions when A > 0 

Solutions of D * yield one real and two complex roots: 

The solution for C, can be given as: 

(Al) 

where: 

1 

E, = e,e*q 5, + qJ,) 

E2 = e,e-52Y[(+4 - c2)cos( 6,~) - t3sin( 6,~)] 

E, = e,e-12Y[(+Cr, - t2)sin( 5,y) + ~scos( t,y)] 
(A3) 

4 = 0, ‘UJ, + 4~s 

where: e,, e, and e3 are constants to be determined through satisfying boundary 
conditions; and 

\ 
53 = T(B, -B2) 

Similarly, F2 can be expressed as: 

T2 = e,e*lr + e2e-*zvcos( t,y) + e3e-*2Ysin( t,y) + O,‘O, (A51 
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Assuming: 

‘P, =t;, +&I’ P2=4J4-62 

p3 = c - t3;‘0, & = tJ,e*1/3, 

( Ps = pet>{ t3(252 - h)sin( 6,) - [ 6,’ + &(*A - 52)lC4 t3)} 
& = e-“Z{ [ t2( 4J4 - t2) - S,?]sin( t3) + td*, - 252)cOs( 63)} 

(A61 

\ p, = ‘a,, 
s - 

- (@4*4+*s) 

After satisfying the boundary conditions of Eq. (181, e,, e2 and e3 x-e hived as 
given in the following equations: 

*1 *2 *3 
e,=--, 

M 
e2=-, 

M 
e3 = - 

M 
(A71 

where: 

M = P,( P2 - P,) + &( & - 6) 
*, = P,( P? P6 - 63P,> - P7P6 

*?=P,P,-P,(PlP,-~,P,) 

W,=P,( A-PA +P3( Pl Ps -P2P4) 

(A@ 

A.2. Solutions when A = 0 

Solutions of D* have three real roots. The solutions of Cl and Z2 can be simply 
expressed as follows: 

Cl = i{ele-“1y($4 - 7,) + e2e-VsY(+4 - q2) 
%I 

+e3e-V2Y[l + Y(% - ~11 + 4~~6% + 4~) 

c*.- ele-"lY+e2e-~zY+e3ye-w+q'~, 

(A9) 

(AlO) 

where: 

I ql=3&+; 
34 4 

772 = 773 = J 2+3 

(All) 
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\ 1. 6, = 4~ - r/d2 + 4~ - 9dleJJ~ 
The constants e,, e2 and e3 given in Eq. 

Eq. (A7) but are expressed by the following 

i 

M=S,(6,-S,)f6,-6, 

W = P3( a? 4 - 64) - 6% 

w?=P,&-P.3(4&-%) 

(A9) and (A101 have identical forms as in 
M, W,, W, and W,: 

(Al3) 

A.3. Solutions when A < 0 

Solutions of D * have three different real roots. The roots of D * in trigonometric 
expression is given as: 

( p2 = 23P r cos(4+120°j-4! 

\ 

where: 

r 

4 
(Y = arccos - - 

( 1 2r* 

The solutions of C, and S, are described as follows: 

+e3ePiY( p3 + 4~~) + *,0;‘4 + *,} 

C?=e,eP1?+e2eP?“+e3eP’\‘+ 05’0, 

Let: 

(Al4) 

(‘415) 

(‘416) 
(Al7) 

(A*81 



M. Bai, J.-C. Roegiers/ Journal of Contaminant H.vdrology 28 (1997) 247-266 3-65 

Similarly, the constants e,, e2 and eg given in Eq. (A16) and (A17) have identical 
forms as in Eq. (A7) but are expressed by the following M, W,, W, and W,: 

(A191 

The solute concentrations in real space c,, c? and cj can be obtained by invoking a 
numerical inversion technique (Stehfest, 1970). 
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