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Descriptions of physical properties of visible surfaces, such as their distance and the presence of edges,
must be recovered from the primary image data. Computational vision aims to understand how such
descriptions can be obtained from inherently ambiguous and noisy data. A recent development in this
field sees early vision as a set of ill-posed problems, which can be solved by the use of regularization
methods. These lead to algorithms and parallel analog circuits that can solve ‘ill-posed problems’ and
which are suggestive of neural equivalents in the brain.

COMPUTATIONAL vision denotes a new field in artificial intel-
ligence, centred on theoretical studies of visual information
processing. Its two main goals are to develop image understand-
ing systems, which automatically construct scene descriptions
from image input data, and to understand human vision.

Early vision is the set of visual modules that aim to extract
the physical properties of the surfaces around the viewer, that
is, distance, surface orientation and material properties (reflect-
ance, colour, texture). Much current research has analysed pro-
cesses in early vision because the inputs and the goals of the
computation can be well characterized at this stage (see refs 1-4
for reviews). Several problems have been solved and several
specific algorithms have been successfully developed. Examples
are stereomatching, the computation of the optical flow,
structure from motion, shape from shading and surface
reconstruction.

A new theoretical development has now emerged that unifies
much of these results within a single framework. The approach
has its roots in the recognition of a common structure of early
vision problems. Problems in early vision are ‘ill-posed’, requir-
ing specific algorithms and parallel hardware. Here we introduce
a specific regularization approach, and discuss its implications
for computer vision and parallel computer architectures, includ-
ing parallel hardware that could be used by biological visual
systems.

Early vision processes

Early vision consists of a set of processes that recover physical
properties of the visible three-dimensional surfaces from the
two-dimensional intensity arrays. Their combined output
roughly corresponds to Marr’s 2-1/2D sketch', and to Barrow
and Tennenbaum’s intrinsic imagess. Recently, it has been cus-
tomary to assume that these early vision processes are general
and do not require domain-dependent knowledge, but only

Examples of early vision processes

® Edge detection

® Spatio-temporal interpolation and approximation
@ Computation of optical flow

® Computation of lightness and albedo
® Shape from contours

® Shape from texture

@ Shape from shading

@ Binocular stereo matching

@ Structure from motion

@ Structure from stereo

@ Surface reconstruction

® Computation of surface colour

generic constraints about the physical word and the imaging
stage (see box). They represent conceptually independent
modules that can be studied, to a first approximation, in isola-
tion. Information from the different processes, however, has to
be combined. Furthermore, different modules may interact early
on. Finally, the processing cannot be purely ‘bottom-up’: specific
knowledge may trickle down to the point of influencing some
of the very first steps in visual information processing.

Computational theories of early vision modules typically deal
with the dual issues of representation and process. They must
specify the form of the input and the desired output (the rep-
resentation) and provide the algorithms that transform one into
the other (the process). Here we focus on the issue of processes
and algorithms for which we describe the unifying theoretical
framework of regularization theories. We do not consider the
equally important problem of the primitive tokens that represent
the input of each specific process.

A good definition of early vision is that it is inverse optics.
In classical optics or in computer graphics the basic problem is
to determine the images of three-dimensional objects, whereas
vision is confronted with the inverse problem of recovering
surfaces from images. As so much information is lost during
the imaging process that projects the three-dimensional world
into the two-dimensional images, vision must often rely on
natural constraints, that is, assumptions about the physical
world, to derive unambiguous output. The identification and
use of such constraints is a recurring theme in the analysis of
specific vision problems.

Two important problems in early vision are the computation
of motion and the detection of sharp changes in image intensity
(for detecting physical edges). They illustrate well the difficulty
of the problems of early vision. The computation of the two-
dimensional field of velocities in the image is a critical step in
several schemes for recovering the motion and the three-
dimensional structure of objects. Consider the problem of deter-
mining the velocity vector V at each point along a smooth
contour in the image. Following Marr and Ullman®, one can
assume that the contour corresponds to locations of significant
intensity change. Figure 1 shows how the local velacity vector
is decomposed into a normal and a tangential component to
the curve. Local motion measurements provide only the normal
component of velocity. The tangential component remains
‘invisible’ to purely local measurements (unless they refer to
some discontinuous features of the contour such as a corner).
The problem of estimating the full velocity field is thus, in
general, underdetermined by the measurements that are directly
available from the image. The measurement of the optical flow
is inherently ambiguous. It can be made unique only by adding
information or assumptions.

