

PII: S0038-0717(97)00088-6

COMBINING THE ¹⁵N AND ACETYLENE INHIBITION TECHNIQUES TO EXAMINE THE EFFECT OF ACETYLENE ON DENITRIFICATION

J. P. MALONE,¹ R. J. STEVENS^{1,2*} and R. J. LAUGHLIN²

Department of Agricultural and Environmental Science, The Queen's University of Belfast, Belfast, Northern Ireland, U.K. and 'Agricultural and Environmental Science Division, The Department of Agriculture for Northern Ireland, Newforge Lane, Belfast BT9 5PX, U.K.

(Accepted 10 March 1997)

Summary—Using acetylene to inhibit the reduction of N_2O to N_2 is the simplest and most commonly used technique to quantify denitrification. The acetylene treatment may not always inhibit N₂O-reductase completely when soils are wet, low in NO_3^- or with a high C-to- NO_3^- ratio. Acetylene blocks nitrification as well as N₂O-reductase, so if nitrification is the source of NO_2^- or NO_3^- for denitrification, then the denitrification rate would be underestimated by the C_2H_2 inhibition technique. Acetylene can also be metabolised in soil and so enhance denitrification. We show how the ¹⁵N method for measuring denitrification can be combined with the C_2H_2 inhibition technique to check the effect of acetylene on N_2O -reductase, respiration and nitrification. No method exists, however, for the analysis of ¹⁵N in the N_2 and N_2O of headspace samples which also contain 10% v/v C_2H_2 . We describe a technique to remove C₂H₂ from headspace samples with alkaline KMnO₄ prior to analysis by isotope-ratio mass spectrometry. The C₂H₂ removal procedure had no effect on the determination of N₂O concentration, or on the determination of the ¹⁵N content of N₂O and N₂. Then using data for fluxes of N₂O, N₂, $(N_2O + N_2)$, CO₂ and the size and ¹⁵N content of the soil NO₂ pool for a soil incubation experiment, we show how the effects of C₂H₂ can be quantitatively assessed. The data also allowed the amount of denitrification, as estimated by the C2H2 inhibition technique, to be compared with that measured using the ¹⁵N technique. For the soil conditions during this incubation, 10% v/v C_2H_2 completely blocked N₂O-reductase, slightly inhibited respiration and completely blocked nitrification. The average total flux of N gases as measured by ¹⁵N (4.3 nmol N g⁻¹ h⁻¹) was not significantly different (P > 0.05) from the average flux measured by the C_2H_2 inhibition method (3.9 nmol N g⁻¹ h⁻¹). Including C_2H_2 as a treatment in the ¹⁵N method provides a direct way of confirming that some of the assumptions in the C₂H₂ inhibition technique are valid. © 1997 Elsevier Science Ltd

INTRODUCTION

Denitrification can be quantified directly by the C_2H_2 inhibition technique or by using ¹⁵N (Mosier and Klemedtsson, 1994). The C₂H₂ inhibition technique is simpler and more commonly used. Procedures for its use are well established (Tiedje et al., 1989). The technique relies on C₂H₂ selectively inhibiting N₂O reduction to N₂, allowing the total denitrification flux to be measured as N2O. The proportion of the N-gas flux occurring as N₂O can be measured by excluding C₂H₂ during the assay. There are problems, however, with the C_2H_2 inhibition technique (Knowles, 1990). The assumption that C₂H₂ inhibits N₂O-reductase completely may not always be true. When soils are wet, clayey or compacted, C_2H_2 may not diffuse to all sites of denitrifying microbial activity. The blocking of N_2O -reductase activity by C_2H_2 is incomplete when NO_3^- concentrations are low, especially if there is

31

decomposable organic C readily available and the C-to-NO₃ ratio is high (Yeomans and Beauchamp, 1978; Simarmata et al., 1993). An C₂H₂ concentration of 5-10% v/v is needed to block N2O-reductase (Tiedje et al., 1989), but a concentration of 0.01% v/v is sufficient to block nitrification (Berg et al., 1982). If nitrification is the source of NO_2^- or $NO_3^$ for denitrification, then the denitrification rate could be underestimated by the C₂H₂ inhibition technique. Acetylene can be metabolised in soil and so enhance denitrification. Several laboratory experiments have shown that C_2H_2 increased NO₃ reduction, and the production of N gases and CO₂ (Haider et al., 1983; Topp and Germon, 1986).

