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A strongly consistent procedure for model selection 
in a regression problem 

BY C. RADHAKRISHNA RAO AND YUEHUA WU 

Center for Multivariate Analysis, Pennsylvania State University, University Park, 
Pennsylvania 16802, U.S.A. 

SUMMARY 

We consider the multiple regression model Yn = Xn, + En, where Yn and En are 
n-vector random variables, Xn is an n x m matrix and 83 is an m-vector of unknown 
regression parameters. Each component of ,3 may be zero or nonzero, which gives rise 
to 2' possible models for multiple regression. We provide a decision rule for the choice 
of a model which is strongly consistent for the true model as n -> oo. The result is proved 
under certain mild conditions, for instance without assuming normality of the distribution 
of the components of En. 

Some key words: AIC; BIC; GIC; Linear regression; Model selection; Variable selection. 

1. INTRODUCTION 

Consider the multiple regression model 

Yn = Xn43 +En, (1-1) 

where Yn and En are n-vectors, /3 = (,31,. . ., fim)' is an m-vector parameter and 
Xn=(x1in . Xmn) =(X() : x(n)'Y is the n x m design matrix. Let, for an index 
set j = {jl,..jk} (1 -jl <...<jkS ) 

X'n = (Xi, n . *Xjkn) 13() = (138i 9 ... 9 13k) 

and define model or hypothesis j by Hj: /i3t0 (iE j) and f3i=0 (ii]j). There are 2m 
hypotheses of this type, and our problem is to give a decision rule to select a hypothesis 
closest to the true hypothesis in some sense. Let Sj be the residual sum of squares under 
the hypothesis Hj and 5j = S1/{n -card (j)}, where card (j) is the number of elements 
in the setj. 

There is considerable literature on this problem known as selection of variables in a 
regression model; see review papers by Hocking (1976) and Thompson (1978a, b). More 
recently, methods have been proposed for the choice of a model by minimizing a criterion 
function defined on the set of alternative models, i.e. on sets j in our case. Some of these 
criteria are: 

n log (n-1Sj) + 2 card (j) Akaike (1973), 

Sj+2rj2 card (j) Akaike (1970), 

Sj + 25fj card (j) Mallows (1973), 
Sj + a5j card (j) Shibata (1984), 
n log (n1Sj)+ card (j) log n Schwartz (1978), 
n log (n Sj) + card (j)c log log n Hannan & Quinn (1979), 

n log (n-1S1) + card ( j) Cn Bai, Krishnaiah & Zhao (1986), 
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where J stands for whole set {1,..., m}, c is a constant and Cn is such that n-C ->0 
and (log log n)-1Cn -> ?o as n -> oo. The performance of these criteria under the assumption 
of normality of the error components has been studied by Nishi (1984), Shibata (1984) 
and others. 

In this paper, we introduce a new criterion with a flexible penalty function and prove 
its strong consistency without making any distributional assumptions. Since this approach 
admits a wider range of the choice of the penalty function, it may lead to a better 
performance in small samples by suitably choosing the penalty than those based on fixed 
penalties. 

2. PRELIMINARIES 

We need the following lemmas in the sequel. 

LEMMA 1. Denote the eigenvalues of a k x k symmetric matrix A by A1(A) ?-... k A(A). 
Let b1, . . ., bm be n-vectors and write Gk = B'kBk, where Bk = (b. bk) (k = 1,..., i). 

If there exist constants ml and q2 such that 

0 ? l-< nlkrn(Grn) -- l(Gm)% -<2, 

then 

(i) q1 b' kbk -- 2 (1 -, k m) 
(ii) 1 b'kQk-lbk / 2 (1 < km), 

where Qk-l is the projection operator onto the orthogonal complement of the space generated 
by bl,... ., bk-I 

LEMMA 2. Let Xn =(xn ..X.: xkn), where xin is an n-vector, and En be an n-vector 
variable, for n = 1, 2, .. ., such thatX jnEn = O(n log log n)2, almost surely, for 1 - j - k and 
0<cn - Ak(X'nXn), where c is a constant. Then E'PPnEn =O(log log n), almost surely, 
where Pn = Xn (X Xn) X' 

