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Abstract 

Stability of a control system having PD type of fuzzy controller (a two-input and single-output controller) is analyzed 
in this paper using Yakubovich's method. In this analysis, the controller is treated as a two-input and two-output 
controller, and the nonlinearity of the controller is characterized as the sector condition. Absolute stability conditions are 
derived for the control system as three conditions; two are conditions for either one of control modes, P or D, is 
independently operating; the third is the condition for two modes are simultaneously active. The former two conditions 
are nothing but Popov's conditions for two SISO systems. A new graphical method is proposed to solve the latter 
condition. This method is explained illustratively using an example, and the results obtained are compared numerically 
with those by other graphical methods as well as simulation results. 

Keywords: Control theory; Fuzzy control system; Absolute stability; Yakubovich's criterion; Popov's trajectory 

1. Introduction 

Applications of fuzzy logic controllers have been gaining significant practical usages, since Mamdani  [7] 
utilized this type of controller for the control of a steam engine. However, the systematic design methodology 
of fuzzy controllers has not been formulated yet; some efforts to establish the methodology have been started 
[2, 4, 9, 12]. If a systematic design algorithm is formulated, practical applications of fuzzy control system can 
be greatly widened. 

One important  prerequisite for the fuzzy control to widen its application areas is to devise the method for 
the stability analysis of the control system. Generally, the fuzzy controller can be regarded as a kind of 
nonlinear controller as some researchers have pointed out [4, 5]. If a controlled plant is linear, some of the 
traditional stability analysis methods for the nonlinear control systems [1, 10, 13, 16] could be applicable to 
fuzzy control systems. Several approaches in this line have already been started [3-6, 11, 14]; for example, 

* Corresponding author. 
11ndo-National Ltd., A.K. Nagar, Nellore (AP), Pin-529002, India. 

0165-0114/95/$09.50 © 1995 - Elsevier Science B.V. All rights reserved 
SSDI 0165-01 14(94)00335-1 



322 R. Katoh et al. / Fuzzy Sets and Systems 74 (1995) 321-334 

Kirckert and Mamdani utilized the describing technique [4], Hojo et al. [3] and Maeda et al. [6] used the 
phase plane method, Tanaka and Sugeno [11] made use of Lyapunov's direct method, and Kitamura 
proposed the extended circle criterion for this analysis [5]. The results obtained by these respective methods, 
however, have not been compared to each other yet. 

In this paper, Yakubovich's method [ 13] is applied for the analysis of a control system having a PD type of 
fuzzy controller, which has two inputs and a single output, by transforming the system into a two-input and 
two-output fuzzy control system having a linear plant; a Lure's control system. A fuzzy controller derived by 
an indirect reasoning [6, 8] is used here, and the nonlinearity of the controller can be characterized by the 
sector condition. Yakubovich's method is universally applicable to the absolute stability analysis of Lure's 
system which consists of two parts; an asymptotically stable linear part; static nonlinear part, input-output 
relations of which are characterized by sector conditions. 

Absolute stability conditions derived for the control system are represented by three conditions; two of 
them are those when either of two control modes, P or D mode, is independently operating to the system, and 
the last one is that when two modes are active simultaneously. It will be made clear that the former 
conditions are nothing but Popov's conditions for two SISO (single-input and single-output) systems, and 
a new graphical algorithm for solving the latter condition will be proposed. Analysis is carried out by solving 
an example; a second order oscillatory plant with a dead time is assumed; the results obtained are compared 
numerically with those by other graphical methods as well as simulation results. 

In this paper, boldfaced italic capital and small letters denote matrices and vectors, respectively, and 
nonboldfaced italic small letters denote scalars, as the notations. 

2.  Y a k u b o v i c h ' s  s t a b i l i t y  c r i t e r i o n  

In this section, the absolute stability analysis method of the nonlinear control system proposed by 
Yakubovich [13] is explained briefly to be easily applicable to analyze the stability of the fuzzy control 
systems. 

