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A compensatory control scheme based on measured errors at the end-effector is proposed using polynomial learning 
networks and time series modeling. Based on experimental data from an industrial manipulator programmed for 
straight-line motion, trajectory deviations are modeled using both techniques. The performances of the models are 
compared at different locations in the workspace. It is shown that the robot arm signature can he obtained and that 
models from both techniques can he used to forecast trajectory errors. A method to implement the proposed scheme 
is also given. 

1. I N T R O D U C T I O N  
Robotic manipulators are used in operations where 
path-following accuracy is of great importance 
(welding, laser cutting, etc.). Large path deviations 
may be caused by high structural compliance, by 
incomplete information about the parameters used in 
the joint torque equations and by changing operating 
conditions. Much of the research on the control of 
manipulators has been in joint space. However, tasks 
are normally specified with respect to the end- 
effector, causing research to be focused in opera- 
tional space. 4'9'11 

The dynamic equations are normally based on 
Newton-Euler or Lagrangian formulations of the 
manipulator. Recently, methods such as artificial 
neural networks ls'2°'zl have been proposed for 
robotic control schemes. In this paper, modeling 
approaches based on experimental data are proposed 
for controlling robot path deviations. Trajectory 
errors are measured and modeled, and the models 
obtained can be used for forecasting and thus 
controlling end-effector deviations. Polynomial learn- 
ing networks (PLN) 5 and time series analysis using 
Autoregressive Moving Average (ARMA) and 
Autoregressive (AR) models 15 are compared for 
controlling trajectory deviations. 

Furuta et al. 7 used laser beams to measure off-axis 
deviations on a PT300 robot and presented a control 
scheme based on feedback from their tracking 
system. Lee et a l )  3 also used a laser tracking 
system and developed an on-line system identifica- 
tion technique from which a forecasting algorithm, 
using AR models of order 7 (AR7), was used to issue 
corrective commands. The proposed method resulted 
in a 70% reduction of the deviations. Bose and Chiu z 
also used AR models, but of order 3, to forecast 

trajectory errors. They also state a 70% reduction of 
trajectory errors. 

This paper presents a compensatory control 
scheme based on measured errors at the end-effector 
using PLN and time series modeling. Time series 
modeling is first introduced. The time series model is 
then generalized to show the mathematical founda- 
tion beneath PLN. Network parameter determina- 
tion and a performance criterion are discussed. The 
experimental set-up is described followed by model- 
ing results. Finally, a control scheme is proposed. 
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2. TIME SERIES MODELING 
It can be shown 14 that any stable stationary 
stochastic system can be approximated as closely as 
desired by an ARMA (n, m) model for n and m 
sufficiently large. A model of this type may be written 
a s :  

Y, = ~t~t-t + ~ otx,_~ (1) 
1=1 l=0 

where Yt is the sampled system output data, Xt is the 
sampled input data (if available) and the q~s and 0s 
are the autoregressive and moving average para- 
meters, respectively. If the system input data are not 
available, the system is assumed to be subject to 
white noise, or a series of independent "shocks", and 
Xt are assumed to have the following properties: 

E(X , )  = 0 

E ( X t X t - k )  = 5 k °  2 ( 2 )  

where E() denotes expected value, a~. the variance, 
and 5k the Kronecker delta function 
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8k=O for k-~ 0 

6k = 1 for k = O. (3) 

In the case of white noise input, Eq. (1) reduces the 
data to an uncorrelated series of discrete white noise 
impulses which are free of any dynamic. 15 Therefore, 
the model obtained should contain the dynamics of 
the process. 

In this work, the parameters of the ARMA models 
are estimated by a non-linear least-squares method 
that minimizes the sum of squares of the residuals. 
The estimation of the parameters for AR models may 
be obtained using a linear least-squares method. The 
most adequate model is found by using a statistical 
F-test comparing the reduction in the residual sum of 
squares when increasing the order of the model. Once 
an adequate model is found, it can be used for 
forecasting one step ahead. The forecast value can be 
found by conditional expectation from Eq. (1). The 
difference between a one step ahead forecast and the 
actual value at time t is the noise, Xt. Therefore, 
when predicting one step ahead, the prediction errors 
are the Xts. Thus, the residuals obtained after fitting 
a model indicate the prediction performance of the 
model at one step ahead. Details of the time series 
modeling method used, as well as numerous 
characterization and analysis of systems, can be 
found in Ref. 15. 