Ideally when using the C_2H_2 inhibition technique with a particular soil under specific conditions, the completeness of the inhibition of N2O-reductase should be checked and the contribution of nitrification to denitrification measured. Including C₂H₂ as a treatment in the ¹⁵N gas-flux method would be one way to check whether the inhibition of N2O-reductase is complete. The ¹⁵N gas-flux method involves the application of ${}^{15}NO_{3}$ to soil, with the

^{*}Author for correspondence. (Fax: 01232 662007; e-mail: stevensj@dani.gov.uk).

SBB 30/1-B

subsequent quantification of the flux of N_2 and N_2O into a headspace (Mosier and Klemedtsson, 1994). In the presence of C_2H_2 and ${}^{15}NO_3^-$, no labelled N_2 should be formed if the inhibition of N_2O -reductase is complete.

In the ¹⁵N gas-flux method, the flux of N_2 is quantified by comparing the isotopic composition of the enriched atmosphere with normal atmosphere. The flux of N₂O is quantified by measuring the change in N₂O concentration with time. The determination of ^{15}N in the N₂ and quantification of N₂O are easily achieved by automated continuousflow isotope-ratio mass spectroscopy (CF-IRMS) as described by Stevens et al. (1993). If the headspace samples contain C_2H_2 , an C_2H_2 -removal step is required to prevent C₂H₂ being introduced into the mass spectrometer source along with N2. In the comparison of ¹⁵N and C₂H₂-inhibition techniques by Mosier *et al.* (1986b), liquid N_2 was used as a trap before determining ¹⁵N in N_2 with a manual inlet mass spectrometer (Mosier et al., 1986a). As liquid N₂ also traps N₂O, we developed a technique which selectively removes C2H2 from headspace samples prior to automated analysis for ^{15}N in N_2 and N₂O by CF-IRMS analysis. The technique uses alkaline KMnO₄ to oxidise C₂H₂ to potassium formate and CO₂ (Lee and Chang, 1979; Haines, 1985). We determined the optimum amounts of $KMnO_4$ needed to oxidise the C_2H_2 and of KOH needed to absorb the CO2 produced by the oxidation. Then we measured the effect of the C2H2removal procedure on the determination of N₂O concentration, and on the ¹⁵N content of N₂O and N₂. By presenting additional data on fluxes of N₂O, N₂, (N₂O + N₂), CO₂ and on the size and ¹⁵N content of the soil NO₂ pool for an experiment on N_2O (Stevens *et al.*, 1997) we show quantitatively under different NO_3^- and C concentrations how the effects of C₂H₂ on N₂O-reductase, respiration and nitrification can be measured. These data also allowed us to compare the rate of denitrification measured by the C_2H_2 inhibition technique with that measured using the ¹⁵N gas-flux technique.

METHODS AND MATERIALS

Removing acetylene from gas samples with potassium permanganate

Potassium permanganate can oxidise C_2H_2 to oxalic acid, formic acid and CO_2 . Acidic or alkaline KMnO₄ provide harsher conditions for the oxidation and result in a more complete oxidation than neutral KMnO₄. With acidic or alkaline KMnO₄ the main end-products are formic acid and CO₂. Strongly alkaline KMnO₄ has the advantage over acidic or neutral KMnO₄ because the CO₂ produced by the oxidation is absorbed by the alkali (KOH in this study), and hence is not available to overload the existing CO_2 scrubber on the CF-IRMS system.

