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Abstract

We give a brief review of the state-of-the-art in computational fluid dynamics. Most of this paper concerns several flow
examples that emphasize the physics, mathematics, and numerics of the flows being simulated. 2000 Published by Elsevier
Science B.V. All rights reserved.
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This paper summarizes some of the issues discussed
by us at the American Physical Society’s (APS)
Centennial Symposium held this year. While the
history of computational fluid dynamics (CFD) is
substantially briefer than that of the APS, there has
been much superb work and progress made using
CFD over the past half century. This work has led to
significantly new physical insights into the behavior
of flows ranging from laminar to turbulent, from
nonreacting to reacting, from Newtonian to non-
Newtonian, . . . . Indeed, there is much technology
now available to reliably compute flows in complex
geometries with complex physics. Computation now
stands as an equal partner with mathematical analysis
and experimental inquiry. CFD has become such
an effective tool that many of our colleagues who
previously would rely only on experiment to uncover
fluid phenomena now use CFD to achieve their goals
more rapidly and cost effectively.
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The state-of-the-art of computation has advanced on
many fronts. On the one hand, computer hardware it-
self has improved dramatically over the last half cen-
tury. As we close the 20th century, computers are 109

times faster and more cost effective than they were
in the days of World War II. Indeed, Moore’s law
that asserts computer speedups by a factor 2 every
1.5–2 years fits well with this remarkable performance
achievement. Furthermore, while state-of-the-art elec-
tronic chip manufacturing today uses 0.25µ feature
size technology, the path to 0.05µ or smaller tech-
nology now seems apparent, thereby ensuring Moore’s
law-like speedups for the next 15 years or so. The re-
sulting three order-of-magnitude increase of computer
capability in this relatively short future time span will
clearly open new vistas for CFD.

The impressive performance improvements in com-
puters have been matched by developments in numer-
ical and mathematical technologies for solving prob-
lems. As computation opens new application areas,
so too does it stimulate new ideas for mathemati-
cal and physical modeling and algorithms. Recent ad-
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vances enabled by fast transform methods, fast mul-
tipole methods, and the like allow solution of prob-
lems using O(1) arithmetic operations per degree-of-
freedom (DOF) used to represent the field (perhaps
corrected by logarithmic factors of the total number
of DOFs). In contrast, classical algorithms are often
much slower (e.g., Gauss elimination solution of a
dense linear system withN unknowns requires O(N2)

operations per DOF). The natural question to ask is
where future algorithms and advances are likely to
arise, since they are not likely to reduce the num-
ber of operations to fewer than O(1) operations per
DOF. The answer has become increasingly clear in
recent times, viz., techniques are being developed
now to enable marked reduction in the number of
DOFs needed to represent a complex field. Such tech-
niques include, but are not limited to, wavelet meth-
ods, adaptive gridding methods, complex analysis, and
the like.

Another critical area for the development of CFD
is that of physical modeling. The need for physical
modeling is most apparent in turbulent flows which
occur at high Reynolds numbersR defined asVL/ν
whereV andL stand for the characteristic flow veloc-
ity/length scale andν is the typical value of viscosity
or any kinematic transport coefficient. It is well known
that, on the basis of Kolmogorov theory of turbu-
lence, a flow at Reynolds numberR engages roughly
O(R9/4) spatial DOFs with roughly O(R1/2) tempo-
ral DOFs. Since real-world applications (including air-
craft and ships) occur atR = O(108–109), the total
number of DOFs involved can be in excess of 1024 (i.e.
comparable to the Avogadro’s number). Such prob-
lems are well beyond foreseeable computer power so
that their solution requires elimination of DOFs to re-
duce the effective problem size.

There are several general methods of doing this, in-
cluding large eddy simulations (LES), very large eddy
simulations (VLES) and analytical theories of turbu-
lence. This classification is based on the number of
DOFs removed from the dynamics. In LES, all DOFs
smaller than the filter scale1 (roughly, the grid size)
are modeled while all DOFs larger than1 are com-
puted via a modified set of Navier–Stokes equations.
Models for the DOFs representing small scales are
based on universal properties of fully developed tur-
bulence and range from the so-called Smagorinsky
model to renormalized scalar viscosity formulations to

tensor viscosity formulations. An outstanding physics
issue is to find a good representation of the much
less universal turbulent flow near walls. Lacking this,
current LES simulations are typically limited toR’s
which are barely a factor of 2 larger than those achiev-
able by full Navier–Stokes simulations. The other is-
sues in present-day LES include independence of the
results on the filter/grid size and the inclusion of com-
plex physics.