The difficulties of the problem of edge detection are somewhat
different. Edge detection denotes the process of identifying the
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Fig. 1 Ambiguity of the velocity field. a, Local measurements
cannot measure the full velocity field in the image plane, originated
here by three-dimensional rotation of a solid object (three frames
are shown). Any process operating within the aperture (shown as
a white circle) can compute only the component of motion perpen-
dicular to the contour. b, Decomposition of the velocity vector
along the contour, parametrized by the arc length s into com-
ponents normal ( V™ (s)) and tangential (V7 (s)) to the curve. The
computer drawing was kindly provided by Karl Sims.

physical boundaries of three-dimensional surfaces from
intensity changes in their image. What is usually intended with
edge detection is a first step towards this goal, that is, detecting
and localizing sharp changes in image intensity. This is a prob-
lem of numerical differentiation of image data, which is plagued
by the noise unavoidable during the imaging and the sampling
processes. Differentiation amplifies noise and this process is
thus inherently unstable. Figure 3 shows an example of an edge
profile and its second derivative, where noise is significantly
amplified. Most problems in early vision present similar difficul-
ties. They are mostly underconstrained, as in the computation
of the optical flow, or not robust against noise, as in edge
detection.

Ill-posed problems

The common characteristics of most early vision problems (in
a sense, their deep structure) can be formalized: most early
vision problems are ill-posed problems in the precise sense
defined by Hadamard”®. This claim captures the importance of
constraints and reflects the definition of vision as inverse optics.

Hadamard first introduced the definition of ill-posedness in
the field of partial differential equations®’. Although ill-posed
problems have been considered for many years as almost exclus-
ively mathematical curiosities, it is now clear that many ill-posed
problems, typically inverse problems, are of great practical inter-
est (for instance, computer tomography). A problem is well-
posed when its solution exists, is unique and depends con-
tinuously on the initial data. Ill-posed problems fail to satisfy
one or more of these criteria. Note that the third condition does
not imply that the solution is robust against noise in practice.
For this, the problem must not only be well-posed but also be
well conditioned to ensure numerical stability'®.
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It is easy to show formally that several problems in early
vision are ill-posed in the sense of Hadamard®: stereo matching,
structure from motion, computation of the optical flow, edge
detection, shape from shading, the computation of lightness and
surface reconstruction. Computation of the optical flow is ill-
posed because the ‘inverse’ problem of recovering the full veloc-
ity field from its normal component along a contour fails to
satisfy the uniqueness condition. Edge detection, intended as
numerical differentiation, is ill-posed because the solution does
not depend continuously on the data.

The main idea for ‘solving’ ill-posed problems, that is for
restoring ‘well-posedness’, is to restrict the class of admissible
solutions by introducing suitable a priori knowledge. A priori
knowledge can be exploited, for example, under the form of
either variational principles that impose constraints on the poss-
ible solutions or as statistical properties of the solution space.
We will use the general term regularization for any method used
to make an ill-posed problem well-posed. Variational regulariz-
ation will indicate the regularization methods that reformulate
an ill-posed problem in terms of a variational principle. We wiil
next outline specific variational methods that we will denote as
the standard regularization methods, attributable mainly to Tik-
honov'''? (see also refs 13, 14). We will also outline future
extensions of the standard theory from the perspective of early
vision,

The regularization of the ill-posed problem of finding z from
the ‘data’ y

Az=y (1)

requires the choice of norms ||-|| and of a stabilizing functional
|| Pz||. In standard regularization theory, A is a linear operator,
the norms are quadratic and P is linear. Two methods that can
be applied are®'*: (1) among z that satisfy |Az—y| < ¢ find z
that minimizes (¢ depends on the estimated measurement errors
and is zero if the data are noiseless)

| Pz* (2)
(2) find z that minimizes
Az = y|I*+ A | Pz|}? 3)

where A is a so-called regularization parameter.