Aqueous solutions containing 0, 60, 120, 180, 240, 300 and 360 mM KMnO₄ were prepared. A square $(40 \times 40 \text{ mm})$ of glass fibre paper (GF/D, Whatman Ltd, U.K.) was rolled into a cylinder and placed in each of 21 10-ml vials (Chromacol Ltd, U.K.). The vials were then crimp-capped with septa (20 mm chlorobutyl septa, Chromacol Ltd, U.K.) and evacuated to < 100 Pa. Using a gas-tight syringe, 13.5 ml of 300 μ l N₂O l⁻¹ in N₂ (Bedfont Scientific Ltd, U.K.) and 1.5 ml of C₂H₂ (to make up 10% v/v C_2H_2) were injected into each vial. One ml of each KMnO₄ solution was then injected into each of three gas-filled vials. The solution was absorbed onto the filter paper, which provided a large surface area on which the C₂H₂ could react. The vials were left for 1 h at 20°C before analysis by gas chromatography. A Varian Genesis headspace auto-sampler was used to transfer 0.5 ml aliquots to a Perkin Elmer 8500 GC. The GC was fitted with a $5 \text{ m} \times 2 \text{ mm}$ column packed with Porapak QS (80-100 mesh) operated at 40°C and a hot wire detector operated with filament current of 240 mA. The carrier gas was He at a flow rate of 20 ml min⁻¹. A drying column (4×100 mm) containing Mg(ClO₄)₂ was fitted between the auto-sampler and the GC to remove water vapour. Concentrations of the C₂H₂, CO₂ and N₂O were quantified by comparing the peak heights with those of calibration mixtures.

Aqueous solutions containing 300 mM KMnO₄ were prepared in 0, 25, 50, 75, 100 and 125 mM KOH. Vials were filled with 300 μ l N₂O l⁻¹ + 10% v/v C₂H₂ as before and 1 ml of each KMnO₄-KOH solution was injected into each of three gas-filled vials. The vials were left for 1 h at 20°C and the contents analysed by gas chromatography.

Effect of acetylene removal on the determination of nitrous oxide concentration

A square $(40 \times 40 \text{ mm})$ of glass fibre paper was rolled into a cylinder and placed in each of 54 12ml cylindrical screw-top vials $(15 \times 100 \text{ mm})$. The vials were capped with septa and evacuated to < 100 Pa. Gas mixtures containing 10, 100, 300, 500, 750 and 1000 μ l N₂O l⁻¹ with or without 10% v/v C₂H₂ were made up in gas sampling bags. Samples of gas mixtures were transferred in triplicate to the vials for comparison between three treatments: (i) 12 ml of each gas mixture without C_2H_2 ; (ii) 12 ml of each gas mixture without C_2H_2 and with 1 ml the C₂H₂-removal solution added; (iii) 13.3 ml of each gas mixture with C₂H₂ and with 1 ml of the C₂H₂-removal solution added (12 ml of gas should remain after removal of the C₂H₂). The C₂H₂-removal solution (300 mM KMnO₄ and 100 mM KOH) was purged with He for 10 min to remove atmospheric N₂ and N₂O before the 1-ml aliquots were injected into each vial. After 1 h at 20°C the concentration of N₂O in each vial was determined by automated CF-IRMS (Stevens *et al.*, 1993) using an Europa Scientific ANCA-NT 20-20 Stable Isotope Analyser interfaced to an Europa Scientific Trace Gas Preparation System with Gilson auto-sampler. A segment of I_2O_5 activated by H_2SO_4 (Gastec Analyser Tube, catalogue no. 1HH), which oxidises small quantities of C_2H_2 to CO_2 , was included in the scrubber train between the Mg(ClO₄)₂ and the ascarite to ensure complete removal of C_2H_2 before the gas stream entered the mass spectrometer.

Effect of acetylene removal on the determination of ^{15}N in nitrous oxide and di-nitrogen

Mixtures of N₂O (150 μ l l⁻¹) at natural abundance, 10 and 20 atom %¹⁵N with or without 10% $v/v C_2H_2$ were made up in gas sampling bags. The ¹⁵N-labelled N₂O was generated from ¹⁵N-enriched (NH₄)₂SO₄ reacted with alkaline NaOBr (Hauck, 1982). Di-nitrogen is the main product of the reaction, but 1-3% of the gas produced is N₂O. The effect of C₂H₂ removal on the determination of the ¹⁵N content of each enrichment of N₂O was tested using the same three treatments as were used to test the effect of removal of C₂H₂ on the determination of N₂O concentration. The ¹⁵N content of the N₂O was determined by CF-IRMS. The system was as described by Stevens et al. (1993), but with automation of the valve switching and source setting so that the ¹⁵N content of N₂ and N₂O could be determined in the same sample. The ion currents (I) at m/z 44 45, and 46 enabled ${}^{45}R$ (${}^{45}I/{}^{44}I$) and ${}^{46}R$ $(^{46}I/^{44}I)$ to be calculated for N₂O. The ¹⁵N content of the N₂O was calculated from either the ⁴⁵R, using equations (5) and (7) or ⁴⁶R, using equations (6) and (7) of Stevens et al. (1993). The concentration of N₂O was calculated as described by Stevens et al. (1993) from measurements of ${}^{44}I$, ${}^{45}I$ and ${}^{46}I$.