In the method, the following system is considered. 

dc = A x  + bu, a = cx (linear dynamic plant), (la) 

u = - 4~(a) (nonlinear static controller), (lb) 

where x = [ x j ]  ~ R v× 1 is a state variable vector of the system, a = [a j ]  ~ R m× 1 is an output vector of the 
plant, ~ = [ 4~j] e R n × 1 is an output vector of the controller, A ~ R v × ~, b ~ R ~ ×", and c e R m × ~. It is assumed 
that the linear plant is controllable, observable, and stable, that is, A is a stable (Hurwitz) matrix. 

The system defined in Eq. (1) can be written as 

= - ¢ ~ ( s ) 4 , ( ~ ) ,  ( 2 )  

where G(s)  is the transfer function of the linear part of the system, and it is defined as 

G(s)  =- c ( s l -  A ) -  l b. (3) 

The stability analysis procedure of this system can be formulated as follows: 
(1) It is assumed that it would be possible to find homogeneous quadratic forms Wj in the input rrj 

(j = 1 . . . . .  m) and the output ~bj (j = 1 . . . .  , n) of nonlinear elements, and also that during the operation of the 
system the aj and the ~bj satisfy the relations 

W j = O  ( j =  1 . . . . .  k l ) ,  (4a) 

W j  >1 0 ( j  = kl  + 1 . . . . .  k~ + k 2 = k) .  (4b) 
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Cj C j =  /-/j 2 O" j 

~~ j ( aj ) y ~ j =  /~j, O'j 

P 0". 
0 J 

Fig. 1. Sectors enclosing nonlinear function ~b(a). 

For example, let the output q~j and the input trj always be situated on the aj-49j plane between the rays 
thj = piltrj and ~bj = pj2trj, as shown in Fig. 1, where/~i~ and P~2 (#~ < #j2) are constant positive numbers. 
Then, the relation #j~ ~< ~bj/aj ~< #j2 is satisfied, i.e., the following quadratic form Wj can be found: 

Wj ~ (~)j -- ~jlO'j)(]2j20" j -- ~)j) ~ O. (5) 

The nonlinear element j can be characterized by a sector [/~j~, ~2j2], where parameters/~jl and ~j2 are usually 
called as sector parameters. 

(2) By introducing parameters zj (j = 1 . . . .  , k) a new quadratic form W is defined by 

k 
W(¢~ a) - ~ rj Wj. (6) 

j=l  

(3) The following quadratic form in the complex variables ~ with coefficients depending a complex 
parameter s is setup. 

F(s'dp) = Re lS ~h= l Oh~9~O'qh] "~- w (~)'lT)' (7) 

where a = - G ( s ) O ( a ) ,  aqh = --Gqh,h(S)f~h, Gqh,h(S) means a qh column h row element of G(s), and ~b~' is 
a complex conjugate of ~bh. 

System (1) is absolute stable if the quadratic form F is negative definite for admissible parameters rj, 0j and 
for all ~o ( -  ~ ~< ~o ~< ~ ). Appendix shows how parameters zj and 0 i must be selected. 

3. Control system having a PD type fuzzy controller 

Many types of fuzzy controllers have been already proposed. They can be classified according to the 
reasoning method and the defuzzification method. In this paper, a fuzzy controller proposed by Murakami 
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and Maeda [8] is studied because its input-output relation can be expressed in an analytical form, which is 
derived by the indirect reasoning and the defuzzification by the maximum grade. 

