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ABSTRACT 

The determination of the temperature dependent thermal properties 
and the temperature distribution inside a heat conducting material 
when heat flux boundary conditions are prescribed is investigated. 
Assuming that the material has a known constant thermal diffusivity 
then the heat conduction problem is linearlsed by employing the 
Kirchhoff transformation and additional measurements of the 
temperature at an arbitrary space location are imposed in order to 
render a unique solution. The dependence of the thermal conductivity 
with the temperature is obtained as the sum of an infinite series, 
whilst the temperature solution is obtained implicitly and is then 
calculated numerically. The characteristics of the solutions with 
respect to the spatial position where the sensor is located is also 
discussed. 

Introduct ion 

Frequently in practice we are required to solve the problem in which a 

finite slab of material of thickness L is initially at a constant temperature 

T o and for time t > 0, the boundary x = 0 is kept insulated, whilst the 

boundary x = L is subject to a prescribed heat flux g[t), see 0zi~Ik [I]. 

Many materials have the property that the thermal conductivity, k(T), and the 

heat capacity, C(T), are dependent on the temperature, T, but they are 

directly proportional, i.e. the thermal diffusivity, a = k(T)/C(T), is a 

known positive constant, see for example Hills and Hensel [2] and Wrobel and 

Brebbia [3]. The mathematical formulation of this one-dimensional transient 
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nonlinear heat conduction problem may be written in the form 

aT a aT 
k(T) O-t = a ~-~ (k(T) ~-~ ) in (O,L)x(O,~) (la) 

aT 
- 0 on x : 0 , t ~ (0,~) (Ib) 

an 

aT 
k(T) ~-~ = q on x = L , t ~ (0,~) (Ic) 

T = T at t = 0 , x E [O,L] (Id) 
o 

where n is the outward normal on the boundaries x = 0 and x = L and, for 

simplicity, it was assumed that there is no heat generation inside the 

domain. Without any reduction in the generality of the problem we can assume 

that T O = O, since otherwise, for any constant To, we can always treat an 

analogous problem in terms of the shifted temperature (T-T ]. In addition, 
o 

physical constraints require that the unknown thermal conductivity, k(T), and 

the temperature, T, be positive. Clearly, in problem (I) there is 

insufficient information to be able to determine uniquely the unknown 

continuous thermal conductivity function, k, which is a positive function of 

a single variable, and the unknown temperature function, T, which is a 

positive function of the space and time variables and has continuous 

derivatives. The mathematical problem of determining k(T) and T as 

formulated in problem (I) is inverse and ill-posed since it will not, in 

general, have a unique solution. Consequently, additional constraints on the 

temperature are required. In this note we assume that the temperature is 

measured at an arbitrary location x = x E [O,L], namely 
o 

T(x,t) = f(t) at x = x 0 , t ~ (0,~) (2) 

Under further assumptions on the functions q(t) and f(t) the mathematical 

problem formulated in the set of equations (I) and (2) becomes well-posed, 

see Cannon and Duchateau [4], i.e. the existence, the uniqueness and the 

continuous dependence upon the data are satisfied. 

Nathemat ica l  A n a l y s i s  

Prior to this investigation Cannon and Duchateau [4], Cannon [5,6] 

obtained formal solutions for the transient nonlinear and linear and steady 

nonlinear heat conduction problems, respectively. This note applies to some 

of these analyses and to the particular case of practical interest expressed 

by equations (I) and (2). 
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I n  o r d e r  t o  s o l v e  e q u a t i o n s  (1 )  a n d  (2 )  we l i n e a r i s e  t h e  

p a r t i a l  d i f f e r e n t i a l  h e a t  c o n d u c t i o n  e q u a t i o n  ( l a )  u s i n g  t h e  

t r a n s f o r m a t i o n ,  n a m e l y  

: So 

U n d e r  t h e  t r a n s f o r m a t i o n  ( 3 ) ,  e q u a t i o n s  (1 )  a n d  (2 )  r e f o r m u l a t e  a s  

o@ 0z@ 
- -  a 

Ot DX 2 
in (0,L)×(0,m) 