Samples of N₂ at natural abundance, 0.4, 0.6 and 0.8 atom % ¹⁵N with or without 10% v/v C₂H₂ were made up in gas sampling bags. The ¹⁵Nlabelled N₂ was generated by reacting ¹⁵N-enriched (NH₄)₂SO₄ with alkaline NaOBr prepared as described previously. The effect of C₂H₂ removal on the determination of the ¹⁵N content of the N₂ was tested using the same three treatments as were used to test the effect of C₂H₂ on the determination of ¹⁵N in the N₂O. For N₂, the ion currents at m/z 28, 29 and 30 enabled ²⁹R (²⁹I/²⁸I) and ³⁰R (³⁰I/²⁸I) to be measured by CF-IRMS (Stevens *et al.*, 1993).

Testing the effect of acetylene on soil processes using a soil incubation experiment

In a soil incubation experiment, a grassland soil was treated in factorial combination with differentially labelled NH_4NO_3 at one N rate (1.46 μ mol N g⁻¹ oven dry soil), two rates of glucose (42 and 83 μ mol C g⁻¹ oven dry soil), with or without 10% v/v C_2H_2 in the headspace, and three incubation times (6, 12 and 24 h). Each treatment was replicated six times, replicates being arranged randomly during incubation at 20°C. Control treatments without N or C addition were included for time zero and each incubation time. Fresh 5-mm sieved soil (200 g containing 458 mg H_2O g⁻¹ ovendry soil) was placed in 500-ml Kilner jars. The required amounts of N and C were dissolved in 20 ml of water and dispensed uniformly over the soil surface using a syringe. Control treatments received 20 ml of water, bringing all soil moisture contents to 60% (oven-dry basis). Immediately after liquid addition, a nylon lid with a gas-sampling septum was fitted to each jar using an O-ring to form a gas-tight seal. The volume of headspace in each jar containing treated soil was 363 ml. For the treatments with C₂H₂, 36 ml of C₂H₂ at atmospheric pressure were added to the headspace after removing an equal amount of air. The C₂H₂ had been scrubbed through water to remove acetone and other impurities (Gross and Bremner, 1992). For the treatments without C_2H_2 , He was used instead of C_2H_2 to maintain the same mass of N_2 (306 mg) and O_2 in the headspace of each jar.

At the end of each incubation period the headspace of each jar was analysed for ${}^{15}N$ in N_2 and N₂O concentration by CF-IRMS and for CO₂ by gas chromatography. The flux of N2 was calculated according to Mulvaney and Boast (1986). The soil in each jar was then extracted with 2 M KCl solution according to the procedure of Stevens and Laughlin (1995). Nitrite concentration was determined colorimetrically by the Griess-Ilosvay procedure (Keeney and Nelson, 1982). The ¹⁵N content of the NO_2^- was determined by producing N₂O for CF-IRMS (Stevens and Laughlin, 1994). Data for fluxes of N_2O , N_2 , $(N_2O + N_2)$ and CO_2 into the headspace are only shown for the NH4¹⁵NO₃ treatment and data for the size and enrichment of the NO₂ pool are only shown for the ¹⁵NH₄NO₃ treatment. Some of the data for this test have already been published in our paper on measuring the contribution of nitrification and denitrification to the flux of nitrous oxide from soil (Stevens et al., 1997). The data used come from the second experiment described in that paper which was designed to test the uniformity of the NO_3^- -labelled pool using C_2H_2 as a nitrification inhibitor.