The first method computes the function z that is sufficiently
close to the data and is most ‘regular’, that is minimizes the
‘criterion’ || Pz||>. In the second method, A controls the com-
promise between the degree of regularization of the solution
and its closeness to the data. Standard regularization theory
provides techniques for determining the best A '*!5, Thus, stan-
dard regularization methods impose the constraints on the prob-
lem by a variational principle, such as the cost functional of
equation (3). The cost that is minimized reflects physical con-
straints about what represents a good solution: it has to be both
close to the data and regular by making the quantity || Pz||* small.
P embodies the physical constraints of the problem. It can be
shown for quadratic variational principles that under mild con-
ditions the solution space is convex and a unique solution exists.
It must be pointed out that standard regularization methods
have to be applied after a careful analysis of the ill-posed nature
of the problem. The choice of the norm |||, of the stabilizing
functional || Pz|) and of the functional spaces involved is dictated
both by mathematical properties and by physical plausibility.
They determine whether the precise conditions for a correct
regularization hold for any specific case.

Variational principles are used widely in physics, economics
and engineering. In physics, for instance, most of the basic laws
have a compact formulation in terms of variational principles
that require minimization of a suitable functional, such as the
energy or the lagrangian.

Examples

Variational principles of the form of equation (3) have been
used in the past in early vision'®-?°, Other problems have now
been approached in terms of standard regularization methods
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Table 1 Regularization in early vision

Regularization principle
JI(SF= i)+ A(fe)?] dx
flw+ip+iY+a(l+ul+ol+ o3 dxdy

Problem
Edge detection

Optical flow
(area based)

Optical flow fUV- N= VMY +A((8/5,)V)*1ds

(contour based)
Surface SIS f=dYP+A(f2t 22 +£2,) dx dy
reconstruction

Spatiotemporal [ [(S- f—i)?+A(Vf- V+£1)*]1dx dy dt
approximation

Colour (1*—Az|>+ A | Pz|?

Shape from JUE-R£ )’ +A(f2+f3+gi+g2) 1 dx dy
shading

Stereo JAV’G * (L(x, )~ R(x+d(x, y), )]

+A{Vd)*}dx dy

Some of the early vision problems that have been solved in terms of
variational principles. The first five are standard quadratic regularization
principles. In edge detection®®?” the data on image intensity (i = i(x))
(for simplicity in one dimension) are given on a discrete lattice: the
operator S is the sampling operator on the continuous distribution f to
be recovered. A similar functional may be used to approximate time-
varying imagery. The spatio-temporal intensity to be recovered from
the data i(x, y, t) is f(x, y, t); the stabilizer imposes the constraint of
constant velocity V in the image plane (ref. 61). In area-based optical
flow'®, i is the image intensity, u and v are the two components of the
velocity field. In surface reconstruction®?? the surface f(x, y) is com-
puted from sparse depth data d(x, y). In the case of colour®® the
brightness is measured on each of three appropriate colour coordinates
I[*(v=1,2,3). The solution vector z contains the illumination and the
albedo components separately; it is mapped by A into the ideal data.
Minimization of an appropriate stabilizer enforces the constraint of
spatially smooth illumination and either constant or sharply varying
albedo. For shape from shading'® and stereo (T.P. and A. Yuille,
unpublished), we show two non-quadratic regularization functionals.
R is the reflectance map, f and g are related to the components of the
surface gradient, E is the brightness distribution'®. The regularization
of the disparity field d involves convolution with the laplacian of a
gaussian of the left (L) and the right (R) images and a Tikhonov
stabilizer corresponding to the disparity gradient.

(see Table 1). Most stabilizing functionals used so far in early
vision are of the Tikhonov type, being linear combinations of
the first p derivatives of the desired solution z (ref. 12). The
solutions arising from these stabilizers correspond to either
interpolating or approximating splines. We return now to our
examples of motion and edge detection, and show how standard
regularization techniques can be applied.