LEMMA 3. Letql, mq2, . .. be a sequence of independent and identically distributed random 
variables such that E(Y71)=0, E(rq 2)=o-2 and E(I|7113)<oo. Further let a1,a2,... be a 
sequence of constants such that 

n 
(i) B>n ai2 oooas n-*oo; 

i=l1 

n 
(ii) Z la31 = O{B 3(log B2n)--18} for some ( > 0. 

i=l1 

Then, almost surely, 

n 

Tn =E ai77i = O(Bn log log Bn)4. 
i=l1 

Lemmas 1 and 2 can be proved by elementary calculus and Lemma 3 follows from 
Theorem 3 of Petrov (1975, p. 111). 
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3. THE DISCRIMINANT CRITERION 

Consider the regression model (1 1) such that 

0<a,n - Am(X' Xn) - Ai(X'nXn) S a2n, (3.1) 

for some constants a, and a2, and the components xn,... ., xnn of Xfn satisfy the condition 

n 

E (xn)3 = O{(xjnxin)312/log (X4nxjn)} '8, (3-2) 
i=l 

for 1 - j - m and some 8 > 0. Further let the components El, . . ., Enof En be independent 
and identically distributed random variables such that 

E (ei) = 0, E (4 2) = o_2 E( l i 13) < 00. (3-3) 

We first consider a simple case, i.e. the models 

13-=f(k)=(31 ,--,J3ktO,,0...,O) (k=1,..., m). 

Let Sk be the residual sum of squares when f3(k) is fitted and denote Sm/(n - m) by 5rM. 
Define the discriminant criterion Dn(k) = Sk + kam (k = 1,..., m) and the selection 
rule k- kn where 

Dn(kn)= min DA(k). 

Then we have the following theorem. 

THEOREM 3-1. Suppose that the conditions (3-1), (3-2) and (3-3) hold for n = 1, 2,... 
and k = ko is the true model. Then kn -* ko, almost surely, if we choose Cn so that 

n1 Cn -O, (loglogn)1Cn --oo. (3-4) 

Proof. By conditions (3 1)-(3-3), applying Lemmas 1-3, one can easily get 

a2nx4nxin,:a1n-*oo0 (1<j-m) (3-5) 

as n -* oo, and 

a2n:,:Xin(I-Pj_I)Xin:_:aIn>O (1-<j-_m), (3 6) 

where Pi represents the orthogonal projection operator onto the space spanned by 
XIn, - - -, xin, and almost surely, for 1 - j - m, 

xjn En = 0 (n log log n), (3*7) 

EnPjEn = O(log log n). (3*8) 

Now we are in a position to prove the strong consistency of kn. First consider the case 
k<ko. We have, by (3-5)-(3-7) and Cauchy-Schwarz inequality, together with the 
condition n -1Cn - 0, 

Dn (k) -Dn (ko) 3 k n (I - Pk-)Xkn + 2f3koEn (I Pko-I )Xkn- (k0- k) Ca&r, 

P ,3koa In +,8kl,,O(n log log n)2-(ko -k) Cnc2m >? 

almost surely, for n large enough, which implies, almost surely, 

lim inf k,, p ko> (3*9) 
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Next, consider the case k> ko. We have 
k 

Dn(k)-Dn(ko) = (k-ko)Cnam - E E'n(Pj-Pj-?)En (3-10) 
j=ko+l 

Applying (3-5), (3-6), (3-7), (3-8) and Cauchy-Schwarz inequality to (3-10) we have 

Dn(k)-Dn(k0)=(k-k0) Cfm+O(loglog n). 
As A2(m) _> U2, almost surely (Gleser, 1966, p. 1053), Dn(k) - D(k0) > 0, almost surely, 
as n -> o, implying, almost surely, 

A 

lim sup kn - ko. (3.11) 

Then (3-9) and (3-11) prove the theorem. El 

THEOREM 3-2. Under the same conditions as in Theorem 3-1 on the model (1-1), the 
A 

choice kn such that 

Dn (kn) = min DA(k), 

where Dn (k) = n log S2 + kCn, J2 = Ski n, is strongly consistent for the true value ko of k. 

It can be proved in the same way as in Theorem 3-1. 