Statistical analyses

Analysis of variance was used to determine the effect of the C_2H_2 removal procedure on the measurement of N_2O concentration and on the measurement of ¹⁵N in N₂ and in N₂O, and to determine the effect of treatments on the flux of N₂O, N₂, (N₂O + N₂), CO₂, and on the size and enrichment of the soil NO₂⁻ pool.

RESULTS AND DISCUSSION

Removal of acetylene from gas samples

The effects of KMnO₄ on the concentrations of C_2H_2 and N_2O are shown in Fig. 1. The use of 1 ml of 300 mM KMnO₄ solution totally removed 10% v/v C_2H_2 to below detectable limits (10 μ l C_2H_2 l⁻¹). The equation for the reaction is:

$$C_2H_2 + 4[O] \longrightarrow CHOOH + CO_2$$

The concentration of N₂O was unaffected by neutral KMnO₄. The effect of KOH concentration in the 300 mM KMnO₄ absorbent on the CO₂ concentration is shown in Fig. 2. A concentration of 100 mM KOH absorbed all the CO₂ produced from the oxidisation of the C₂H₂ by the KMnO₄. A solution of 300 mM KMnO₄ and 100 mM KOH is, therefore, suitable for use as a C₂H₂ absorbent. Theoretically, 1 ml of this mixture is capable of removing 3.4 ml of pure C₂H₂. The large excess of KMnO₄ drove the reaction to completion within 1 h.

Effect of acetylene removal on gas analyses

The C₂H₂ removal procedure had no effect on the determination of N₂O concentration in the gas samples (Table 1). It also had no effect on the determination of the ¹⁵N content in N₂O as calculated from either ⁴⁵R or ⁴⁶R (Table 2) or on the measured values of ²⁹R and ³⁰R in N₂ (Table 3). The values for ratios in Table 3 are calculated from measured ion currents and have not been corrected to true values using background correction or instrument performance factors. The success of this C₂H₂ removal procedure allows the isotopic analysis of gases to proceed in ¹⁵N studies where C₂H₂ is included as a treatment.

The efficiency of inhibition of nitrous oxide reductase

The effects of C_2H_2 on the fluxes of N_2 and N_2O during the soil incubation with different stresses of NO_3^- and C are shown in Table 4. In the presence of C_2H_2 the isotopic composition of the N_2 was not

Fig. 1. The effects of $KMnO_4$ in neutral aqueous solution on the concentrations of C_2H_2 and N_2O in gas samples. Error bars indicate SE of the mean (n = 3) or are smaller than the symbols.

Fig. 2. The effect of KOH concentration in 300 mM KMnO₄ on the removal of CO₂ produced from the oxidation of C₂H₂ in gas samples. Error bars indicate SE of the mean (n = 3) or are smaller than the symbols.

significantly different from normal atmosphere, so no N₂ flux was detectable. Therefore, for the soil conditions during this incubation, 10% v/v C₂H₂ completely blocked N₂O-reductase. In all treatments without C₂H₂, the N₂ flux was greater than the N₂O flux. The higher concentrations of C caused an increase in the total amount of denitrification. In these high C treatments, the NO₃⁻ concentrations after 24 h of incubation were less than the native soil NO₃⁻ concentrations (Stevens *et al.*, 1997). This NO₃⁻ limitation, however, did not affect the inhibition efficiency of the C₂H₂.

The effect of acetylene on respiration and nitrification

Comparison of treatments with or without C_2H_2 within sampling times showed that C_2H_2 had no significant effect (P > 0.05) on CO₂ flux (Table 4). When averaged overall the times, the CO₂ flux from the treatments without C_2H_2 (535 nmol C g⁻¹ h⁻¹) was significantly higher (P < 0.012) than the flux from those with C_2H_2 (510 nmol C g⁻¹ h⁻¹). This shows that C_2H_2 slightly inhibited respiration. Flather and Beauchamp (1992) showed that C_2H_2 could inhibit fermentative bacteria. In our experiment, there was no evidence for the microbial metabolism of C_2H_2 . The soil microbial community probably needs more than 24 h to adapt to the metabolism of C_2H_2 .