Intuitively, the set of measurements of the normal component
of velocity over an extended contour should provide consider-
able constraint on the global motion of the contour. Some
additional assumptions about the nature of the real world are
needed, however, in order to combine local measurements at
different locations. For instance, the assumption of rigid motion
on the image plane is sufficient to determine V uniquely****. In
this case, local measurements of the normal component at
different locations can be used directly to find the optical flow,
which is the same everywhere. The assumption, however, is
overly restrictive, because it does not cover the case of motion
of a rigid object in three-dimensional space (see Fig. 1). Hildreth
suggested”*, following Horn and Schunck'®, a more general
smoothness constraint on the velocity field. The underlying
physical consideration is that the real world consists of solid
objects with smooth surfaces, whose projected velocity field is
usually smooth. The specific form of the stabilizer (a Tikhonov
stabilizer) was dictated by mathematical considerations,
especially uniqueness of the solution. The two regularizing
methods correspond to the two algorithms proposed and imple-
mented by Hildreth®. The first one, which assumes that the
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measurements of the normal velocity components V™ (s) are

exact, minimizes
V 2
annz=j(%s—> ds 4)

subject to the measurements of the normal component of velocity
(where s is arc length). The integral is evaluated along the
contour. For non-exact data the second method provides the
solution by minimizing

2
]]V-N—VN||2+AJ'(88—:> ds (5)

where N is the normal unit vector to the contour and A™!
expresses the reliability of the data. Figure 2a shows an example
of a successful computation of the optical flow by the first
algorithm.

Recently, regularization techniques have been applied to edge
detection®®?’. The problem of numerical differentiation can be
regularized by the second method with a Tikhonov stabilizer
that reflects a constraint of smoothness on the image (see Table
1). The physical justification is that the image is an analytical
function with bounded derivatives, because of the band-limiting
properties of the optics that cuts off high spatial frequencies.
This regularized solution is equivalent, under mild conditions,
to convolving the intensity data with the derivative of a filter
similar to the gaussian®® (see Fig. 3), proposed earlier®®?°.

Other early vision problems can be solved by standard regu-
larization techniques. Surface reconstruction, for example, can
be performed from a sparse set of depth values by imposing
smoothness of the surface’®??. Optical flow can be computed
at each point in the image, rather than along a contour, using
a constraint of smooth variation, in the form of a Tikhonov
stabilizer'’. Variational principles that are not exactly quadratic
but have the form of equation (3) can be used for other problems
in early vision. The main results of Tikhonov can in fact be
extended to the case in which the operators A and P are
nonlinear, provided they satisfy certain conditions®®. The vari-
ation of an object’s brightness gives clues to its shape: the surface
orientation can be computed from an intensity image in terms
of the variational principle shown in Table 1, which penalizes
orientations violating the smoothness constraint and the irradi-
ance constraint'®. Stereo matching is the problem of inferring
the correct binocular disparity (and therefore depth) from a pair
of binocular images, by finding which feature in one image
corresponds to which feature in the other image. This is an
ill-posed problem which, under some restrictive conditions cor-
responding to the absence of occlusions, can be regularized by
a variational principle that contains a term measuring the dis-
crepancy between the feature maps extracted from the two
images and a stabilizer that penalizes large disparity gradients
(see Table 1) and effectively imposes a disparity gradient limit.
The algorithm can reduce to an area-based correlation algorithm
of the Nishihara type®! if the disparity gradient is small. A
standard regularization principle has been proposed for solving
the problem of separating a material reflectance from a spatially
varying illumination in colour images®?. The algorithm addresses
the problem known in visual psychophysics as colour con-
stancy™>.

Physical plausibility and illusions

Physical plausibility of the solution, rather than its uniqueness,
is the most important concern in regularization analysis. A
physical analysis of the problem, and of its significant con-
straints, plays the main role®. The a priori assumptions required
to solve ill-posed problems may be violated in specific instances
where the regularized solution does not correspond to the phy-
sical solution. The algorithm suffers an optical illusion. A good
example is provided by the computation of motion. The smooth-
ness assumption of equation (5) gives correct results under some
general conditions (for example, when objects have images
consisting of connected straight lines®!). For some classes of
motion and contours, the smoothness principle will not yield
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Fig. 2 Computing the smoothest velocity field along contours. a,
Three-dimensional stimutus first used by Wallach® to demonstrate
the ability of the human visual system to derive three-dimensional
structure from the projected two-dimensional motion of an object
(kinetic depth effect). The top part shows three views of a figure
as it is rotated around the vertical axis. The initial measurements
of the normal velocity components V}¥ are shown on the lower
right. The velocity field computed using equation (4) is shown on
the lower left. The final solution corresponds to the physical correct
velocity distribution. Recent electrophysiological evidence impli-
cates the middle temporal area of the monkey as a site where a
similar motion integration may occur®®. b, Circular helix on an
imaginary three-dimensional cylinder, rotating about its vertical
axis (barber pole). The projection of the curve onto the image
plane, together with the resulting two-dimensional velocity vectors
are drawn on the left. Although the true velocity field V is strictly
horizontal (left), the smoothest velocity field (right) is vertical.
This example illustrates a case where both the algorithm and the
human visual system suffer the same optical illusion. Adapted from
ref. 23.