3. POLYNOMIAL LEARNING NETWORK 
MODELING 

The process of learning may be equivalent to the 
problem of synthesizing an associative memory that 
retrieves the appropriate response when presented 
with the input and generalizes when presented with 
new inputs. Learning in the framework of approx- 
imation theory has been considered by Poggio and 
Girosi. 17 

A generalization of the previous model given by 
Eq. (1) to a multidimensional input space is extended 
to non-linear systems in this section. The structure of 
these types of models with M input variables X(t k), 
k = 1, 2 , . . . , M ,  and a single output Yt, is of the 
following form: 

X-" X-" O(k) X(k) Y t  = dPi Y t - i  + /_. .a / ~ I t - i  

i=l  k = l  i=O 

+ (bo.Yt-iYt_ j 
i=1 j= l  

-~- ~ ij "" t - i "  t - J  
k = l  p = l  i= i  j= l  

M M m m 

+ E E E  ' + ' "  
k=l s=l i= l  j = r  

(4) 

where the indices (k, p . . . . .  s) are used to label the 
different input variables Xt, and n, m are the delays 

associated with the AR and MA parts, respectively. 
The general problem is to find the best estimates 
(given a criterion) of the parameters (~b, 0) given only 
the input/output observed data. 

To clarify Eq. (4), assume that the system has no 
memory (~bs = 0), and that no delay connections exist 
between input variables (m = 0). Equation (4) then 
reduces to the Kolmogorov-Gabor (K--G) polyno- 
mial s with ( M + I )  inputs (2"0=1 and Xi, i=1, 
2 . . . . .  M) and Y as a single output: 

M M M 

r =  o,x, + oox, +.. .  
l=0 1=0 j=0 

M M (s) 

+E. . .E0 ,  ,Z'"Xr+"" 
1 r 

which stems from the discrete representation of the 
Volterra series. 19 It is very difficult to determine the 
parameters (0) in Eq. (5) for the case of several input 
variables. The first term in the above equation 
represents a general linear falter. The first summation 
contains ( M + I )  terms, the second summation 
contains ( M + I )  (M+2)/2 terms and the k th 
summation contains (M+k)!/k!M! terms, which can 
be very large for moderate values of M and k. 

An alternative consists of transforming the input 
vector patterns X into a vector F in a polynomial 
space P. The vector F is a set of functions which span 
the space P. The basic functions used to represent the 
K-G  polynomial a r e  r th order polynomials. For 
instance, taking the inputs in pairs of vectors (Xi, X;) 
and r = 2, 

F = { f 0  = 1, fl  =Xi,  f2 =Xj ,  f3 =X2, 
(6) 

f4 = Xy, f5 = XiXj}. 

If the original vector X was defined in the 
D-dimensional space, the vector F = 
{fo, f l , . . . , f a - 1 }  is defined in a d-dimensional 
space where 

(D + r)! (7) 
d =  C~+ r -  r!D! 

Since we wish to obtain a linear approximation 
scheme, the second operation is a summation of 
functionsj~ which represents a hyperplane in P-space 
and an r th polynomial surface in the original X-space: 

d-1 

= wif," (8)  
i=0 

where wi (i = 0, 1 . . . .  5 for r = 2) are the coefficients to 
be determined. 

The following description of a network is for a 
second-order polynomial. A network consists of 
building up, layer by layer, a structure that 
synthesizes the Kolmogorov--Gabor polynomial 
using nodes in the form of Eq. (8). At each node, 
the coefficients wi giving the best fit when the inputs 
X approximate Y are determined. The nodes are 
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organized from best to worst according to a 
performance criterion (the Predicted Square Error 
(PSE), described later). The best performers are 
chosen and used in pairs (Zk, Zt) to determine a 
second layer in the network. The best performing 
nodes in the second layer (of the type Uk(Zt, Z:)) are 
combined and used in a third layer. In general, basic 
elements in succeeding layers consist of pairs of 
surviving outputs from the previous layer as well as 
original input features. The procedure is repeated 
until the PSE criterion reaches a global minimum.1 A 
network with L layers takes the form of 

