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AINtract--The diffusionai deposition of aerosol particles on an isolated circular cylinder in a laminar 
flow has been investigated. A numerical procedure has been presented for solving the fluid flow 
equations which is accurate, fast and stable for Reynolds numbers up to 100 and which can easily he 
extended to other geometries. Expressions for the collection efficiency for any external flow and on 
any shaped body has been derived when the Pecict number is very large and much larger than the 
Reynolds number. In this case the collection efficiency depends only on the fluid vorticity on each fibre 
surface. 

I N T R O D U C T I O N  

Langmuir (1942) was the first to make an approximate calculation of the number of  aerosol 
particles which precipitate from a viscous stream, due to diffusion, on an isolated circular 
cylinder which is perpendicular to the uniform flow of the fluid. He assumed that the flow was 
slow and that all the particles within a volume bounded by a certain streamline are able to 
diffuse to the surface of the cylinder. From the work of Langmuir Natanson (1957) deduced 
the expression for the collection efficiency, e, to be given by 

e = 1.71r- 1 /3pe -2 /3 ,  (1) 

where Pe is the Peeler number, = 2Ua/D,  and U is the undisturbed fluid velocity, a the radius 
of  the cylinder, D the coefficient of  diffusion and for slow flow the hydrodynamic factor, r ,  is 

x = 2 - log, Re. (2) 

The Reynolds number Re = 2Ua/v  where v is the kinematic viscosity. 
Since this paper by Langmuir there have been several theoretical and empirical expressions 

derived for the collection efficiency of a fibre due to diffusion, e.g. Stairrnand (1950), Davies 
(1952), Ranz (1952), Friedlander (1957), Natanson (1957), Stechkina (1957), Torgeson (1958), 
Pich (1966), Kirsch et al. (1968), Yeh et al. (1974) and Yeh (1972). 

The results which are accepted as being, mathematically, correct, at very large values of the 
Peclet number, are those of Stechkina and Natanson which are 

e = 2 . 9 2 x - 1 / 3 p e - 2 / a  + 0.624Pe - l ,  Re ,~ 1, (3) 

e = 2.26Pe -1/2 , Re >> 1. (4) 

In practice the Peclet number is sometimes very large and much greater than the Reynolds 
number. 

In this paper the effects of diffusion on the collection efficiency at finite values of the 
Reynolds number is investigated but with Re ,~ Pe and Pe >> 1. In this regime of parameters 
interception is important and the combined effects of diffusion, interception and inertial 
deposition is now being investigated. The general theory developed here is applicable to a real 
filter where the packing density must be included but only the numerical results are given here 
for the case of an isolated cylinder. 
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F L U I D  FLOW E Q U A T I O N S  

Consider the steady two-dimensional flow of an incompressible Newtonian fluid normal 
to the axis of a circular cylinder. The flow is governed by the non-dimensional Navier-Stokes 
equations 

Re(C~0&o Cqs ? ~ )  
VQO=2r r  ~ ?r cr ~O ~- , I5) 

( : ,  -' ( 1 ~ ~ ) 
V2qj = + r  z - +  ~b = co, ( 6 )  

\ cr" ,'r 7 ~0 ~ 

where (r, 0)are polar coordinates, 0 = 0 being in the direction of the flow. The radial distance. 
r, stream function, ~0, and vorticity, co, have been non-dimensionalised with respect to a. Ua 
and U/a respectively. The non-dimensional radial and transverse velocities of the fluid, u and 
v, are given by 

1 ~ ~ 
u - v - ( 7 )  

r ~0 '  (r  

As is usual with this type of problem where a boundary condition has to be applied at large 
distances the radial distance is transformed by r = e ¢ and then equations (5) and (6) become 

~2(D ~'20) Re 8to &O 

8 T  + ~?02 2 \cO 8¢ C~ ~ O, (8) 

~zq, c-2~ 
C~ ~ .+ ~ = toe 2~. (9) 

Assuming the flow to be symmetrical about the axes 0 = 0 and 0 = ~, then the boundary 
conditions to be satisfied are 

qs= C~ 0 on ~ = 0 ,  

¢, = to = 0 on 0 = 0 and 7r, (10) 

c~ +e CsinO, Cq, 8~ ~ e~c°s0 as ~ ~ .  