Fuzzy control rules for the position algorithm of this controller having P and D modes are given as a pair 
as follows: 

Re,: IF ei is P / T H E N  u is P.i (8a) 

RN,: I F e i i s N ~ T H E N u i s N , i  f o r i = l , 2 .  (8b) 

In the rules, e~ means e or de/dt, where e is a control error and u is a controller output. Characters P and 
N are the positive and the negative fuzzy sets, respectively. Membership functions for P~, Pui and Ni, N,~ are 
defined as follows: 

2e, = (l/r0 tan-l(ciei)  + 0.5, (9a) 

2N, = - ( l /n) tan- l (c le i )  + 0.5, (9b) 

2e,, = (1/2bi)u + 0.5, (9c) 

2Nu, = -- (1/2bi)u + 0.5, (9d) 

where c~ = tan(O.45n)/ai. Parameters al and b~ are the values of inputs and outputs in the universe of 
discourse for which value of membership function is 0.95 and 1.0, respectively. 

Eqs. (8) and (9) show that the controller is characterized by a smaller number of the membership functions 
than the direct reasoning method: two pairs of symmetrical function for one control input. Output of the 
controller can be obtained by a geometrical method [14] as well as the method described in [8] as follows: 

u = K¢{ tan- l (c le l )  + tan-l(cze2)},  (10) 

where K,  = 2b~bz/rc(b~ + b2), e~ = e, and e2 = de/dt. Eq. (10) shows this controller is characterized as 
a nonlinear PD type. 

Let us consider the sector condition of the controller. Output u of the fuzzy controller given by Eq. (I0) 
cannot be written in the form of u = ~b(e), because the controller has two inputs el and e2. Then, the 
controller is here regarded as having two inputs and two outputs: 

u = d p = K c { ~ t a n - ~ ( c ~ e ' ) }  ' , = ,  (11) 

which can be split as q~ and 4)2 as follows: 

' dpi = Kc{tan-l(ciei)},  i = 1,2. (12) 

Each ~b~ is enclosed between a sector [0,/~], where p~ is the slope of the straight line touching the curve 4~ at 
the origin of the e~-q~ plane: 

Ill = K e c  i. (13) 

Here, the fuzzy controller represented by Eq. (10) is used for the discussion of the stability of the fuzzy 
control system, which can be illustrated using a block diagram, as Fig. 2. However, if the output of the 
controller can be written as the sum of the outputs of P mode and D mode just as Eq. (10), the bellow analysis 
is proper independently of the type of fuzzy controller. 

The control system having this controller can be translated to a Lure's system shown in Fig. 3, assuming 
the asymptotic stability for the linear part, where ei = - try. Let G~ (i = 1, 2) be the transfer function from the 
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PD Fuzzy Controller .......................... , Plant 
ref I'- =el i -  -I'1 ,~ 

 ;Vj I 
Fig. 2. PD type fuzzy control system. 
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Fig. 3. Fuzzy control system transformed to a Lure's system. 

input of the plant to its output a~, we have 

al  = - G l ( S ) {  q~ l (a l )  + ~b2(a2)}, (14a) 

a2 = - G 2 ( s ) {  c~l ( ax ) + ~b2(a2)}, (14b) 

where G1 (s) = G ( s )  and G2(s )  = s G ( s ) .  Therefore, the output of the control system can be written as 

a = -  G2 ~' (15) 

where a = ( a l , a 2 )  ~ and ~ = (q~x, ~b2) T. 

4. Stability condition 

In this section, stability condition of the fuzzy control system shown in Fig. 3 is derived using 
Yakubovich's method explained in Section 2. As the nonlinearity of the controller can be represented by 
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0 <~ c~Jtrj <~ pi due to Eq. (12) and the homogeneous quadratic forms Wi (i = 1,2) can be described by the 
form of Eq. (5), parameters zi are nonnegative (see Eq. (A.lb) in the Appendix). Moreover, parameters 0i are 
also nonnegative, because the controller satisfies the condition of Eq. (A.2a), as shown in the Appendix. 