the correct velocity field. In several of these cases, however, the
human visual system also seems to derive a similar, incorrect
velocity field, thereby possibly revealing a priori assumptions
the brain is making about the world. A striking instance is the
barber-pole illusion® {illustrated in Fig. 2b).

Analog networks

One of the mysteries of biological vision is its speed. Parallel
processing has often been advocated as the answer to this
problem. The model of computation provided by digital proces-
ses is, however, unsatisfactory, especially given the increasing
evidence that neurones are complex devices, very different from
simple digital switches. It is, therefore, interesting to consider
whether the regularization approach to early vision may lead
to a different type of parallel computation. We have recently
suggested that linear, analog networks {either electrical or
chemical) are, in fact, a natural way of solving the variational
principles dictated by standard regularization theory’ (see also
refs 22, 35).

The fundamental reason for such a mapping between vari-
ational principles and electrical or chemical networks is Hamil-
ton’s least action principle. The class of variational principles
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that can be computed by analog networks is given by Kirchhoff’s
current and voltage laws, which represent conservation and
continuity restrictions satisfied by each network component
(appropriate variables are usually voltage and current for efec-
trical networks and affinity and turnover rate for chemical sys-
tems>®; see also ref. 37). There is in general no unique network
but possibly many networks implementing the same variational
principle. For example, graded networks of the type proposed
by Hopfield in the context of associative memory*® can solve
standard regularization principles®’.

From Kirchhoff’s law, it can be proved’ that for every quad-
ratic variational problem with a unique solution (which is
usually the case®), there exists a corresponding electrical network
consisting of resistances and voltage or current sources having
the same solution. In other words, the steady-state current (or
voltage) distribution in the network corresponds to the solution,
for example to the tangential velocity distribution V7 (s), of the
standard regularization problem (Fig.4). Furthermore, when
capacitances are added to the system, thereby introducing
dynamics, the system is stable. The data are supplied by injecting
currents or by introducing batteries, that is by constant current
or voltage sources’.

This analog parallel model of computation is especially inter-
esting from the point of view of the present understanding of
the biophysics of neurones, membranes and synapses. Increasing
evidence shows that electrotonic potentials play a primary role
in many neurones*’. Mechanisms as diverse as dendrodendritic
synapses**2 gap junctions®, neurotransmitters acting over
different times and distances**, voltage-dependent channels that
can be modulated by neuropeptides® and interactions between
synaptic conductance changes*® provide neurones with various
different circuit elements. Patches of neural membrane are
equivalent to resistances, capacitances and phenomenological
inductances*’. Synapses on dendritic spines mimic voltage sour-
ces, whereas synapses on thick dendrites or the soma act as
current sources*®*’. Thus, single neurones or small networks of
neurones could implement analog solutions of regularization
principles. Hypothetical neuronal implementations of the analog
circuits of Fig. 4 have been devised, involving only one or two
separate dendrites’.

Beyond standard regularization theory

The new theoretical framework for early vision clearly shows
the attractions and the limitations that are intrinsic to the stan-
dard Tikhonov form of regularization theory. The main problem
is the degree of smoothness required for the unknown function
that has to be recovered. For instance, in surface interpolation,
the degree of smoothness corresponding to the so-called thin-
plate splines smoothes depth discontinuities too much, and often
leads to unrealistic results®® (discontinuities may, however, be
detected and then used in a second regularization step®).

Standard regularization theory deals with linear problems and
is based on quadratic stabilizers. It leads therefore to the
minimization of quadratic functionals and to linear Euler-
Lagrange equations. Non-quadratic functionals may be needed
to enforce the correct physical constraints (Table 1 shows the
non-quadratic case of shape-from-shading). Even in this case,
methods of standard regularization theory can be used®, but
the solution space is no longer convex and many local minima
can be found in the process of minimization.