The size and enrichment of the NH_4^+ and $NO_3^$ pools in this experiment were described in detail by Stevens *et al.* (1997). In the ¹⁵NH_4^+-labelled treatment, the NO₃ pool was not enriched in the presence of C₂H₂, but was enriched in the absence of C₂H₂. Nitrification was, therefore, blocked by C₂H₂ but occurred without C₂H₂. Further evidence of the effect of C₂H₂ on nitrification can be obtained by examination of the size and enrichment of the NO₂⁻ pool (Table 5). The NO₂⁻ pool was significantly (*P* < 0.001) larger in the absence of C₂H₂. In the ¹⁵NH₄⁺-labelled treatment, the NO₂⁻ pool was not enriched in the presence of C₂H₂, but was enriched in the absence of C₂H₂. Nitrite exists in a small and dynamic pool compared with NH₄⁺ and NO₃⁻. Any

Table 1. The effect of $KMnO_4$ solution and C_2H_2 removal with $KMnO_4$ solution on the concentration of N_2O in gas samples

Theoretical N ₂ O concentration $(\mu l l^{-1})$	Measured N ₂ O concentration (μ l Γ^{-1})						
	N ₂ O	$N_2O + KMnO_4$	$N_2O + C_2H_2 + KMnO_4$	SEM $(n = 3)$			
10	9.9	9.6	10.1	0.11			
100	99.4	99.1	99.3	0.29			
300	298.7	298.9	296.5	0.47			
500	500.4	499.0	497.8	1.41			
750	751.3	749.2	748.5	1.52			
1000	999.2	998.2	997.6	1.13			

Table 2. The effect of KMnO₄ solution and acetylene removal with KMnO₄ solution on the 15 N content of N₂O in gas samples

Measured atom % ¹⁵ N from ⁴⁵ R				Measured atom % ¹⁵ N from ⁴⁶ R				
Theoretical enrichment atom % ¹⁵ N	N ₂ O	N ₂ O + KMnO ₄	$\begin{array}{c} N_2O + \\ C_2H_2 + \\ KMnO_4 \end{array}$	$\frac{\text{SEM}}{(n=3)}$	N ₂ O	N ₂ O + KMnO ₄	$N_2O + C_2H_2 + KMnO_4$	$\frac{\text{SEM}}{(n=3)}$
0.37	0.37	0.37	0.37	0.001	ND	ND	ND	ND
10.00	10.14	10.13	10.15	0.009	9.97	9.96	9.97	0.074
20.00	20.25	20.27	20.25	0.024	20.00	20.02	20.01	0.012

Table 3. The effect of KMnO₄ solution and acetylene removal with KMnO₄ solution on the measured values of 29 R and 30 R in N₂

29 R × 10 ³				$^{30}R \times 10^{5}$				
Theoretical enrichment atom % ¹⁵ N	N ₂	N ₂ + KMnO ₄	$N_2 + C_2H_2 + KMnO_4$	$\frac{\text{SEM}}{(n=3)}$	N ₂	N ₂ + KMnO ₄	$N_2 + C_2H_2 + KMnO_4$	$\frac{\text{SEM}}{(n = 3)}$
0.366	7.19	7.19	7.19	0.001	2.42	2.40	2.43	0.020
0.400	7.96	7.97	7.96	0.014	2.85	2.82	2.85	0.018
0.600	11.77	11.51	11.84	0.068	4.94	4.78	4.95	0.032
0.800	15.37	15.48	15.61	0.127	7.63	7.67	7.77	0.086

change in its size or enrichment is a sensitive indicator of nitrification. The first step of the autotrophic oxidation of NH_4^+ is inhibited by 0.01% v/v of acetylene (Berg *et al.*, 1982).

Comparison of acetylene inhibition and ^{15}N gas-flux methods

If nitrification is contributing to the NO_3^- pool, potentially N-gas flux measured by the ¹⁵N method could be greater than the N-gas flux measured by the C₂H₂ inhibition method. Although the N-gas flux from the ¹⁵N method was usually greater than that from the C_2H_2 inhibition method within incubation times (Table 4), the average flux over all incubation times for the ¹⁵N method (4.3 nmol N g⁻¹ h⁻¹) was not significantly different (P > 0.05) from that for the C_2H_2 inhibition method (3.9 nmol N g⁻¹ h⁻¹). Variability has also made it difficult to detect small differences between the ¹⁵N method and the C_2H_2 inhibition technique in other studies (Klemedtsson *et al.*, 1990).