P(W, X) = E aid,, Vk = E bie,, . . . , 
i i (9) 

Uk = E higi and Zk = E wifi 
i i 

where W is a vector containing the coefficients at 
each node (ai, b, . . . .  , w, at layers L, L--1 . . . . .  1, 
respectively), P is the approximating polynomial 
network, X is the original input vector, Z, U, . . . .  V 
are the intermediate layers outputs and di, . . ,  g, and~ 
are polynomial transformations of Vk . . . .  Zk, and Xk 
respectively (see Eq. (6)). The network found consists 
of the best node in the last layer and all the nodes in 
the previous layer which serve as input to this node. 
An example of a polynomial network with r = 2 is 
shown in Fig. 1. The shaded nodes represent the ones 
which were selected according to the PSE criterion to 
best represent the output. Note that for simplicity, all 
possible combinations are not shown in the figure. 

4. NETWORK PARAMETER DETERMINATION 
When determining a network, one needs to solve the 
following over determined system of equations in 
every layer of the network algorithm: 

ApqWq = Yp p > q (10) 

where Apq is the matrix associated with input pairs 
fiX,, X:), (Z, Zj), . . .)  in each node, Wq is a vector of 
unknown coefficients w, and Yp is the actual output 
data vector. Generally, Eq. (10) is rectangular and a 

INPUTS Layer 1 Layer 2 Layer 3 Layer 4 

I 
NODE [ 

C " W O + W l A + w 2 B + w 3 A A + w 4 B B + w s A B  

Fig. 1. Four-layer polynomial network with 6 inputs and 1 output. 
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multitude of solutions, or no solution at all, exist. It 
may happen that, while Apq is non-singular, it is still 
ill conditioned, making the computation of its inverse 
numerically unstable. In this case, the use of Singular 
Value Decomposition (SVD) 12 in finding the Mini- 
mum Norm Least-squares Solution (MNLS) of the 
system of equations at every layer of the network 
provides means for controlling the effects of ill 
conditioning. 

To synthesize the network, one needs to partition 
the input data set into three distinct subsets. The 
training set, used to estimate the node coefficients 
Wq, contains NT data points. The checking set, 
containing Nc data points, is used to organize the 
nodes from best to worst performer (according to the 
PSE) at every layer, keeping only the best. Once a 
final network is obtained, its overall performance on 
yet unseen data is computed on the evaluation set. 
Different data partitioning schemes may be used) ° 

A criterion for polynomial network selection 
developed by Barron, 1 based on the sum of the 
checking squared error (CSE) and an overfit or 
complexity penalty, is used here. The CSE term is 
computed on the checking data set as follows: 

Nc 
~ 2 ( r ]  - z~D 2 

C S E - i = I  f o r k =  1, 2, ML (11) 
N c  , • , . 

Er? i=1 
where ML is the number of nodes at layer L, Nc is the 
number of checking data points, Zk, is the output 
node, and Y, is the desired network output. The 
Predicted Squared Error (PSE) is given by: 

+ 2crp 2 ~ (12) PSE = CSE 

2 is an a priori estimate of the true error where % 
variance, k is the total number of coefficients in the 
network, and NT is the number of training data 
points. As Nx increases, or % decreases, the network 
fits the data with more confidence. The factor k 
penalizes networks with large numbers of coefficients, 
thus discouraging overfitting. 

5. TRAJECTORY DEVIATION 
MEASUREMENTS 

The experimental equipment consisted of an Adept 
One TM robot by Adept Technology Inc., with the end 
effector modified to allow the installation of two 
Bently Nevada proximity probes (25 mm) at 90 ° one 
from another as shown in Fig. 2. Precision steel 
plates fixed rigidly at 90 ° one to the other were used 
as reference surfaces. The probes produce an output 
voltage proportional to the distance from the probe 
tips to the plates. Data were acquired at 250 Hz. 