A non-quadratic stabilizer has been proposed for the problem
of preserving discontinuities in the reconstruction of surfaces
from depth data®. The stabilizer, in its basic form attributable
to Geman and Geman’' (a similar principle but without a
rigorous justification was proposed by Blake®?; see also the
variational continuity control of Terzopoulos®’), embeds prior
knowledge about the geometry of the discontinuities (the line
process) and, in particular, that they are continuous and often
straight contours. In standard regularization principles, the
search space has only one local minimum to which suitable
algorithms always converge. For non-quadratic functionals, the
search space may be similar to a mountain range with many
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Fig. 3 A regularized solution to edge detection. a, Digital image
(256 X256 pixels) without any filtering (left) and filtered (right)
with the two-dimensional operator provided by standard regulariz-
ation theory?® shown in d. b, Intensity profile along the scan line
indicated in a without (left) and with (right) the regularizing
operation provided by filtering with the one-dimensional regular-
ized filter®®. ¢, Second derivative of the profile shown in b without
(left) and with (right) the one-dimensional regularizing filtering.
d, Two-dimensional filter obtained by regularizing the ill-posed
problem of edge detection®®. It is a quintic spline, very similar to
a gaussian distribution. The parameter A controls the scale of the
filter. Its value depends on the signal-to-noise ratio in the image.
The spatial receptive field of most ganglion cells in the vertebrate
retina have a very similar structure, with a central excitatory region
and an inhibitory surround®%®. Drawings kindly provided by
Harry Vorhees.

local minima. Stochastic algorithms for solving minimization
problems of this type have been proposed recently, to escape
from local minima at which simple hill-climbing algorithms
would be trapped®>>°, The basic idea is somewhat similar to
adding a forcing noise term to the search algorithm. If the non-
quadratic variational principle can be represented in a nonlinear
analog network (as in ref. 39), an appropriate source of gaussian
noise could drive the analog network. The dynamics of the
system would then be described by a nonlinear stochastic
differential equation, representing a diffusion process.

The challenge now for the regularization theory of vision is
to extend it beyond standard regularization methods. The uni-
verse of computations that can be performed in terms of quad-
ratic functionals is rather restricted. To see this, it is sufficient
to realize that minimization of quadratic cost functionals leads
to a linear regularization operator, that is, to a linear mapping
of the input data into the solution space. In the special case
when the data are on a regular grid and obey suitable conditions,
the linear operator may become a convolution, that is, a simple
filtering operation on the data. Similar to linear models in
physics, standard regularization theory is an extremely useful
approximation in many cases, but cannot deal with the full
complexity of vision.

Stochastic route to regularization

A different rigorous approach to regularization is based on Bayes
estimation and Markov random fields models. In this approach
the a priori knowledge is represented in terms of appropriate
probability distributions, whereas in standard regularization a
priori knowledge leads to restrictions on the solution space.
Consider as an example the case of surface reconstruction. A
priori knowledge can be formulated in terms of a Markov
random field (MRF) model of the surface. In a MRF the value
at one discrete location depends only on the values within a
given neighbourhood. In this approach the best surface maxim-
izes some likelihood criterion such as the maximum a posteriori
estimate or the a posteriori mean of the MRF. It has been pointed
out® that the maximum a posteriori estimate of a MRF is
equivalent to a variational principle of the general form of
equation (3); the first term measures the discrepancy between
the data and the solution, the second term is now an arbitrary
potential function of the solution (defined on a discrete lattice).
The overall variational principle, in general not quadratic,

I*d2 /dx2
<
<]
B

e "w‘ % yU T

reduces to a quadratic functional of the standard regularization
type when the noise is additive and gaussian and first-order
differences of the field are zero-mean, independent, gaussian
random variables. In this case the maximum a posteriori estimate
(MAP) coincides with all estimates and, in particular, with the
a posteriori mean. But Marroquin®® has shown recently that this
is not true in general: in most cases the MAP estimate is not
optimal with respect to natural error measures and better esti-
mates such as the a posteriori mean can be found. In these cases
the problem is not equivalent to finding the global minimum of
an energy functional: simulated annealing is not needed, and a
Metropolis-type algorithm® can be used instead.