Application of Eq. (7) for the analysis of this system gives the following equation: 

F = - Re[q~*~(jco)~], (16) 

where n(rio) = ~d/~d- 1 + Re [(~d + jcoOo) G(jco)]. Parameters ~d, Pg 1 and 0d are diagonal matrices having 
[z l, 32 ], [pi-1, p ~ l ]  and [01,02 ] as diagonal elements, respectively. And, this equation can be rewritten as 

F = - 4~*{n(jo~) + n*(jco)} 4~/2. (17) 

For the absolute stability of the control system, F in Eq. (17) is required to be negative definite. Since 
n(jo~) + n*(jco) is a Hermite matrix, inequalities (18) and (19) are obtained by applying Sylvester's criterion 
for the positive definiteness of the matrix for 31 ~> 0, ~2 >~ 0, 01/> 0, 02 ~> 0. 

~ ' 1 # 1  1 "q- R e [ ( r l  +j foO1)Gl ( jco)]  > 0 (18) 

4{31#~ -1 + Re[(~l +jooO1)Gl(jo~)]} {~2#21 + Re[('c2 + j o g O z ) G 2 ( j ~ ) ] }  

-- {Re[(zl  + jcoO1)Gl(jco)] + Re[(z2 + jcoOz)Gz(flo)] }2 

- {Im[(31 +jcoOx)Gl(j~o)] - Im[(zz +j~Oz)Gz(jco)]} 2 > 0 ( -  oo ~< co ~< oo). (19) 

Stability analysis is divided into three steps to bring out clearly the algorithm involved in the analysis. 

4.1. Step A 

The first condition, Eq. (18), is nothing but Popov's stability condition for a single-input and single-output 
system, in our case the system consists of ~bl and G1. As another necessary requirement in order to satisfy 
Eq. (19), the following condition is obtained: 

32#21 + Re[(~2 +jcoO2)G2(jco)] > 0. (20) 

oJ G. ~ / /  

GiR 

Fig. 4. Modified Nyquist trajectory Gi + and Popov straight line. 
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This is derived from the following two facts: Eq. (18): the fact that last two terms of inequality (19) are always 
negative. By dividing two conditions (18) and (20) by T1 and %, respectively, the following conditions can be 
derived: 

/~fl + Re[(1 +jooqi)Gi(jo9)] > 0 ,  i =  1,2, (21) 

where qi = 0i/ri. 
Parameter values #~-1 and q, that are obtained by drawing the modified Nyquist trajectories and the 

Popov straight lines for condition (21) as the critically stable values are defined as ~-  1 and ~,  respectively. 
The modified Nyquist trajectory is called the Popov trajectory. Fig. 4 shows a typical example of the 
modified Nyquist trajectory G + and a Popov straight line. Characters G~R and G~I means a real part and an 
imaginary part of the Gi, respectively. 

4.2. Step B 

By dividing condition (19) by T2 z, and defining rl/T2 = r, the following inequality can be obtained. 

f ( z )  = A(o))r 2 + B(~o)r + C((o) < 0, (22) 

where 

A(~o) = Re2[Fl(j~0)] + Im2[Fl(jog)], 

B(co) = 2{ Re[F~(j~))] Re[F2(j~o)] - Im[F~(jo))] Im[F2(j~o)]} 

- 4{~? 1 + Re[F~(jo))] } {#21 + Re[Fz(jo))]}, 

C(o9) = Re2[F2(jo))] + ImZ[F2(je))], Fl(jcg) = (1 +je)ql)Gl(je)), Fz(jo)) = (1 + jcoq2)G2(jco). 

Let F(T) be defined by putting kt/- 1 =/7/- 1 and qi = q/(for i = 1, 2) in f ( r ) ,  where parameters/~i- x and qi are 
determined in Step A. Sufficient condition for satisfying condition (22) is that there must exist at least one 
r such that F(r)  is negative for all positive co. If we assume all coefficients A(co), B(~o), and C(~o) of F(r) are 
bounded for 0 ~< e) ~ oe, we can expect that the upper value of F(z) is bounded for a finite value ofz so that 
we can find a curve enveloping all F(z) curves in the z-F(T) plane from the upside for 0 ~< (o ~< oe. The 
envelope curve can be used to check whether or not Eq. (22) is satisfied: if there exists a negative region in the 
envelope, we guarantee Eq. (22) is satisfied; otherwise, Step C is applied. 

