A Strongly Consistent Procedure for Model Selection in a Regression Problem Author(s): C. Radhakrishna Rao and Yuehua Wu Source: *Biometrika*, Vol. 76, No. 2 (Jun., 1989), pp. 369-374 Published by: <u>Biometrika Trust</u> Stable URL: <u>http://www.jstor.org/stable/2336671</u> Accessed: 09-04-2015 13:44 UTC

REFERENCES

Linked references are available on JSTOR for this article: http://www.jstor.org/stable/2336671?seq=1&cid=pdf-reference#references_tab_contents

You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

A strongly consistent procedure for model selection in a regression problem

BY C. RADHAKRISHNA RAO AND YUEHUA WU

Center for Multivariate Analysis, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

SUMMARY

We consider the multiple regression model $Y_n = X_n\beta + E_n$, where Y_n and E_n are *n*-vector random variables, X_n is an $n \times m$ matrix and β is an *m*-vector of unknown regression parameters. Each component of β may be zero or nonzero, which gives rise to 2^m possible models for multiple regression. We provide a decision rule for the choice of a model which is strongly consistent for the true model as $n \to \infty$. The result is proved under certain mild conditions, for instance without assuming normality of the distribution of the components of E_n .

Some key words: AIC; BIC; GIC; Linear regression; Model selection; Variable selection.

1. INTRODUCTION

Consider the multiple regression model

$$Y_n = X_n \beta + E_n, \tag{1.1}$$

where Y_n and E_n are *n*-vectors, $\beta = (\beta_1, \ldots, \beta_m)'$ is an *m*-vector parameter and $X_n = (x_{1n} : \ldots : x_{mn}) = (x^{(1)} : \ldots : x^{(n)})'$ is the $n \times m$ design matrix. Let, for an index set $j = \{j_1, \ldots, j_k\}$ $(1 \le j_1 < \ldots < j_k \le m)$,

$$X_n^j = (x_{j_1n} : \ldots : x_{j_kn}), \quad \beta_{(j)} = (\beta_{j_1}, \ldots, \beta_{j_k})$$

and define model or hypothesis j by H_j : $\beta_i \neq 0$ $(i \in j)$ and $\beta_i = 0$ $(i \notin j)$. There are 2^m hypotheses of this type, and our problem is to give a decision rule to select a hypothesis closest to the true hypothesis in some sense. Let S_j be the residual sum of squares under the hypothesis H_j and $\hat{\sigma}_j^2 = S_j / \{n - \text{card } (j)\}$, where card (j) is the number of elements in the set j.

There is considerable literature on this problem known as selection of variables in a regression model; see review papers by Hocking (1976) and Thompson (1978a, b). More recently, methods have been proposed for the choice of a model by minimizing a criterion function defined on the set of alternative models, i.e. on sets j in our case. Some of these criteria are:

$n\log\left(n^{-1}S_{j}\right)+2\operatorname{card}\left(j\right)$	Akaike (1973),
$S_j + 2\hat{\sigma}_j^2 \operatorname{card}(j)$	Akaike (1970),
$S_j + 2\hat{\sigma}_J^2 \operatorname{card}(j)$	Mallows (1973),
$S_j + \alpha \hat{\sigma}_J^2 \operatorname{card}(j)$	Shibata (1984),
$n \log(n^{-1}S_j) + \operatorname{card}(j) \log n$	Schwartz (1978),
$n \log (n^{-1}S_j) + \operatorname{card} (j) c \log \log n$	Hannan & Quinn (1979),
$n \log(n^{-1}S_i) + \operatorname{card}(j)C_n$	Bai, Krishnaiah & Zhao (1986),

where J stands for whole set $\{1, \ldots, m\}$, c is a constant and C_n is such that $n^{-1}C_n \rightarrow 0$ and $(\log \log n)^{-1}C_n \rightarrow \infty$ as $n \rightarrow \infty$. The performance of these criteria under the assumption of normality of the error components has been studied by Nishi (1984), Shibata (1984) and others.

In this paper, we introduce a new criterion with a flexible penalty function and prove its strong consistency without making any distributional assumptions. Since this approach admits a wider range of the choice of the penalty function, it may lead to a better performance in small samples by suitably choosing the penalty than those based on fixed penalties.

2. Preliminaries

We need the following lemmas in the sequel.