b b h
Viay Vi) Y=

g g

=g =G =G
Fig. 4 Analog networks. A resistive network computing the
smoothest velocity field?®. The network corresponds to the situation
where the measurements of the normal velocity component V™
are assumed to be exact. Discretizing the associated variational
equation (4) along the contour yields the Euler-Lagrange equations
Q+x)VI- VL, - VI, =d, where «, is the curvature of the con-
tour at location i, d; is a function of the data VI and the contour
and V7 is the unknown tangential component of the velocity V
at location i along the contour. The equation describing the ith
node in the electrical circuitis (2g +g;)V, — gV, — g, = I;, where
V, is the voltage corresponding to the unknown V;, and I, is the
injected current at node i depending on the measurement vN. A
slightly more complicated circuit can be designed for the case when
the measurements of V¥ are not exact’ (equation (5)). Uniqueness
of the regularized solution always ensures stability of the corre-
sponding network, even if capacities are introduced. Equivalent
analog networks can be implemented by diffusion-reaction sys-
tems, where the interaction between neighbouring locations are
mimicked using diffusion or chemical reactions with first-order
kinetics. Hypothetical neuronal implementations may be
envisaged. The conductance g may correspond to a small segment
of a dendrite, the variable conductance g; to a synaptic input with
a reversal potential close or equal to the resting potential of the
dendrite (that is, silent or shunting inhibition) and the current
source to a conventional chemical synapse injecting current I; into
the dendrite. The output is sampled at location i by a chemical
synapse. Adapted from ref. 7.
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In the case of Hildreth’s motion computation® the smoothness
assumption corresponds to the hypothesis that the changes in
velocity between neighbouring points along the contour are
zero-mean, independent, gaussian random variables. This con-
nection between the stochastic approach and standard regulariz-
ation methods gives an interesting perspective on the nature of
the constraints and the choice of the stabilizer. The variational
principles used to solve the inverse problems of vision corre-
spond to the Markov structure that generates plausible solutions.

A related area of future investigation concerns the problem
of learning a regularizing operator. In the case of standard
regularization, the corresponding linear operator mapping the
data into the solution may be learned by an associative learning
scheme®’, of the type proposed in connection with biological
memory®s,

Towards symbolic descriptions

So far, we have restricted our discussion to the early stages of
vision that create image-like representations of the physical
three-dimensional surfaces around the viewer. The step beyond
these representations, also called intrinsic images®, or 2-1/2D
sketches', is a large one. Intrinsic images are still image-like
numerical representations, not yet described in terms of objects.
They are already sufficient for some of the high-level tasks of
a vision system such as manipulation and navigation. They
cannot be used directly for the tasks of recognition and descrip-
tion that require the generation and use of more symbolic
representations. It seems at first difficult to see how the computa-
tion of symbolic representations may fit at all in the perspective
of regularizing ill-posed problems.

The basic idea of all regularization methods is to restrict the
space of possible solutions. If this space is constrained to have
finite dimensions, there is a good chance that an inverse problem
will be well-posed. Thus, a representation based on a finite set
of discrete symbols regularizes a possibly ill-posed problem.
From this point of view, the problem of perception (regularizing
an otherwise underconstrained problem using generic con-
straints of the physical world) becomes practically equivalent
to the classical artificial intelligence problem of solving and
inference, that is, of finding ways of solving intractable problems
(such as chess) by limiting the search for solutions.

. Marr, D. Vision (Freeman, San Francisco, 1982).

. Brady, J. M. Computing Surv. 14, 3-71 (1982).

. Ballard, D. H., Hinton, G. E. & Sejnowski, T. J. Narure 306, 21-26 (1983).

Brown, C. M. Science 224, 1299-1305 (1984).

Barrow, H. G. & Tennenbaum, J. M. Arrif. Intell 17, 75-117 (1981).

Marr, D. & Ullman, S. Proc. R. Soc. B211, 151-180 (1981).

. Poggio, T. & Koch, C. Proc. R. Soc. B (in the press).

. Poggio, T. & Torre, V. Artif. Intell. Lab. Memo No. 773 (MIT, Cambridge, 1984).

. Hadamard, J. Lectures on the Cauchy Froblem in Linear Partial Differential Equations (Yale

University Press, 1923).