4.3. Step C 

Let El(r)  express f(~)  on selecting 

/ ~ l = / ~ f ~ + k ~  (k />0) ,  qi=-gli ( i=1 ,2 ) .  (23) 

Then the following relation can be obtained. 

F~(r) = F ( r ) - -  4{kz(/~[ -1 + Re[F1])  + k1(/~21 + Re[F2])} r - 4klk2~. (24) 

Let a value of the envelope curve obtained in Step B for an arbitrary r = ~ be ~ ( > 0). If a value of k~k2 is 
determined as shown in condition (25), then a parameter r satisfying condition (22) exists without any failure, 
because the second term on the right-hand side of Eq. (24) is not negative due to conditions (18) and (20). 

klk~ > e/4L (25) 

It is clear from condition (25) that a value ofe/~ should be minimum for guaranteeing a wider stable region 
of the control system. The minimum value can be chosen if a straight line passing through the origin of this 
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graph and contacting with the envelope curve is selected, a slope of which helps estimate the minimum value 
of k l k 2 .  

5. Illustrative analysis 

Here stability analysis is concretely done using a simple example. A second order plant with delay is taken, 
transfer function of which is given by 

G(s)  = Kto2e-1S/ (s  2 + 2¢to,s  + toe), (26) 

where K is a plant gain, to, is a natural frequency, ( is a damping factor, and L is a dead time, respectively. In 
the present analysis, the values of these parameters were selected as K = 2.5, to, = 1.0 rad/s, ~ = 0.4, and 
L = 0.5 s. 

Analysis will be followed as stated in Section 4, Steps A-C. 

5.1. Step A 

By drawing the two modified Nyquist trajectories and Popov's lines, Figs. 5 and 6, the values of 
parameters/~f 1 and ~i for i = 1, 2 are obtained as follows: 

/~-1 = 1.420, ~1 = 0.809, /~21 = 0.728, q2 = 0.150. (27) 

5.2. Step B 

Using the values of/~- 1 and qi for i = 1, 2, an envelope curve is drawn as shown in Fig. 7. 

2- 

i + 

I I G l r  

G1 

Fig. 5. Modified Nyquist trajectory and Popov straight line for Gl(s) = G(s). 
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-3 

w G z  i + 

, ~ ~ G2 r + 

Fig. 6. Modified Nyquist trajectory and Popov straight line for G2(s ) = sG(s). 

F ( r )  

- 1  

T a n g e n t  . . . . .  

Fig. 7. Envelope curve. 

5.3. Step C 

Values of e and ~ are determined as 3.376 and 1.147, respectively, by drawing a line passing 
through the origin of the graph and contacting with the envelope curve, and the following condition is 



330 R. Katoh et al. / Fuzzy Sets and Systems 74 (1995) 321-334 

- - - -4  
- 1  

F ( r )  irl 
2.5 

- 2 5 -  1 

Fig. 8. Envelope curve obtained for k~ = k 2 = 0.857. 

obtained: 

klk2 > 0.735. (28) 

Various sets of/~1 and #2 guaranteeing the stability of the system are determined by using Eqs. (23), (27), 
and condition (28). For example, if the value of kl and k2 is selected as k~ = k2 = 0.8574, the following 
conditions as for the values of parameter/~1 and/~2 can be derived: 

#1 < 0.439, g2 < 0.630. (29) 

Critical values obtained in these conditions (29) are substituted into Eq. (22) to draw a new envelope curve as 
shown in Fig. 8. This figure shows that there exists z's (0.42 < z < 2.76) such that condition (22) is satisfied. 