For typical runs, the robot was programmed to 
move in a straight line between two taught points 
"A" and "B". Data gathered were converted into 
deviations about this line. 
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~ End Effector 0.5 ~ RIGHT HAND CONFIGURAT 

~~fereXinULctYe piPr~t ~ I ~'~. ):''! ''' 

Fig. 2. Experimental set-up. 

Previous research, 3 performed on a PUMA 560 
robot, had shown that the robot arm signature could 
be obtained when an ARMA model was fit to 
deviations for any trajectory in the workspace. 
Models found on different trajectories contain similar 
dynamics such that a model found for any trajectory 
can adequately model and predict deviations at other 
locations. A similar approach was applied using PLN 
to obtain the arm signature. A comparison of the 
results obtained when using ARMA, AR and PLN 
models is presented here. 

Since previous results had shown that dynamics 
contained in ARMA models were similar throughout 
the workspace, only four different trajectories were 
tested here (more than 30 trajectories were tested in 
the previous study). Figure 3 shows the locations of 
the trajectories tested. The length of each of the 
trajectories is approximately 70 cm. 

For each trajectory, deviations from straight line 
motion were measured with the robot in right- 
handed and left-handed configurations. A velocity 
of approximately 0.3 m s - l  was selected for the 
experiments. Figure 4 shows the deviations measured 
with the horizontal probe for trajectory No. 3 for 
both configurations. The latter greatly influences the 
path of the robot. The deviations measured in the 
vertical plane, not shown here, were, in general, 
smaller and much smoother. This was to be expected 

0.4 

0.3 

E o2 
E "-" 0.I 

(/) z O o 
-0. I 
-0.2 

a 
-0.3 

-0.4 

-0.5 

[  THANOCONr,OORAT,ON • 

o 0.5 1 1.5 2 
TIME (s) 

Fig. 4. Measured horizontal deviations at location 3. 

2.5 

considering the SCARA configuration of the Adept 
One robot. 

6. MODELING RESULTS 
ARMA models were fitted to five sets of measured 
data. For this particular robot, ARMA (6,5) models 
were found to be statistically adequate (using the F- 
test). Trajectory 3 with the robot in a right-handed 
configuration was chosen arbitrarily to obtain the 
signature of the arm. A lag of six then became the 
basis of the choice of the order for AR and PLN 
models. For this trajectory, an AR(6) model was 
fitted to the data. For the PLN model, a time lag of 6 
was set, thus providing 6 inputs to the model. The 
structure of the network obtained is shown in Fig. 5. 

In this figure, A represents a linear weighted sum 
of inputs of lags 1-6. B represents a second-order 
polynomial with one input being the output of A and 
the other the measured trajectory error at lag 5. 

In the results that follow, using Fig. 3, the naming 
scheme for the models is as ensues. P3RAB means 
Position 3, Right-handed configuration, from taught 
points A-B. Figure 6 shows the deviations and 
prediction errors at P3RAB for the ARMA (6,5) 
model found at that location. Prediction errors 
represent the difference between the actual trajectory 

I 

I 1 

Elevation 

Fig. 3. Trajectories tested. 

4 
! I 

CONPIGURAT~, N CONPIOURATION 

Plan view 
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deviations and the output of the model, and hence 
represent the expected deviations from straight-line 
motion with error control. Figure 7 shows the 
deviations at P1RAB, a new trajectory, as well as 
the prediction errors using the ARMA (6,5) model 
obtained at trajectory P3RAB. These prediction 
errors (RMS= 0.014) are the largest of all trajectories 
tested. 

In fact, these results shows that the obtained 
ARMA model contains the actual dynamics of the 
arm in so far as the predicted errors on the new 
trajectories are independent of the data blocks. 

INPUTS 

Y ! - I  - -  

Y _ _ _  
t - 2  

Y 
f - 3  

Y 
t - 4  

Y . . _ _  
! - 5  

Y 
! - 6  

Y 
f - 5  

Fig. 5. Structure of PLN model. 

OUTPUT 
Y!  

0.4 

0.3 

E o.2 
E 

~-~ 0.1 

z 0 

-0.1 

-0.2 

-0.3 ! 