10. Bertero, M., Del Mol, C. & Pike, E. R. J. inverse Prob. (in the press).

11. Tikhonov, A. N. Sov. Math. Dokl 4, 1035-1038 (1963).

12. Tikhonov, A. N. & Arsenin, V. Y. Solutions of Ill-posed Problems (Winston, Washington,
DC, 1977).

13. Bertero, M. in Problem non ben posti ed inversi (Istituto di Analisi Globale, Firenze,
1982).

14. Nashed, M. Z. (ed.} Generalized inverses and Applications (Academic, New York,
1976).

15. Wahba, G. Tech. Rep. No. 595 (University of Wisconsin, 1980).

16. Horn, B. K. P. Computer Graphics Image Processing 3, 111-299 (1974).

17. Horn, B. K. P. Robot Vision (MIT Press & McGraw-Hill, Cambridge & New York, 1985).

18. Horn, B. K. P. & Schunck, B. G. Artif. Intell 17, 185-203 (1981).

19. lkeuchi, K. & Horn, B. K. P. Artif. Intell. 17, 141-184 (1981).

20. Grimson, W. E. L. From Images to Surfaces: A Computational Study of the Human Early
Visual System (MIT, Cambridge, 1981).

21. Grimson, W. E. L. Phil. Trans. R. Soc. B298, 395-427 (1982).

22. Terzopoules, D. Computer Graphics Image Processing 24, 52-96 (1983).

23. Hildreth, E. C. The Measurement of Visuat Motion (MIT Press, Cambridge, 1984),

24. Hildreth, E. C. Proc. R. Soc. B221, 189-220 (1984).

25. Horn, B. K. P. & Brooks, M. J. Artif. Intell. Lab. Memo No. 813 (MIT, Cambridge, 1985).

26. Poggio, T., Voorhees, H. & Yuille, A. Artif. Intell. Lab. Memo No. 833 (MIT, Cambridge,
1985).

27. Torre, V. & Poggio, T. IEEE Trans. Pattern Analysis Machine Intelligence (in the press).

28. Marr, D. & Poggio, T. Proc. R. Soc. B204, 301-328 (1979).

29. Marr, D. & Hildreth, E. C. Proc. R. Soc. B207, 187-217 (1980).

30. Morozov, V. A. Methods for Solving Incorrectly Posed Problems (Springer, New York, 1984).

31. Nishihara, H. K. Artif. Intell. Lab. Memo No. 780 (MIT, Cambridge, 1984).

32. Hurlbert, A. Ariif. Intell. Lab. Memo No. 814 (MIT, Cambridge, 1985).

33. Land, E. H. Proc. natn. Acad. Sci. U.S.A. 80, 5163-5169 (1984).

34. Yuille, A. Artif Intell. Lab. Memo No. 724 (MIT, Cambridge, 1983); Advances in Artificial
Intelligence (ed. O'Shea, T. M. M.) (Elsevier, Amsterdam, in the press).

35. Ullman, S. Computer Graphics Image Processing 9, 115-125 (1979).

R

(RN

REVIEWARTICLE =

Conclusions

We suggest a classification of vision algorithms that maps
naturally into parallel digital computer architectures now under
development. Standard regularization, when sufficient, leads to
two classes of parallel algorithms. Algorithms for finding minima
of a convex functional such as steepest descent or the more
efficient multigrid algorithms developed for vision® can always
been used. They can be replaced by convolution algorithms if
the data are given on a regular grid and A in equation (1) is
space invariant. In the latter case, the regularized solution is
obtained by convolving the data through a precomputed filter.

All these algorithms may be implemented by parallel architec-
tures of many processors with only local connections. Problems
that cannot be approached in terms of regularization and that
require symbolic representations and operations on them, may
need parallel architectures with a global communication facility,
such as the Connection Machine currently under development®’.

The concept of ill-posed problems and the associated old and
new regularization theories seem to provide a satisfactory theo-
retical framework for much of early vision. This new perspective
also provides a link between the computational (ill-posed)
nature of early vision problems, the structure of the algorithms
for solving them and the parallel hardware that can be used for
efficient visual information processing. It also shows the intrinsic
limitations of the variational principles used so far in early
vision, indicating at the same time how to extend regularization
analysis beyond the standard theory.
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