In VLES, scales within the Kolmogorov inertial and
dissipation range are modeled while larger-scale “co-
herent” eddies are computed explicitly. Such mod-
els are related to classical Reynolds averaging but
recent results based on renormalization group tech-
niques demonstrate the key role played by coherent
eddies, time dependence, and transitional effects in
a number of flows. Successes of this new approach
are reported elsewhere [1,2]. The difference between
VLES and LES is that, in the former, only the large,
anisotropic eddies beyond the Kolmogorov inertial
range are resolved numerically. An elementary argu-
ment may be used to estimate which eddies are re-
solved by VLES and which eddies are modeled. In
the Kolmogorov theory, the local velocity of an inertial
range eddy of sizeh is proportional toE1/3h1/3, where
E is the rate of energy dissipation (per unit mass).
Therefore, the characteristic time-scale of this eddy
is of orderτh = h2/3E−1/3. Large, anisotropic eddies
are characterized by the time scaleτS = 1/|S| where
S is the local rate-of-strain. The coherent large-scale,
anisotropic eddies are characterized byτS �O(τh) or
h >O(E1/2/|S|3/2).

Finally, analytical theories use field theoretical tech-
niques to model all DOFs of turbulence. Such theories,
especially Kraichnan’s DIA theories, have gone far to
elucidate fundamental turbulence processes but, unfor-
tunately, remain difficult to compute for complex shear
flows.

In the remainder of this paper we give three case
studies which highlight the need for care in CFD
analysis. The relative simplicity of these flow prob-
lems uncovers the necessity to understand the physics
and mathematics/numerics of the underlying problem
in order to make progress and that brute force comput-
ing power is not always sufficient. This is especially
true for the more complex research and engineering
flows encountered in modern CFD applications.
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1. Example 1: Steady state solution of Burgers’
equation

Here we present a numerical study of one-dimen-
sional shock wave propagation governed by Burgers’
equation

∂u

∂t
+ u∂u

∂x
= ν ∂

2u

∂x2
(1)

in the x − t domain [−1;1] × R+ with the bound-
ary conditionsu(∓1, t) = ±1. A steady solution is
achieved ast→∞ that is antisymmetric inx and for
small viscosityν�� 1 represents a “shock wave” of
width O(ν) located atx = 0,

u(x,∞)=− tanh(x/2ν)/ tanh(1/2ν). (2)

As a test, we solve (1) with an initial condition
corresponding to a shock wave centered atx0 6= 0 and
width1 6= 2ν:

u(x,0)= a tanh
(
(x − x0)/1

)+ b (3)

with a, b chosen so that the boundary condition
u(∓1, t)=±1 are satisfied.

The results presented below are obtained using a
centered second-order finite difference code with ex-
plicit time stepping. In Fig. 1 we plot the solution of
the initial-value problem forν = 0.03,1 = 0.1, and
x0 = −0.8. Grid resolution is chosen so that errors
are small (of the order of width of the plotted curve).

Fig. 1. Numerical solution of the Burgers’ equation att = 0,50,
1000,3500, from left to right, respectively. The exact asymptotic
steady state solution is a shock of the same shape located atx = 0
(not shown here).

Qualitatively, the solution quickly acquires a reason-
able profile, having the spatial structure of (2), and
starts moving to the right towards the true equilibrium
shock location ofxcenter= 0; herexcenteris defined by
u(xcenter, t)= 0. The movement ofxcenter, however, is
quite slow and stagnates at times O(1000). This is es-
pecially clear from Fig. 2 where we plotxcenter as a
function of time. Without knowing the exact analytical
solution (2) which of course corresponds toxcenter= 0,
one could easily conclude from Figs. 1 and 2 that
the steady state solution of (1) is faithfully obtained
at t = O(103) and corresponds toxcenter= −0.742.
Note, that these computational times of 50, 1000, and
3500+ are indeed large compared to both the advec-
tion time (of the order ofL/u ≈ 1) and the diffusion
time (of the order ofL2/ν ≈ 30).