LEMMA 1. Denote the eigenvalues of a $k \times k$ symmetric matrix A by $\lambda_1(A) \ge \ldots \ge \lambda_k(A)$. Let b_1, \ldots, b_m be n-vectors and write $G_k = B'_k B_k$, where $B_k = (b_1 : \ldots : b_k)$ $(k = 1, \ldots, m)$. If there exist constants η_1 and η_2 such that

$$0 < \eta_1 \leq \lambda_m(G_m) \leq \lambda_1(G_m) \leq \eta_2,$$

then

(i)
$$\eta_1 \le b'_k b_k \le \eta_2$$
 $(1 \le k \le m),$
(ii) $\eta_1 \le b'_k Q_{k-1} b_k \le \eta_2$ $(1 < k \le m),$

where Q_{k-1} is the projection operator onto the orthogonal complement of the space generated by b_1, \ldots, b_{k-1} .

LEMMA 2. Let $X_n = (x_{1n} : ... : x_{kn})$, where x_{in} is an n-vector, and E_n be an n-vector variable, for n = 1, 2, ..., such that $x'_{jn}E_n = O(n \log \log n)^{\frac{1}{2}}$, almost surely, for $1 \le j \le k$ and $0 < cn \le \lambda_k(X'_nX_n)$, where c is a constant. Then $E'_nP_nE_n = O(\log \log n)$, almost surely, where $P_n = X_n(X'_nX_n)^{-1}X'_n$.

LEMMA 3. Let η_1, η_2, \ldots be a sequence of independent and identically distributed random variables such that $E(\eta_1) = 0$, $E(\eta_1^2) = \sigma^2$ and $E(|\eta_1|^3) < \infty$. Further let a_1, a_2, \ldots be a sequence of constants such that

(i)
$$B_n^2 = \sum_{i=1}^n a_i^2 \to \infty$$
, as $n \to \infty$;
(ii) $\sum_{i=1}^n |a_i^3| = O\{B_n^3(\log B_n^2)^{-1-\delta}\}$, for some $\delta > 0$.

Then, almost surely,

$$T_n = \sum_{i=1}^n a_i \eta_i = O(B_n^2 \log \log B_n^2)^{\frac{1}{2}}.$$

Lemmas 1 and 2 can be proved by elementary calculus and Lemma 3 follows from Theorem 3 of Petrov (1975, p. 111).

3. The discriminant criterion

Consider the regression model $(1 \cdot 1)$ such that

$$0 < a_1 n \leq \lambda_m(X'_n X_n) \leq \lambda_1(X'_n X_n) \leq a_2 n, \qquad (3.1)$$

for some constants a_1 and a_2 , and the components $x_{jn}^1, \ldots, x_{jn}^n$ of x_{jn} satisfy the condition

$$\sum_{i=1}^{n} (x_{jn}^{i})^{3} = O\{(x_{jn}^{\prime} x_{jn})^{3/2} / \log (x_{jn}^{\prime} x_{jn})\}^{1+\delta}, \qquad (3.2)$$

for $1 \le j \le m$ and some $\delta > 0$. Further let the components $\varepsilon_1, \ldots, \varepsilon_n$ of E_n be independent and identically distributed random variables such that

$$E(\varepsilon_i) = 0, \quad E(\varepsilon_i^2) = \sigma^2, \quad E(|\varepsilon_i|^3) < \infty.$$
 (3.3)

We first consider a simple case, i.e. the models

$$\boldsymbol{\beta} = \boldsymbol{\beta}_{(k)} = (\boldsymbol{\beta}_1, \ldots, \boldsymbol{\beta}_k \neq 0, 0, \ldots, 0) \quad (k = 1, \ldots, m).$$

Let S_k be the residual sum of squares when $\beta_{(k)}$ is fitted and denote $S_m/(n-m)$ by $\hat{\sigma}_m^2$. Define the discriminant criterion $D_n(k) = S_k + k\hat{\sigma}_m^2 C_n$ (k = 1, ..., m) and the selection rule $k = \hat{k}_n$, where

$$D_n(\hat{k}_n) = \min_{1 \le k \le n} D_n(k).$$

Then we have the following theorem.

THEOREM 3.1. Suppose that the conditions (3.1), (3.2) and (3.3) hold for n = 1, 2, ...and $k = k_0$ is the true model. Then $\hat{k}_n \rightarrow k_0$, almost surely, if we choose C_n so that

$$n^{-1}C_n \to 0$$
, $(\log \log n)^{-1}C_n \to \infty$. (3.4)