However, a minimum value of the envelope curve in Fig. 8 is much less than 0, this fact implies a possibility 
of a better solution. A better solution can be obtained by reducing the values of kl and k2 and repeatedly 
drawing envelope curves by trial and error until condition (22) is marginally satisfied. For example, if kl = k2 
is assumed, these values are obtained after several iteration as follows: 

kl = k2 > 0.630. (30) 

Finally, the following condition was obtained: 

#1 < 0.487, #2 < 0.736. (31) 

It is clear that this condition is better than the condition shown in (29). The envelope curve drawn in the 
condition kl = k2 = 0.630 is shown in Fig. 9. In this procedure, the values of parameters ql and q2, which are 
obtained by Eq. (27) in Step A, are fixed. 

It should be noted that the present method described in Section 4 can give the relation between the 
parameters/~1 and/~2, which correspond to the proportional gain and the differential time of the controller 
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_____+ 
- 1  

F ( r )  

2.5 

2" 

- - 2 . 5 -  

Fig. 9. Envelope curve obtained for kl = k2 = 0.630. 

respectively as shown in Eqs. (23) and (25), although the result obtained by this method is more conservative 
than that by a cut-and-try method. 

6. Comparison of the results 

Results obtained by the present method are compared with the results by other graphical methods, namely 
Shankar's method [10] and Kitamura's method [5], as well as simulation results. These other methods and 
a simulation method will be briefly explained here. 

6.1. Shankar 's method 

This method can analyze the stability of nonlinear MIMO (multiple-input and multiple-output) control 
system. The method can be applied for a PD type of fuzzy control system, because this system can be 
regarded as a two-inputs and two-outputs system. Stability conditions can be obtained as follows 

/ a l  1 " + - R e [ F l ( j c o ) ]  > 7/2, (32) 

~21 + Re[Y2(j~o)] > 7/2, (33) 

where 

72 = {Re[(1 + j~oO1)Gl(jco)] + Re[(1 +jogO2)G2(jog)]} 2 

+ {Im[(1 +jogO1)Gl(j~)] - Im[(1 + jo~02) G2(jto)] }2. 

Either of these conditions can be solved by drawing a modified Nyquist trajectory shifted by ~/2 and 
Popov's line. This method has two disadvantages: one of them is that it is difficult to obtain a solution 
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3. L ® @ . Simulation Result 

Pr:en: M@Lod @ 
2 . ~  N A ~ ' ~  (Better Solutions) ® 

21o . . . .  I \  = . 
J ~ ' ~ ] ~ ^ . I  N t x~Kitamura's  Method ® 

:I.[ : . X  .... • . . . . .  

C[ __ . - = . _ ~  ® , 
[) 0.5 1 - 1 . 5 -  2 2.5 3 3.5 4 

#1 

Fig. 10. Comparisons of the analysis results. 

satisfying the above inequalities, because the value of 7 depends upon all the 0i (i = 1, 2), where 071 means the 
slope of Popov's line; another is that the method gives only one set of Pl and P2. 

6.2. Kitamura's method 

This method is explained in connection with the present example. In his analysis, utilizing the relation 

u = (a(el ,e2) = K c { t a n - l ( c l e l )  + tan- l (c2e2)}  <<. Kc(c le l  + cze2) (34) 

and introducing a new variable tr = (clel  + c2e2)/(c 2 + c22) 1/2, an extended sector condition is obtained as 
follows: 

0 <~ ck(el,e2)/a <<. k, (35) 

where k = K¢(c 2 + c2) 1/2. Then, the controller nonlinearity can be characterized by a sector [0, k]. 
The stability condition, called extended circle criterion, is given by 

kf  1 + Re[(cl  +jtoc2)Gl( j to )]  > 0. (36) 