From the formal point of view, the slow numerical
convergence in the above example is due to the fact
that, for each intermediate time, the nonlinear term
on the left side of (1) vanishes almost everywhere in
the domain except for a narrow strip of the order of
ν �� 1. That leaves it to the viscous (Laplacian)
term to drive the solution to the exact steady state;
this is of course anomalously slow when the viscosity
is small. Indeed, the full numerical solution of (1)
with (3) with our choice of boundary conditions and

Fig. 2. Location of the shock in the numerical solution of the
Burgers’ equation as a function of time. This locationxcenter(t) is
defined byu(xcenter, t)= 0.
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parameters requirest = O(1012) to reach the steady
state (2).

Actually, the effect of nonlinearity cancellation has
deep physical origins and is quite generic. To see
this, we consider the case of high Reynolds number
incompressible flow problem in two dimensions.

Let us recall that the Navier–Stokes equations may
be recast as the vorticity equation

∂ω

∂t
+ eab ∂ω

∂xa

∂ψ

∂xb
= ν1ω (4)

where the antisymmetric tensoreab : e12 = −e21 =
1; e11 = e22 = 0 is introduced and the vorticity,ω,
and the stream function,ψ , are related to the velocity
field and to each other via

va = eab ∂ψ
∂xb
; ω= eab ∂va

∂xb
=−1ψ.

When the viscosityν is small compared toV and
L (Re≡ VL/ν � 1), the viscous term on the right
side of (4) is non-negligible compared to the nonlinear
term on the left side only in narrow boundary layers
of the width of δ = f (Re)L�� L, with the func-
tion f usually involving negative powers of Re. In the
remainder of the domain, there is a continuum of so-
lutions in which (4) is satisfied as a quasi-steady state.
Indeed, for each single-valued functionF , “Batche-
lor” eddies in whichω≈ F(ψ) nearly cancel the non-
linearity in (4):

eab
∂ω

∂xa

∂ψ

∂xb

dF(ψ)

dψ
∼= eab ∂ω

∂xa

∂ω

∂xb
≡ 0.

There is, of course, only one such bulk solution
which matches the wall boundary conditions via the
boundary layer behavior in the strip of the widthδ.
This solution requires long viscous-like times to be
achieved while Batchelor eddy states are achieved on
convective time scales.

The analogy with the above example of the Burgers
equation is clear. At large enough resolution, one
may observe steady convergence of the computational
problem to a solution corresponding to some function
F which would seem to remain steady at all practically
achievable simulation times. The boundary condition
information propagates anomalously slowly to the
bulk of the domain though the boundary layer when
the Reynolds number is large.

2. Example 2: Unsteady turbulent flow past a
compressor blade’s trailing edge

Here we describe some of our recent results on flow
past a compressor trailing edge which indicate that
steady-state Reynolds-averaged computations prove
inadequate in flows with large-scale coherent eddies.

The domain geometry is plotted in the lower-right
part of Fig. 4. The Reynolds number for this flow
is 56 400 based on the diameter of the half-cylinder
trailing edge. The inlet, taken at 10.6 diameters up-
stream, is a symmetrical zero pressure gradient turbu-
lent boundary layer set to match experimental condi-
tions. A number of runs were performed using differ-
ent turbulence transport models for steady-state and
time-dependent cases at different spatial resolutions,
and a steady-state case with a splitter plate.

First, steady-state computations of the trailing edge
using a standard Reynolds-averaged turbulence trans-
port model with 25 000 grid cells in the domain seem
to indicate convergence. The flow fields of pressure
and eddy viscosity plotted in Fig. 3 correspond to a
residual error in the pressure solver of the order of
5× 10−5. These flow fields are symmetric with the
pressure distribution showing a large symmetric sepa-
rated eddy. The steady solution with a splitter plate is
very similar.

In principle, this computational study could have
been stopped at this point. A reasonable simulation
model has provided a reasonably well converged
solution of the problem. However, tests with increased
resolution in the wake region (with 40 000 cells)
show that the residual error in the pressure solver
increases by two orders of magnitude to 5× 10−3.
This error reduces by only about 20% when the grid
is further refined uniformly across the domain with
about 200 000 points. The ‘steady’ flow fields obtained
in these grid-refined cases are not symmetric.