-0 .4  

-0 5 

i RMS = 0.007 

DEVIATIONS 

PREDICTION ERRORS 

0 0.'5 1' 1.5 2 2.'5 
TIME (s) 

Fig. 6. Deviations and prediction errors at P3RAB using ARMA 
(6,5) from P3RAB. 

0 . 6 7  r t_ 
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~-- 0.2 
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0 

< -o.4 
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-0.8 
i 

-1 
0 0.5 1 1.5 2 2.5 

TIME (s) 

Fig. 7. Deviations and prediction errors at P1RAB using ARMA 
(6,5) from P3RAB. 
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Furthermore, a simpler linear model in the form of 
AR (6) is used to model the same trajectory P3RAB. 
Unlike the ARMA model, the AR model only 
requires linear least squares to find the AR 
coefficients. The obtained AR (6) model exhibits a 
comparable adequacy to fit the new trajectories. 

In the AR model, the current sample point of the 
trajectory is a linear combination of the previous 
samples. The PLN approach allows the addition of 
non-linear combinations. Thus PLN models were 
also trained on the P3RAB trajectory and their 
performance is gauged on the other trajectories. 

Table 1 summarizes the performance of these 
classes of models using the RMS index as a 
measure of fitness. For all models, the RMS on 
the evaluation trajectories are relatively small 
compared to the measured deviations. All dimen- 
sions are in mm. 

The choice of a particular model is then based on 
the estimation technique used (linear, non-linear, 
convergence) and the implementation of the chosen 
model (digital, analog or hybrid). 

7. CONTROL SCHEME 
The signature of the arm can be obtained off-line and 
the model obtained can be used to issue corrective 
commands to bring the robot back to its desired 
trajectory. Since the first three joints affect the 
position of the robot, and since orientation errors 
are not considered, corrective commands must be 
issued to the first three joints in order to compensate 
for the errors predicted by the model. 

The trajectory errors predicted by the models 
are defined with respect to the end-effector. The 
errors must be transformed into the robot 
reference frame so that the necessary corrections 
can be computed. 

For the robot tested, the largest trajectory errors 
were small, typically less than l mm. Since the 
trajectory errors are small, they are taken to be 
differential translation displacements. The corre- 
sponding differential changes of the joint angles can 
be found once the differential translations with 

Table 1. RMS values of prediction errors at different trajectories 

Type of model 
Trajectory ARMA (6,5) AR (6) PLN 

Training trajectory 
P3RAB 0.0070 0.0075 0.0074 

Learning trajectories 
PILAB 0.0108 0.0100 0.0103 
P1RAB 0.0139 0.0128 0.0131 
P2LBA 0.0095 0.0087 0.0089 
P2RBA 0.0103 0.0104 0.0103 
P3LAB 0.0090 0.0086 0,0085 
P3RBA 0.0089 0.0089 0.0089 
P3LBA 0.0089 0.0082 0.0081 
P4LAB 0.0122 0.0110 0.0110 
P4RAB 0.0112 0.0104 0.0103 
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respect to the end effector are transformed into a 
base coordinate frame. 

When the transformation of X, representing the ! I 

location of the wrist, is subject to a differential lax lay 
translation and rotation, the new location of the I 1 
frame is given by X + dX. dX represents a differential 
location transform with respect to the base frame and / 

is given by ~_ 

/dn~ dox dax dp~'~ 
d x = / d n d Y  doy day d~,) (131 

z doz daz z " 
0 0 

The differential translation elements (dpx, dpy and 
dpz) may be found from the differential translations 
with respect to the end-effector. 

A differential motion transform 16 is written 

0 -Ss 8y dd01) 6 ,  0 --6x dy A (14) 
-6y 8~ 0 
0 0 0 

where 6x, 6y and t5 Z represent differential rotations 
about axes x, y and z, respectively, and dx, dy and dz 
represent differential translations along axes x, y and 
z, respectively. 