8 @  _ 0 o n  x = 0 , t • ( O , m )  
On 

0@ 
On - q on  x = L , t • (O,m) 

@ = 0 a t  t = 0 , x • [O,L]  

@(x,t) = @(T(x,t))  , ( x , t )  • [0 ,L]x[0,m) 

n o n l i n e a r  

K i r c h h o f f  

{3) 

(4a) 

(4b) 

(4c) 

(4d) 

(5) 

Now the problem formulated in equations (4) is well-posed and involves 

only the unknown transformed temperature @, given by expression (5). In 

addition, the governing partial differential heat conduction equation (4a) is 

linear and when solved subject to the boundary and initial conditions (4b), 

(4c) and (4d), posseses the analytical solution, see Hills and Hensel [2], 

@(x,t) - (3x2-L2) 2 Z (-l)----~n 
6L q(t) - q(t) [ A 2 COS(AnX) + 

n=l 
n 

'Z [; ) - q(T) dT + [ (-1) n coS(XnX) q(T) exp( -A : ( t -T ) )  dT 
L 0 n=l 0 

(6) 

where (x,t) • [O,L]x[O,m) and 

A = n~/L , n = 1,2,3 .... (7) 
n 

and, for simplicity, the constant thermal diffusivity a has been taken to be 

unity. Once the solution @, as given by expression (6), is obtained the use 

of equations (2), (3) and (5) results in 

@(Xo't) = Fr(t)~o k(~) d~ , t ~ (0,m) (8) 

By d i f f e r e n t i a t i n g  expression (8) wi th  respect to t ,  i t  fo l lows that  
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8~ f, k(f(t)) = ~ (x0,t) / it) , t ~ (0,®) (9) 

whenever f'(t) ¢ O. Further, if the function f(t) is invertible then, from 

expression (9), it follows that 

O@ (Xo,f-l(t) k ( t )  = ~-~ ) ( f - 1 ) ' ( t )  , t ~ (0 ,~ )  (10) 

Once the thermal conductivity function k, as given by expression (10) is 

obtained then the Kirchhoff transformed function @ is determined by 

integrating equation (3), namely 

~r O~ 

• (T) = 8-[ (Xo,f-1(~)) (f-1),(~) d~ (11) 
o 

Further, if the function ~(T) is invertible then, from expression (5), it 

follows that 

T(x,t) = @-l(@(x,t)) , (x,t) [O,L]x[O,m) (12) 

where the function @ is given by expression (11). 

R e s u l t s  

In [4], the equations corresponding to expression (10) represented the 

conclusion of the above method without any application to a specific 

situation. To relate and understand how the technique can be applied in a 

particular problem the following case has been investigated, noting that the 

final inversion must be undertaken numerically. Consider the theoretical 

problem of determining the thermal conductivity k(T) and the temperature T 

from the data: 

OT 
k(T) ~-~ = q(t) = 1 on x = L , t ~ (0,~) (13) 

T(x,t) = f(t) = e t - 1 , at x = x , t ~ (O,m) (14) 
0 

Based on expression (13) the analytical solution given by expression (6) 

for the transformed temperature @ results, after some algebra, in 

3x2-L 2 t 2 ~ (-I) n 
~(x,t)= 6----~ + [ - [ n=1 X 2 eoS(XnX) exp(-X t) , (x,t)~[O,L]x[O,00) (15) 

n 
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Introducing expressions (14) and (15) in expression (10) produces, after 

some calculations, the analytical solution for the thermal conductivity in an 

explicit form, namely 

co   .Xo, ( 1 k ( t )  = + ~ ( - 1 )  n 1 + t , t • ( 0 , ~ )  ( 1 6 )  
N=I 

Figure 1 shows the thermal conductivity k(T) as a function of 

temperature T for various space locations x ° • {0,0.5,1} where, for 

simplicity, the thickness of the slab, L, has been taken to be unity. The 

number of terms in the series expansion (16) was taken to be 10 which was 

found to be sufficiently large such that any further increase in the number 

of terms would not affect the accuracy of any of the results presented in 

this note. From this figure it can be seen that the thermal conductivity 

k(T) is strongly dependent on x in the region 0 < T < 0.5, whilst in the 
o 

region T z 0.5 the function k(T) has the same behaviour for any values of x O. 