This case study with the steady solver is typi-
cal of how non-vanishing residuals can hint at true
time dependence in complex flows. In the present
case, a time-dependent solution is obtained using the
VLES transport model [1,2], which has a higher ef-
fective Reynolds number than the standard Reynolds-
averaged model.

With the VLES model, the time-dependent large-
scale flow is computed with a Strouhal frequency
approximately 0.2 in agreement with experiment. In
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Fig. 3. Distributions of the eddy viscosity and pressure for a flow past compressor trailing edge obtained using a steady Reynolds-averaged flow
solver.

Fig. 4. Pressure coefficient distribution in the flow past compressor trailing edge as a function of the distance downstream of the trailing edge
(for x > 0) or the plate surface coordinate (forx� 0). The solid line, corresponding to time averaged VLES results, is in good agreement with
the experimentally observed behavior (circles). Results obtained using steady flow solver (dotted line) fail to capture the flow behavior in the
wake.
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Fig. 5. Vortex evolution in the flow past compressor trailing edge obtained using the time-dependent VLES turbulence model. Plotted are
streamlines as a function of time corresponding to Re= 56400. The wake eddies are much smaller and stronger than those obtained by the
steady Reynolds-averaged flow solver.

Fig. 4 the time-averaged distribution ofCp for the
VLES run is plotted. The time-averaged VLES result
is also in reasonable agreement with experiment and
shows a strong pressure minimum in the wake. In
contrast, the steady-state results (with and without a
splitter plate) are similar to results obtained by VLES
for runs with a splitter plate longer than roughly
the diameter of the trailing edge (which are close to

experiment for flow with a splitter plate but not plotted
here).

The time-dependent VLES run gives a stronger and
smaller vortex. The results plotted in Fig. 5 show that
the magnitude and location of the velocity minimum
are in reasonable agreement with the experimental
values of−0.2 and 0.4, respectively. It appears that
the VLES model, by producing less turbulence as
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a result of smaller eddy viscosities, can predict the
time-dependent behavior of the (very) largest eddies.
This is especially important in computations of three-
dimensional effects, e.g., complex flow separation.

3. Example 3: Pressure modes in a cylinder

Consider the problem of finding the axisymmetric
modes of pressure within a cylinder:

∇2p =−k2p, p = p(r), 06 r 6 1.

The axisymmetric modes satisfy the ordinary differen-
tial equation eigenvalue problem

d2p

dr2
+ 1

r

dp

dr
+ k2p = 0,

p(0)�∞, p(1)= 0. (5)

It has solutions proportional to the 0th order Bessel
function

p(r)∝ p(0)J0(kr),

wherek = 2.40483,5.552008, . . . are the zeros ofJ0.
In order to determine this modal spectrum numeri-

cally, it may appear best to simplify (5) to remove the
first derivative term. By settingy(r)=√rp(r), (5) re-
duces to the WKB-like problem.

d2y

dr2
+
(

1

r2
+ k2

)
y = 0, y(0)= y(1)= 0. (6)

Below we list numerical results for the lowest eigen-
value obtained using second-order central differencing
for various number of pointsN (see Table 1).

This very slow convergence is to be compared
with much faster converging results for the original,
untransformed problem (5) (Table 2).

What is the origin of the astonishingly bad conver-
gence of the transformed problem (5)? The transfor-
mation from (5) to (6) is of course exact and is rou-
tinely recommended in numerical analysis of second-
order differential equations. However, with (6), the rel-
ative error in the central differencing scheme is of or-
der 1 nearr = 0. This becomes clear once we notice

Table 1

N k % error N k % error

125 2.6308 9.4 1000 2.5783 7.2

250 2.6101 8.5 5000 2.5518 6.1

500 2.5929 7.8 50 000 2.5255 5.0

Table 2

N k % error N k % error

10 2.3868 0.75 100 2.4047 0.0075

20 2.4003 0.19 200 2.4048 0.0019

40 2.4037 0.047 1000 2.4048 0.0001

that the asymptotic behavior of the solution of (6)
is y(r) ∼ √r (r → 0), while classical differencing
formulae assume that Taylor-series analysis holds.
Indeed, for (6), it may be shown that the error in
k decreases inversely proportional to logN . Thus,
increasing the resolution fromN = 102 to N = 1010,
gives numerical errors ink that decrease only by about
a factor of 5 (from roughly 10% to roughly 2%).
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