The models predict trajectory errors with respect 
to the end-effector frame, E. Thus, the differential 
motion transform is known with respect to E. This 
transform is written as 

0 _E6s E~y Edx ) 
E6s 0 --P'~x ~'dy E A (15) 

= --V'6y E6x 0 Eds " 
0 0 0 0 

If the direction of travel with respect to the end- 
effector is z, the robot is always moving in the z 
direction of the end-effector frame, since the 
measuring instruments must be perpendicular to the 
direction of travel. The trajectory errors are thus 
measured and forecast in the x and y directions with 
reference to the end-effector frame. The differential 
motion transform therefore reduces to a differential 
vector given by 

[ P'dx ] 

(16) 

To obtain the differential location transform dX in 
base coordinates, X is postmultiplied by EA. 

dX = X cA. (17) 

The result is a differential translation vector with 
respect to base coordinates: 

C 
O 01+ d01 
N 
T 02+ d0 2 
R 
O 
L 03 ÷ d03 
L 
E 
R 

MEASUREMENT SYSTEM 
(with respect to end effector) 

TRAINED MODELS 

FORECAST VALUES 

_ _  ] A _ x ~ .  Ay' 

CONVERSION TO 
COORDINATES 

Tdpy ]dPz 

I 

i °2 

O 3 

Fig. g. Modification of feedback signal. 

MEASURED 
VALUES 

rd.x I 
dX-- |dry/. (181 

The inverse of the Jacobian can be computed to 
obtain the differential rotations of the first three 
joints corresponding to the differential translations. 
This yields equations of the form 

dO, =f(dpx, dpy, dpz) (19) 

for i = 1, 2, 3 using the results of Eq. (18). Note that 
for the Adept robot, d03 would actually be a 
prismatic joint displacement. 

Figure 8 shows how the method proposed in 
this paper could be implemented in controlling the 
robot. The measurement system provides devia- 
tions in the x and y directions with respect to the 
end-effector. The trained model (ARMA, AR or 
PLN) forecasts the deviations one step ahead. The 
forecasted values with respect to the end-effector 
are then converted into world or base coordinates 
using the method described previously. Positional 
errors in world coordinates are then converted into 
joint coordinates using the inverse Jacobian. 
Instead of modifying the controller itself, the 
method used in Ref. 13 is suggested. The measured 
values of  the angles from the encoders are 
modified by an amount equal to the differential 
angles found from the inverse kinematics. The new 
angles are sent to the controller which sees the 
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robot in a different position than it actually is. 
The controller then makes the necessary correc- 
tions to bring the manipulator to the desired 
location. 

8. CONCLUSION 
The compensatory control scheme proposed here is 
based on trajectory errors measured with respect to 
the end-effector. Control in end-effector coordinates 
is indeed desirable since any effects such as gear 
backlash, link deflections, payload, etc. are included 
in the measured errors. The major difficulty in 
implementing this control scheme would be the 
measurement of  the trajectory errors. The method 
used here cannot be used for practical applications. 
A laser beam tracking scheme as used by others 7'13 
would preferably be used. 

The modeling of  the measured errors by any of 
the methods proposed here may be performed off- 
line. Since the models contain the dynamics of the 
arm and thus produce the arm signature, the 
choice of  a particular model should be based on 
the ease of  implementation within the control 
scheme. 

The results show that all three methods can 
adequately model trajectory deviations and could 
therefore be used to control trajectory errors. AR 
and PLN models have a slightly better perfor- 
mance and are simpler than A R M A  models and 
would therefore be preferable choices for imple- 
mentation. 

Model identification computation time with the 
PLN is much shorter than when using other learning 
methods such as Artificial Neural Networks (ANN). 6 
Depending on the model complexity and the number 
of data points, between 2 and 5 min on a Macintosh 
Ilfx are required to obtain the models found here, 
while ANN are known to take hours if not days to 
learn. 

The PLN approach introduced here adaptively 
grows the network structure, using two separate 
subsets of  the observational data with an appropriate 
criterion to ensure minimum complexity of  the 
model. This is different from the classical neural 
networks when the structure, the connectivity 
patterns and the number of  nodes and layers are 
fixed. By assuming a network structure, the resulting 
model is usually too constrained to be of general 
utility in the presence of noise. The PLN approach 
has the ability to be adaptive and may incorporate 
sensor data fusion. 

Implementation of  the compensatory method 
shown here should produce manipulator control in 
end-effector coordinates, thus providing precise 
straight-line motion. 
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