A grid system is set up in the region 0 < ~ < ~,. and 0 < 0 < n. Constant angular and radial 
mesh sizes k = n/N and h = ~.,/M are used where M and N are integers. A typical mesh point 
of  the grid system is shown in Fig. 1 using the Allen and SouthweU (1953) notation. The line 
= ¢., is taken as an outer boundary on which approximations to the conditions at infinity 
may be assumed to hold. The numerical method consists of  replacing the partial differential 
equations (8) and (9) by finite difference approximations on the grid, i.e. 

h 2 h 2 ( h 2  t 2 "~ 
~ O , + U q s 2 + ¢ 3 + U ~ O , - 2  1 + ~ -  qso=h  COo e-'o (11) 

\ / 

(l+h2o)to~+-£g(l+klao)to2+(l-h2o)to3+~(1-k#o)to4-2 1 + ~  o)o=0, (12) 

where 

1 ~ ? 0  1 g@ (13) 2(¢, 0) = -~t~-0--~, #(¢, 0) = ~R C~- 

One of the difficulties in solving equation (8) is that the vorticity, co, at ~ = ~,. is unknown 
although to a first approximation one could take co = 0 there. In this paper a gradient-type 
condition for co is used on the assumption that the flow for ~ > ~., is governed by Oseen's 
linearised equations, the solution for which is 

to(~, 0) ~ G(0)Z- 1,,2 exp{ ( c o s 0 -  1)}, ~ >> 1, (14a) 
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Fig. 1. Notation for the grid points. 
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where Z = ¼Re ~ and G(O) is an unknown function of  0. Result (14a) cannot be employed near 
the cylinder as the Oseen approximation is violated in this region, at finite values of the 
Reynolds number. Assuming result (14a) to hold for ~ > ~m we obtain, in a similar way to 
Dennis, Hudson and Smith (1968), that 

o~(~, 0) = o~(~ m, 0) exp {(X -X . ) ( cos0  - 1) -½(~ - ~.)}, (14b) 

where X. is'the value o fx  at ~ = ~,~. In particular, if we put ~ = ~. + h in expression (14b) we 
obtain o~(~,~ + h, 0) in terms of  o~(~ m, 0) which can be used, in a similar manner to a gradient- 
type boundary condition, to eliminate o~1 from equation (12) whenever the point 0 is situated 

The condition for o~ on ~ = 0 depends on the solution of (11). Retaining second order 
accuracy we obtain 

h 2 

The difficulty with solving iteratively the finite difference equations (12) is that the 
associated matrix may fail to be diagonally dominant at large values of  the Reynolds number, 
although only in a limited region of the computation. Diagonal dominance is a sufficient 
condition for the convergence of the Gauss-Seidel or successive over relaxation iterative 
procedures and the procedures may fail to converge for matrices which are not diagonally 
dominant. Thus previous investigators have had to use small relaxation parameters which 
may be as low as 0.05 at Re = 100, see Hamielec and Raal (1969). The matrices associated 
with the finite difference equations obtained by using forward or backward differencing of  
the first order derivatives depending on the direction of  the flow give rise to matrices which 
are diagonally dominant. The big disadvantage is that the finite difference equations are first 
order accurate only. 

Allen and Southwell (1953), Dennis (1960) and Dennis, Ingham and Cook (1979) 
developed a method of representing the two dimensional Navier-Stokes equations, in 
cartesian form, in finite difference form in which the associated matrices are diagonally 
dominant and further the truncation error is second order accurate. Here we shall extend the 
method as described by Dennis, Ingham and Cook to deal with the cylindrical geometry 
present in this problem. 

Equation (8) can be written 

+ ~--~-- + 2/.-~- + 2/~-~ = O, (16) ~2 

and the difficulty in using the standard central difference numerical scheme is the presence of 



360 D.B.  INGHAM 

the first derivative terms. Therefore we split equation (16) up into two equations, one 
involving the C derivatives and the other the 0 derivatives only, i.e. 

C2CO CCO 
- - + 2 ) . = 7  = A(~, 0), 117t ?c~ 2 c¢ 

~2¢o ~oJ 
+ 2#-z-x~ = - A(~, 0), (18) 

~0 ~ cO 

where A is an unknown function of ~ and 
(17) is transformed locally for 0 = 00 in C o - h  < C < Co + h by the substitution 

where 

0. The offending first derivative terms in equation 

= F exp { - s ( # ,  0o)~, 

s(C, 0o) = 2(~, 0o)d~. 
o 

Equation (18) is transformed locally for ~ = ~o in 0 o - k  < 0 < 0 o +k  by 

oJ = Gexp{ - t (¢o ,  0)}, 

(19) 

where (20) 

t(¢o, 0) = /a(¢ o, 0)d0. 
o 

Substitution of expressions (19) and (20) into the equations (17) and [18) respectively, 
eliminating A, expanding the exponentials in a Taylor expansion near the point 0 and 
replacing second order derivatives with central derivatives, gives 

6o, [ 1 + 2oh + ~°2;2 1 + h 2 - -  ~-~(-t) 2 [1 +/aok + --/%z22 ] 