4. THE GENERAL CASE 

In ? 3, we considered the linear model (1 -1) and discussed model selection in a class 
of nested alternative models. Now we consider the 2m possible models by allowing each 
component of /3 to be zero or nonzero. We can approach this problem by using the result 
of Theorem 3X1 as follows. For each permutation X of the components of /3, by a 
corresponding rearrangement of x1n,... , xmn, we have a linear model on which we can 
apply the method of ? 3 and select a model k".. From among the models k,, by varying 
IT over all the permutations, we select that which has the smallest number of nonzero 
components of /3. This procedure is equivalent to minimizing Sj+card (j)am, Cn or 
n log (Sj/ n) + card (j) Cn over j, where j now stands for a subset of the components of 
,3 taken as nonzero. Both the procedures provide a strongly consistent estimate of the 
true model in view of the theorems in ? 3. However, they involve heavy computations. 
In light of this we suggest an alternative which involves only the computation of m + 1 
residual sum of squares. 

Let us consider ,3(i) = (/31,... ., /3i-, /3i+1, ... ., pm) and represent the corresponding 

residual sum of squares by S(_i) (i = 1, . . ., mi). Define Dn (-i) = S(i) - Sm - Cn, where 
as before Sm is the residual sum of squares without any restriction on the components 
of 3. Then choose the model /,i = 0 if Dn(-i) S 0, and ,i * O if Dn(-i) > 0 (i = 1,..., m). 

We have the following theorem. 

THEOREM 4-1. Under the conditions of Theorem 3*1, the estimated model by the rule 
given above is strongly consistent for the true model. 

Proof. If in the true model /,i + 0, then, using the second equation above (3 -9) with 
ko=m and k=m-1, we have with probability 1, Dn(-i)>O for all large n; that is /3, 
is taken to be nonzero in the selected model. Conversely if /,i = 0, using (3 5)-(3 8) and 
the Cauchy-Schwarz inequality we get 

Dn(-i) S(-i)Sm -Cn = Y'n(Pm -P(-i)) Yn -Cn 

= E'n(Pm - P(_))E,, - C, - O(log log n) - Cn, 
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which, together with the condition (log log n) - Cn -> oo of (3 -4), implies that, with proba- 
bility 1, Dn (-i) < 0, for all large n; that is fi3 is not in the selected model. This completes 
the proof of Theorem 4 1. O 

5. SOME COMMENTS ON THE CHOICE OF Cn 

In Theorems 3-1, 3-2 and 4-1, we proved the strong consistency of our model selection 
criteria under the conditions (3-4). There are many choices of Cn which ensure (3-4). 
The actual choice of Cn in any given problem may depend on other considerations such 
as the consequences of selecting a wrong model. We suggest an ad hoc procedure which 
appears to be promising. 

First, take the full model (1 1) without any restriction on the components of ,X, and 
estimate oJ2 by am = Sm/(n - m) and the residuals by En = Yn -Xn,, where ,X is the 
least-squares estimator of /3. 

Secondly, consider the models, 

Mk: Yn = Xnyk + En (k = 1, ..., m), 

where yk = (am,... 9 a5m, 0, ... 9 0)' with the last (m - k) components as zeros and a < 1 
is some chosen constant. 

Thirdly, choose ACn of the form an where y <1 and construct observations Yn= 
Xn,yk + En , where En is the vector of estimated residuals. For a given combination of a 
and y we find which of the models Ml,..., Mm are correctly selected. We call a 
combination (a, y) good if all the models are correctly selected. There may be several 
combinations (a, y) which are good. We may fix a particular value of y and look at the 
set of values of a and choose some representative value. Such a choice of a and y gives 
Cn which can be used in the actual selection of a model in a given problem. 

In simulation experiments, we chose a= 0-6 to ensure a good performance of the 
selection rule when the regression coefficients are of order not less than 0-6cr. We fixed 
y at 0-9 and selected a as -amia +2amax from among the 'good values' of a with y = 0 9. 
Such a choice of Cn gave good results when the sample was not too small, compared to 
criteria such as BIC, AIC and jack-knife, cross validation, by leaving one out. Further 
research is needed for prescribing rules for the choice of Cn. 
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