In this experiment the native plus added NO₃⁻ at the start of the incubation was $1.16 \,\mu\text{mol N g}^{-1}$ oven-dry soil, so NO₃⁻ was not limiting for denitrifi-

Table 4. The effect of C_2H_2 on the fluxes of CO_2 , N_2O and N_2 from soil treated with $NH_4^{15}NO_3$ and two concentrations of glucose for different times

C2H2 (%v/v)	Glucose (μ mol C g ⁻¹ h ⁻¹)	Time (h)	$\begin{array}{c} \text{CO}_2 \text{ flux} \\ (\text{nmol C } \text{g}^{-1} \text{ h}^{-1}) \end{array}$	N ₂ O flux	N ₂ flux	$(N_2 + N_2O)$ flux
			-		(nmol N g ⁻¹ h ⁻¹)	•
0	42	0-6	450	0.78	1.32	2.11
0	42	0-12	532	1.65	2.03	3.68
0	42	0-24	406	1.46	2.25	3.71
0	83	0-6	521	0.93	2.49	3.41
0	83	0-12	630	2.69	3.72	6.41
0	83	0-24	670	1.13	5.26	6.39
10	42	0-6	405	1.78	0.00	1.78
10	42	0-12	483	4.64	0.00	4.64
10	42	0-24	399	3.31	0.00	3.31
10	83	0-6	499	2.24	0.00	2.24
10	83	0-12	642	5.71	0.00	5.71
10	83	0-24	629	5.98	0.00	5.98
SEM (df = $60, n = 6$)			16.9	0.180	0.235	0.355

Table 5. The effect of C_2H_2 on the size and enrichment of the NO_2^- pool in soil treated with ${}^{15}NH_4NO_3$ and two concentrations of glucose for different times

C ₂ H ₂ (%v/v)	Glucose (µmol C g ⁻¹)	Time (h)	NO ₂		
			(nmol N g ⁻¹)	(Atom % excess ¹⁵ N)	
0	42	0	1.9	0.0	
0	42	06	6.9	9.4	
0	42	0-12	4.0	6.5	
0	42	0-24	4.1	2.1	
0	83	0	1.9	0.0	
0	83	0-6	7.0	8.9	
0	83	0-12	7.1	7.6	
0	83	0 24	3.8	1.5	
10	42	0	1.9	0.0	
10	42	06	2.7	0.6	
10	42	0-12	2.8	0.7	
10	42	0-24	3.2	0.5	
10	83	0	1.9	0.0	
10	83	0-6	3.9	0.5	
10	83	0-12	5.5	0.3	
10	83	0-24	3.3	0.2	
SEM (df = 60, $n = 6$)			0.36	0.29	

cation. Nitrification occurred in the treatments without C_2H_2 and increased the size of the $NO_3^$ pool, but did not increase significantly the total losses of N gases. Inhibition of nitrification which is coupled to denitrification can upset estimations of denitrification if NO3 concentrations are limiting. Care should, thus, be taken when applying the C_2H_2 inhibition technique to soils which have been fertilised with artificial NH_4^+ fertilisers or manures where there is a large NH_4^+ pool available for nitrification. In these circumstances the C₂H₂ inhibition technique could underestimate denitrification significantly. Including C₂H₂ as a treatment in conjunction with the ¹⁵N gas-flux method provides a direct method of determining whether the assumptions in the C_2H_2 technique are valid for a particular soil and conditions.

Acknowledgement—J. P. Malone gratefully acknowledges the receipt of a post-graduate studentship from the Department of Agriculture for Northern Ireland.