+ 

h2 ) +  ½(~.2h2 + la2k2) l = O - 2 %  I ( 1  + p - 

(21) 

see Dennis, Ingham and Cook for further details. 
It is seen that the conventional central difference equations (12) can be obtained by setting 

equal to zero the terms underlined in expression (21). It is very easy to verify that the matrix 
associated with the finite difference equation (21) is always diagonally dominant since the 
sum of the first four coefficients in equation (21) is equal in magnitude to the coefficient of e9 o. 
There is no obvious way of deciding if the finite difference equation in the form (21), with or 
without the terms underlined, is the more accurate in general as both schemes are second 
order accurate. The main advantages of the method described here is that it is second order 
accurate and the associated matrix is diagonally dominant. The finite difference equations 
(11) and (21) are now solved iteratively by the point by point Gauss Seidel method. The 
procedure is straightforward and hence no further details will be given here. 

Computations were performed for R = 0.5, 1, 5, 7, 10, 20, 40, 70 and 100 with various 
values of h, k and ¢.,. In all cases the iterative procedure was convergent without the need to 
use a relaxation parameter. Grid sizes of h = k = rt/20, 7t/30, rt/40, ~r/50 and rt/60 were used 
and the results presented here are those obtained by using h2--extrapolation although these 
results are indistinguishable from those obtained when using h = k = r~/60. The position of 
C,. was varied but in general ~., = n was found to be satisfactory because of the application of 
the boundary condition (14) on to. The variation of the surface vorticity on the cylinder is 
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Fig. 2. Vorticity distribution over the surface of the cylinder. 

shown in Fig. 2. When the Reynolds number exceeds about  7 it is seen that the flow separates 
at the rear of  the cylinder. 

D I F F U S I O N  EQUATION 

The non dimensional equation for the particle concentration in (~, 0) coordinates can be 
written 

ac ac 2 _ I-a'c a2c']  

where c, Up and vp are the non dimensional concentration, radial and transverse particle 
velocities, being non-dimensionalised with respect to the uniform concentration Co at large 
distances and the undisturbed fluid velocity. If  the Peclet number is very large, as is usually 

~32c 
the case in practice, then the ~ term in equation (22) can be neglected. Also, for fine particles 

up and vp can be replaced by the fluid velocities u and v and hence the differential equation (22) 
reduces to 

c9c t~c 2 - ~2c  (23) 
u ~ +  v ~  = Ve e ~,.  

In the case under investigation here, i.e. Pe ,3, Re and Pe ,3, 1, a diffusion boundary layer 
exists very close to the boundary of the cylinder. In this diffusion boundary layer the vorticity 
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is effectively a constant across it, although it varies with 0. Hence within the diffusion 
boundary layer we have, approximately, 

~, = ½ U B ( 0 ) ,  ] 
where / (24) 

B(O) = ~o(0, 0). 

The function B(O) has to be determined numerically at intermediate values of the Reynolds 
number although at small values of  the Reynolds number it can be obtained analytically and 
is given by Lamb (1932) and used by Natanson (1957). 

On changing the independent variables to if, 0 equation (23) becomes 

3c 2(2B(0))~:2 ~ ( ~?_~) 
3 0 -  Pe c~ff qjlZ , (25) 

and introducing the independent variable 

qb-- ~ (B{O))l"2dO, (26} 

then the equation (25) becomes 

&' 3 ( , 2 3 c )  3 ~ - &  ¢' G (27) 

The solution of  equation (27), subject to the boundary conditions that c = 0 at ~0 = 0 (on 
the surface of the cylinder) and c = 1 as qJ --* zc (far away from the cylinder), is given in Levich 
(1952) and is 

C 4 ( 4"~13 4 3  ; expt : ldz ,--, 

where z = ~¢1/2/(]~1/3.  

The collection efficiency is given by 

2 f :  ( 3 ~ )  dO, (29) 8=P--ee ~=0 

which gives, on using the result (28), that 

e = 0.8546 {i~[B(O)]l/ZdO}l/3 Pe -z:3 (301 

At a given value of  the Reynolds number the collection efficiency can be evaluated using the 
result (30) given the vorticity distribution on the surface of the cylinder which has already 
been determined and is shown in Fig. 2. The difficulty arises for flows which separate. As seen 
in Fig. 2 no separation occurs for Re < 7 and hence e can be determined using result (30). For 
Re > 7 there is a recirculating region behind the cylinder and the flow picture is shown, 
schematically, in Fig. 3. At large values of  the Peclet number equation (22) gives that the 
concentration is a constant along a streamline except near regions of  rapid change. Thus in 
the bulk of  the flow the streamlines originate at large distances from the cylinder and 
therefore the concentration is uniform, Co, there. Near the boundary of  the cylinder a thin 
diffusion layer, of thickness Pe-  t/3 exists. In the recirculating region behind the cylinder the 
concentration on a streamline will again be constant and in fact probably the same constant 
on all the closed streamlines. The value of the concentration, on these closed streamlines, 
however, is unknown. It is most probable that the concentration is zero on the closed 
streamlines and hence the values of e would be given by 

e=0 .8546  ,[~[B(O)]~/2dO]l/3 p e - a : 3 = e i p e - 2 3 ,  say, (31) 
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Fig. 3. Schematic flow picture for Re E 7. 