If the values cl and c2 corresponding to the input membership functions, as explained in Eq. (9), are given, the 
value of k can be estimated by drawing the Nyquist trajectory of (c~ + j o c 2 ) G I  (joo) and Popov's line having 
an infinite slope. Parameters Pl and #2 can be related to parameters K¢ and ci (i = 1, 2) as follows: 

lal = K~Cl = kc l (c  2 + c2) -1/2, (37) 

#2 = K¢c2 = kc2(c 2 + c2) - 1/2. (38) 

6.3. Simulatgon method 

Actual values of/~1 and #2 for the stability of fuzzy control system are estimated through computer 
simulations. For the given values of cl and c2, controller gain Kc is established by carrying out numerical 
simulations applying the Runge-Kut ta  method. Values of/~1 and/~2 are estimated according to Eqs. (37) and 
(38). 
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In Fig. 10 the boundaries of the stability regions of the system guaranteed by five methods are shown in the 
p1-#2 plane. A solid line means the boundary by the present method. Symbols ~, O, × and ~ mean the 
results by the present better solution, Shankar's method, Kitamura's method and computer simulations, 
respectively. The following is suggested: 

(1) All methods except the present method can give only one set of Pl and p2, namely one point in the 
/~1-#2 plane, in one trial of each analysis. Especially, Shankar's method can give only one solution as 
described above. 

(2) All results are conservative compared with the result by computer simulations. 
(3) The present method and Kitamura's method are complementary to each other. The former gives better 

results than the latter when either of two control modes, P and D, is more active than another, and the 
situation is reverse when both control modes are active. This fact was verified in other examples which were 
examined. 

7. Conclusion 

Absolute stability conditions were derived for the control system having a PD type of fuzzy controller 
using Yakubovich's method. The conditions were represented by three conditions; two are conditions for 
either one of two control modes, P or D, is independently operating; the third is the condition for two modes 
are simultaneously active. The former two conditions are nothing but Popov's conditions for two SISO 
systems. A new graphical method was proposed to solve the latter condition. Present analysis method was 
applied to the second order oscillatory plant with dead time to estimate the upper bounds of the sector 
parameters, and the better solutions were also searched through trial and error in order to bring out steps 
involved in the stability analysis of the two-input and two-output control system. Comparisons of the results 
were also carried out with other graphical methods as well as computer simulation. The present method has 
the advantage in the meaning that the result obtained by this method can give the stability region in 
a controller's gain parameter plane (the ill-/A2 plane), while other methods can give the only one point in the 
plane by one trial of each analysis. 

In this paper, the assumption that all coefficients A(co), B(co), and C(co) of F(z )  are bounded for 
0 ~< co ~< ~ was used, as shown in Section 4. The condition that this assumption can be held must be 
mathematically examined in more detail to extend the applicable field of this stability analysis method, for 
example, a control system having a PID type of fuzzy controller. 
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Appendix 

Values of parameters rj and Oh must be determined by the following rules according to Yakubovich's 
method. 

Selection o f  values o f  parameters rj 

Admissible values of parameters zj are determined as follows: 
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zj: arbi t rary  f o r j  = 1, ... , k l ,  (A.la) 

z j>~0 f o r j = k l  + 1, ... , k l  + kz = k. (A.lb) 

Selection o f  values o f  parameters Oh 

Parameter  0, is selected as follows: 

Oh >~ 0 if ~bh(aqh) satisfies the positivity condition,  (A.2a) 

Oh <~ 0 if -- ~bh(aqh) satisfies the positivity condit ion,  (A.2b) 

Oh = 0 if neither qSh nor  -- 4~h satisfies the positivity condition,  (A.2c) 

where it is said that  a nonlineari ty qSj = ~bj(ah)t satisfies a positivity condit ion with respect to the argument  
Crh, if for any initial value ~bj It= o and for o ther  values of parameters  or functions on which ~b i possibly 
depends, we can find a constant  6 > 0 such that  

fl dpjdo" h /> - 3, w h e n  t ~> 0. (A.3) 
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