REFERENCES

- Berg P., Klemedtsson L. and Rosswell T. (1982) Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biology & Biochemistry 14, 301-303.
- Flather D. H. and Beauchamp E. G. (1992) Inhibition of the fermentation process in soil by acetylene. Soil Biology & Biochemistry 24, 905–911.
- Gross P. J. and Bremner J. M. (1992) Acetone problem in use of the acetylene blockage method for assessment of denitrifying activity in soil. *Communications in Soil Science and Plant Analysis* 23, 1345–1358.
- Haider K., Mosier A. R. and Heinemeyer O. (1983) Side effects of acetylene on the conversion of nitrate in soil. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 146, 623-633.
- Haines A. H. (1985) Methods for the Oxidation of Organic Compounds—Alkanes, Alkenes, Alkynes, and Arenes. Best Synthetic Methods. Academic Press, Florida.
- Hauck R. D. (1982) Nitrogen-Isotope-ratio analysis. In Methods of Soil Analysis, Part 2. Chemical and

Microbiological Properties (A. L. Page, R. H. Miller and D. R. Keeney, Eds), pp. 735–779. Soil Science Society of America, Madison.

- Keeney D. R. and Nelson D. W. (1982) Nitrogen— Inorganic forms. In *Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties* (A. L. Page, R. H. Miller and D. R. Keeney, Eds), pp. 643–698. Soil Science Society of America, Madison.
- Klemedtsson L., Hansson G. and Mosier A. (1990) The use of acetylene for the quantification of N_2 and N_2O production from biological processes in soil. In *Denitrification in Soil and Sediment* (N. P. Revsbech and J. Sørensen, Eds), pp. 167–180. Plenum Press, New York.
- Knowles R. (1990) Acetylene inhibition technique: development, advantages, and potential problems. In *Denitrification in Soil and Sediment* (N. P. Revsbech and J. Sørensen, Eds), pp. 151–166. Plenum Press, New York.
- Lee D. G. and Chang V. S. (1979) Oxidation of hydrocarbons. 9. The oxidation of alkynes by potassium permanganate. *Journal of Organic Chemistry* 44, 2726– 2730.
- Mosier A. R., Guenzi W. D. and Schweizer E. E. (1986a) Soil losses of dinitrogen and nitrous oxide from irrigated crops in northeastern Colorado. Soil Science Society of America Journal 50, 344–348.
- Mosier A. R., Guenzi W. D. and Schweizer E. E. (1986b) Field denitrification estimation by nitrogen-15 and acetylene inhibition techniques. *Soil Science Society of America Journal* 50, 831–833.
- Mosier A. R. and Klemedtsson L. (1994) Measuring denitrification in the field. In *Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties* (R. W Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai and A. Wollum, Eds), pp. 1047-1065. Soil Science Society of America, Madison.
- Mulvaney R. L. and Boast C. W. (1986) Equations for determination of nitrogen-15 labeled dinitrogen and nitrous oxide by mass spectrometry. *Soil Science Society* of America Journal 50, 360-363.
- Simarmata T., Benckiser G. and Ottow J. C. G. (1993) Effect of an increasing carbon: nitrate-N ratio on the reliability of acetylene in blocking the N₂O-reductase activity of denitrifying bacteria in soil. *Biology and Fertility of Soils* **15**, 107–112.

- Stevens R. J. and Laughlin R. J. (1994) Determining nitrogen-15 in nitrite or nitrate by producing nitrous oxide. Soil Science Society of America Journal 58, 1108-1116.
- Stevens R. J. and Laughlin R. J. (1995) Nitrite transformations during soil extraction with potassium chloride. Soil Science Society of America Journal 59, 933–938.
- Stevens R. J., Laughlin R. J., Atkins G. J. and Prosser S. J. (1993) Automated determination of nitrogen-15labeled dinitrogen and nitrous oxide by mass spectrometry. Soil Science Society of America Journal 57, 981-988.
- Stevens R. J., Laughlin R. J., Burns L. C., Arah J. R. M. and Hood R. C. (1997) Measuring the contributions of

nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biology & Biochemistry 29, 139-151.

- Tiedje J. M., Simkins S. and Groffman P. M. (1989) Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. *Plant and Soil* **115**, 261–284.
- Topp E. and Germon J. C. (1986) Acetylene metabolism and stimulation of denitrification in an agricultural soil. *Applied and Environmental Microbiology* **52**, 802–806.
- Yeomans J. C. and Beauchamp E. G. (1978) Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene. Soil Biology & Biochemistry 10, 517-519.