where 02 is the angle at which separation occurs. It is possible that the concentration on the 
recirculating steamlines is that of  the mainstream and then e would be given by 

----- gtPe -2/3 +0.8546 [So[._B(0).]l/2d011/3 Pe -2/3 

= (~1 +g2) Pe-2/3, say. 
(32) 

RESULTS AND C O N C L U S I O N S  

Figure 4 shows the variation of  the collection efficiency with the Reynolds number when 
the Peclet number is very large for flow past an isolated circular cylinder. At Re = ½ the 
numerically obtained value of  ~, using result (30), is in excellent agreement with Natanson's 
analytical expression (3). Up to Re = 7 expression (30) has been used to determine ~ whereas 
for Re > 7 both expressions (31) and (32) have been used to evaluate ~1 and ~2. 

It is seen from Fig. 4 that for the range of  Reynolds number under consideration here that 

ex ~ Re x/l x. (33a) 

This increase in e t with Reynolds number is at a much slower rate than that suggested by 
Johnstone and Roberts (1949) and Ranz (1951), namely 

~" Re 1/6. (33b) 

However, it is observed from expression (30) that e ~ B 1/3 and from Fig. 2 that up to the 
maximum value of  the vorticity B ~ R 1/2. Hence the contribution to e from 8 = n to 8 ~ ¼~ 

varies as R ~ ,6 but in the region 02 < 0 < ~ there is a greater contribution to e at the smaller 

Reynolds numbers than at the larger Reynolds numbers. Hence it is not surprising that the 
value of  e increases more slowly with increasing Reynolds number, in the range 
1 <__ Re _< 100, than that suggested in the empirical result (33b). 

The results presented in this paper are only valid for Pe ~> 1 and Re <~ Pe and hence as the 
Reynolds number increases we do not expect the inviseid solution (3) as obtained by 
Natanson to be approached. In fact the results presented in expression (4) will never be 
achieved from solving a viscous flow problem because the flow always separates at very large 
values of the Reynolds numbers and hence the potential solution for the flow past a circular 
cylinder is not valid near the surface of  the cylinder. 

The results presented in expression (30) are valid for any viscous flow provided Pe >> 1 and 
Re ~ Pe. Hence for real filters the fluid mechanics problem has to be solved first. Having 
obtained the vorticity distribution on each fibre the total collection efficiency may be 
calculated using expression (30). 
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Fig. 4. Variation of the diffusion collection efficiency of an isolated fibre at various values of the 
Reynolds number. 

In real filters fibres are orientated, more or less, parallel to the basal planes of  the filters. 
However, the orientations of  the fibre sizes are usually not uniform. A rigorous theoretical 
study of  the real situation seems very difficult due to the complicated nature of  the geometry 
and therefore a simplified model must be used. According to Kirsch and Fuchs (1967), the 
"fan model" resembles the real filter closer than either the "staggered-array model" or "cell 
model". A rigorous theoretical study of  the fan model is very complicated as it is a three 
dimensional model. Yeh and Liu (1974) and Yeh (1972) have investigated the staggered-array 
model based on the solution of  the Navier-Stokes equations for Reynolds numbers up to 30. 
They compared their results with the theoretical studies of  Kuwabara (1959) and Happel 
(1959) which are based on a cell model with an arbitrarily prescribed boundary condition on 
the outer boundary of  the cell and an approximation to the Navier-Stokes equations, the 
slow flow equation, which is valid only for Reynolds numbers approaching zero. At Re = 0.1 
the results ofKuwabara,  Happel and Yeh and Liu are in very good agreement but at Re = 30 
the results obtained by the cell and staggered array models do not agree. 

Hence for real filters the vorticity distribution on the surface of each fibre has to be 
determined. This is most easily done by assuming either the staggered-array or cell model. 
The collection efficiency is then determined from expression (30). 

Emi et  al. (1980) are investigating the diffusion collecting efficiency of fibres for 
1 < Re _< 100 and 1 -< Pe -< 106. They have also considered the effects of  the packing of  the 
fibres by using a modified Kuwabara-Happel  cell model for the flow. From this flow model 
the present results could be extended to include the effects of  the fibre packing. Further the 
results to be given by Emi et  al., at finite but large values of  the Peclet number, will indicate the 
value towards which the concentration is tending on the closed streamlines as the Peclet 
number becomes very large. 
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