6 -  

k (T) 

5 -  

4 -  

_ 

2 -  

0 
O. 

XO= 

Xo=O. 5 ~ Xo:O 

I I I I I I I 
0.5 t .0 1.5 2.0 2.5 3.0 T 3.5 

FIG. 1 

The thermal conductivity k(T) as a function of the temperature T 
for various space locations x • {0,0.5,1}. 

o 
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Also, it can be observed that, in general, the thermal conductivity has a 

temperature point of maximum, T which decreases as x increases, 
max ' 0 

corresponding to a maximum value k = k(T ) which increases as x 
max max 0 

increases. Finally, as the point x approaches the boundary on which the 
o 

heat flux q(t) is applied the function k(T) becomes unbounded near the points 

of zero temperature. 

Introducing expressions (14) and (16) in expression (11) results, after 

some algebra, in 

2 (-I) n cos(knx o) k -z I + T (17) $(T) = E in(l+T) + 6L L n 
n=1 

B a s e d  on  e x p r e s s i o n  ( 1 2 ) ,  a c c o m p a n i e d  by t h e  i n v e r s i o n  o f  e q u a t i o n  ( 1 7 ) ,  

t h e  t e m p e r a t u r e  T c a n  be  d e t e r m i n e d .  However,  t h e  i n v e r s i o n  o f  e q u a t i o n  (17)  

seems  a n a l y t i c a l l y  i m p o s s i b l e  and t h e r e f o r e  a n u m e r i c a l  scheme i m p l e m e n t e d  i n  

t h e  NAG r o u t i n e  C05NCF, w h i c h  n u m e r i c a l l y  s o l v e s  a s y s t e m  o f  n o n l i n e a r  

0.00 0.25 0.50 0.75 X 

FIG. 2 a  

Lines of constant temperature for x = O. 
0 

.00 
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FIG. 2b 

Lines of constant temperature for × = 0.5. 
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FIG. 2c 

Lines of constant temperature for x = I. 
o 
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equations by a modification of the Powell hybrid method, see Powell [7], has 

been used. The results for the lines of constant temperature, 

T(x,tl = constant, i.e. the isotherms, are shown in figures 2 for various 

space locations x ~ {0,0.5,1}. From these figures it can be seen that as x 
o 0 

increases the time taken for the temperature to reach a certain value 

increases and, also the temperature at a specified position and time 

decreases. Finally, for any value of Xo, the temperature on the boundaries 

of the slab is monotonic increasing with time, with higher temperature values 

on the boundary which is kept insulted, x = O. 

Conclusion 

In conclusion, an  inverse heat conduction exact solution has been 

developed for determining the temperature dependent thermal conductivity and 

the temperature in a slab geometry with prescribed heat flux boundary 

conditions. The material considered is assumed to have constant thermal 

diffusivity and the use of the Kirchhoff transformation reduces the nonlinear 

heat conduction problem to a linear form which posseses an analytical 

solution. Further, additional time measurements of the temperature at an 

arbitrary space location are imposed in order to render a unique solution and 

then the dependence of the thermal conductivity with temperature is obtained 

in an explicit form as the series (161, whilst the temperature solution is 

obtained implicitly and is calculated numerically by inverting equation (171. 

Finally, figures I and 2 may serve as an optimal criterion to decide where 

the sensor recording temperature measurements is to be located such that 

specific practical requirements are satisfied. 
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