Proof. By conditions $(3\cdot 1)$ - $(3\cdot 3)$, applying Lemmas 1-3, one can easily get

$$a_2 n \ge x'_{jn} x_{jn} \ge a_1 n \to \infty \quad (1 \le j \le m) \tag{3.5}$$

as $n \to \infty$, and

$$a_2 n \ge x'_{jn} (I - P_{j-1}) x_{jn} \ge a_1 n > 0 \quad (1 \le j \le m),$$
 (3.6)

where P_i represents the orthogonal projection operator onto the space spanned by x_{1n}, \ldots, x_{in} , and almost surely, for $1 \le j \le m$,

$$x'_{jn}E_n = O(n \log \log n)^{\frac{1}{2}},$$
 (3.7)

$$E_n P_i E_n = O(\log \log n). \tag{3.8}$$

Now we are in a position to prove the strong consistency of \hat{k}_n . First consider the case $k < k_0$. We have, by (3.5)-(3.7) and Cauchy-Schwarz inequality, together with the condition $n^{-1}C_n \rightarrow 0$,

$$D_n(k) - D_n(k_0) \ge \beta_{k_0}^2 x'_{k_0 n} (I - P_{k_0 - 1}) x_{k_0 n} + 2\beta_{k_0} E'_n (I - P_{k_0 - 1}) x_{k_0 n} - (k_0 - k) C_n \hat{\sigma}_m^2$$

$$\ge \beta_{k_0}^2 a_1 n + \beta_{k_0} O(n \log \log n)^{\frac{1}{2}} - (k_0 - k) C_n \hat{\sigma}_m^2 > 0,$$

almost surely, for *n* large enough, which implies, almost surely,

$$\liminf \hat{k}_n \ge k_0. \tag{3.9}$$

Next, consider the case $k > k_0$. We have

$$D_n(k) - D_n(k_0) = (k - k_0) C_n \hat{\sigma}_m^2 - \sum_{j=k_0+1}^k E'_n (P_j - P_{j-1}) E_n.$$
(3.10)

Applying (3.5), (3.6), (3.7), (3.8) and Cauchy-Schwarz inequality to (3.10) we have

$$D_n(k) - D_n(k_0) = (k - k_0)C_n\hat{\sigma}_m^2 + O(\log \log n).$$

As $\hat{\sigma}_n^2(m) \to \sigma^2$, almost surely (Gleser, 1966, p. 1053), $D_n(k) - D(k_0) > 0$, almost surely, as $n \to \infty$, implying, almost surely,

$$\limsup \hat{k}_n \le k_0. \tag{3.11}$$

 \Box

Then (3.9) and (3.11) prove the theorem.

THEOREM 3.2. Under the same conditions as in Theorem 3.1 on the model (1.1), the choice \hat{k}_n such that

$$D_n(\hat{k}_n) = \min_{1 \le k \le m} D_n(k),$$

where $D_n(k) = n \log \tilde{\sigma}_k^2 + kC_n$, $\tilde{\sigma}_k^2 = S_k/n$, is strongly consistent for the true value k_0 of k. It can be proved in the same way as in Theorem 3.1

It can be proved in the same way as in Theorem $3 \cdot 1$.

4. The general case

In § 3, we considered the linear model $(1\cdot1)$ and discussed model selection in a class of nested alternative models. Now we consider the 2^m possible models by allowing each component of β to be zero or nonzero. We can approach this problem by using the result of Theorem 3·1 as follows. For each permutation π of the components of β , by a corresponding rearrangement of x_{1n}, \ldots, x_{mn} , we have a linear model on which we can apply the method of § 3 and select a model \hat{k}_{π} . From among the models \hat{k}_{π} , by varying π over all the permutations, we select that which has the smallest number of nonzero components of β . This procedure is equivalent to minimizing $S_j + \operatorname{card}(j)\hat{\sigma}_m^2 C_n$ or $n \log (S_j/n) + \operatorname{card}(j)C_n$ over j, where j now stands for a subset of the components of β taken as nonzero. Both the procedures provide a strongly consistent estimate of the true model in view of the theorems in § 3. However, they involve heavy computations. In light of this we suggest an alternative which involves only the computation of m+1residual sum of squares.

Let us consider $\beta_{(-i)} = (\beta_1, \ldots, \beta_{i-1}, \beta_{i+1}, \ldots, \beta_m)$ and represent the corresponding residual sum of squares by $S_{(-i)}$ $(i = 1, \ldots, m)$. Define $D_n(-i) = S_{(-i)} - S_m - C_n$, where as before S_m is the residual sum of squares without any restriction on the components of β . Then choose the model $\beta_i = 0$ if $D_n(-i) \le 0$, and $\beta_i \ne 0$ if $D_n(-i) > 0$ $(i = 1, \ldots, m)$.

We have the following theorem.

THEOREM 4.1. Under the conditions of Theorem 3.1, the estimated model by the rule given above is strongly consistent for the true model.

Proof. If in the true model $\beta_i \neq 0$, then, using the second equation above (3.9) with $k_0 = m$ and k = m - 1, we have with probability 1, $D_n(-i) > 0$ for all large *n*; that is β_i is taken to be nonzero in the selected model. Conversely if $\beta_i = 0$, using (3.5)-(3.8) and the Cauchy-Schwarz inequality we get

$$D_n(-i) = S_{(-i)} - S_m - C_n = Y'_n(P_m - P_{(-i)})Y_n - C_n$$

= $E'_n(P_m - P_{(-i)})E_n - C_n \leq O(\log \log n) - C_n,$

which, together with the condition $(\log \log n)^{-1}C_n \to \infty$ of (3.4), implies that, with probability 1, $D_n(-i) < 0$, for all large *n*; that is β_i is not in the selected model. This completes the proof of Theorem 4.1.

5. Some comments on the choice of C_n

In Theorems 3.1, 3.2 and 4.1, we proved the strong consistency of our model selection criteria under the conditions (3.4). There are many choices of C_n which ensure (3.4). The actual choice of C_n in any given problem may depend on other considerations such as the consequences of selecting a wrong model. We suggest an ad hoc procedure which appears to be promising.

First, take the full model (1.1) without any restriction on the components of β , and estimate σ^2 by $\hat{\sigma}_m^2 = S_m/(n-m)$ and the residuals by $\hat{E}_n = Y_n - X_n \hat{\beta}$, where $\hat{\beta}$ is the least-squares estimator of β .

Secondly, consider the models,

$$M_k: Y_n = X_n \gamma_k + E_n \quad (k = 1, \ldots, m),$$

where $\gamma_k = (a\hat{\sigma}_m, \ldots, a\hat{\sigma}_m, 0, \ldots, 0)'$ with the last (m-k) components as zeros and a < 1 is some chosen constant.

Thirdly, choose C_n of the form αn^{γ} where $\gamma < 1$ and construct observations $Y_n = X_n \gamma_k + \hat{E}_n$, where \hat{E}_n is the vector of estimated residuals. For a given combination of α and γ we find which of the models M_1, \ldots, M_m are correctly selected. We call a combination (α, γ) good if all the models are correctly selected. There may be several combinations (α, γ) which are good. We may fix a particular value of γ and look at the set of values of α and choose some representative value. Such a choice of α and γ gives C_n which can be used in the actual selection of a model in a given problem.

In simulation experiments, we chose a = 0.6 to ensure a good performance of the selection rule when the regression coefficients are of order not less than 0.6σ . We fixed γ at 0.9 and selected α as $\frac{1}{3}\alpha_{\min} + \frac{2}{3}\alpha_{\max}$ from among the 'good values' of α with $\gamma = 0.9$. Such a choice of C_n gave good results when the sample was not too small, compared to criteria such as BIC, AIC and jack-knife, cross validation, by leaving one out. Further research is needed for prescribing rules for the choice of C_n .

ACKNOWLEDGEMENTS

This research was sponsored by the Air Force Office of Scientific Research and the Office of Naval Research.

References

AKAIKE H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math. 22, 203-17.

- AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, pp. 267-81. Budapest: Akademiai Kiado.
- BAI, Z. D., KRISHNAIH, P. R. & ZHAO, L. (1986). On the detection of number of signals in the presence of white noise. J. Mult. Anal. 20, 1-25.
- GLESER, L. J. (1966). Correction to "on the asymptotic theory of fixed size sequential confidence bounds for linear regression parameters". Ann. Math. Statist. 37, 1053-5.
- HANNAN, E. J. & QUINN, B. G. (1979). The determination of the order of an autoregression. J. R. Statist. Soc. B 41, 190-5.

HOCKING, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics 32, 1-49. MALLOWS, C. L. (1973). Some comments on C_p . Technometrics 15, 661-75.

- NISHI, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression. Ann. Statist. 12, 758-65.
- PETROV, V. V. (1975). Sum of Independent Random Variables. Berlin: Springer-Verlag.
- SCHWARTZ, G. (1978). Estimating the dimensions of a model. Ann. Statist. 6, 461-4.
- SHIBATA, R. (1984). Approximate efficiency of a selection procedure for the number of regression variables. *Biometrika* 71, 43-9.
- THOMPSON, M. L. (1978a). Selection of variables in multiple regression. Part I. A review and evaluation. Int. Statist. Rev. 46, 1-19.
- THOMPSON, M. L. (1978b). Selection of variables in multiple regression. Part II. Chosen procedures, computations and examples. Int. Statist. Rev. 46, 126-46.

[Received June 1988. Revised November 1988]