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Analytical solution to the problem of heat interaction of fluid flow
and solid filling

B. Z. Tokaŕ, Y. M. Lukashov, E. V. Kotenko, M. Z. Tokaŕ

Abstract The results of analytical solution to the problem of
thermal interaction of a fluid stream with a media of solid
particles found on the basis of the ODTPM model [1] are
presented. A non-stationary behaviour of the volume-averaged
temperature of solid filling, being a measure of the efficiency
from heat transfer between fluid and solid phases, and of the
heat-carrier temperature at the exit of the layer is studied. Time
dependences computed according to the obtained relation-
ships are in good agreement with the results of numerical
calculations [1] for different sets of the problem parameters.
The found solution expands the possibilities to analyze the
efficiency of the ‘‘fluid-solid phase’’ systems and can be a basis
to develop methods of experimental evaluation of different
parameters of the system.

Analytische Lo(sung fu(r das Problem der thermischen
Wechselwirkung zwischen einer Fluidstro(mung und
darin enthaltenen Feststoffpartikeln

Zusammenfassung Auf analytischem Wege, unter Zugrunde-
legung des ODTPM-Modells, gefundene Ergebnisse für das
Problem der thermischen Wechselwirkung zwischen einer
Fluidströmung und darin enthaltenen Feststoffpartikeln
werden mitgeteilt. Die Untersuchung bezieht sich auf das
nichtstationäre Verhalten der volumengemittelten Feststoff-
temperatur — welche ein Maß für die Effektivität des Wärmeü-
bergangs zwischen fluider und fester Phase ist — und das der
Wärmeträgertemperatur am Austritt der Schicht. Diese, aus
den analytisch gefundenen Beziehungen für verschiedene
Kombinationen der Systemparameter errechneten Zeitabhän-
gigkeiten stimmen gut mit den rein numerisch eruierten
Ergebnissen nach [1] überein. Die mitgeteilte Lösung erweitert
die Möglichkeit zur genaueren Untersuchung des Zweiphasen-
systems Fluid/Feststoff und kann ferner bei der Entwicklung
von Methoden zur experimentellen Bestimmung von System-
parametern dienlich sein.
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D-52425 Jülich, Germany

Nomenclature
0 dimensionless temperature
q dimensionless time
x dimensionless co-ordinate
a
1,2,3,4

dimensionless parameters of the problem [1]

Subscripts
f fluid (heat carrier)
p solid phase
b medium quantity
0 initial values (q\0)
l values at the entrance of the layer (x\0)
k values at the exit from the layer (x\1)
R stationary conditions (q]R)

1
Introduction
Various mathematical models are proposed to simulate the
interaction between a fluid stream and particles of a solid
filling including the case of quasi-liquefaction. In particular
a one-dimensional two-phase model (ODTPM) is developed in
Ref. [1] taking into account the main features of the physical
process. This includes equations to the energy transfer in the
fluid and solid phases, reduced to the following dimensionless
form

­0 f
­q

]a1(0 f[0p)]a20 f]a5
­0 f
­x

\0 (1)

­0p
­q

[a3(0 f[0p)[a4
­20p
­x2

\0, (2)

supplemented by initial and boundary conditions:

0 f (x, q\0)\0 f0 , 0 f (x\0, q)\0 fl (3)

0p(x, q\0)\0p0 ,
­0p(x\0, q)

­x
\

­0p(x\1, q)
­q

\0 (4)

Equations (1)—(4) have been integrated numerically in
Ref. [1] by the method of finite differences. The time-spatial
distributions of the temperatures, 0

f
(x, q) and 0

p
(x, q) cal-

culated, were used to compute the integral average temper-
ature of the solid phase

0pb(q)\
1
:
0
0p(x, q) dx,

being the measure of the thermal interaction between solid
particles and the fluid.
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In the present paper exact relationships for 0
pb

(q) and the
fluid temperature 0

fk
(q)\0

f
(1, q) at the layer exit are obtained

on the basis of an analytical solution to Eqs. (1)—(4); both
0

pb
(q) and 0

fk
(q) are of practical interest.

2
Solution

2.1
Determination of temperatures 0pb(q) and 0 fk(q)
Integrating Eqs. (1) and (2) with respect to x over the interval
04x41 and taking into account boundary conditions (3),
(4) one obtains

d0 fb
dq

]a1(0 fb[0pb)]a20 fb]a5(0 fk[0 fb)\0 (5)

d0pb
dq

[a3(0 fb[0pb)\0 (6)

with

0 fb(q)\
1
:
0
0 f (x, q) dx

There are three unknown variables 0pb , 0 fb and 0 fk in (5), (6)
and they are not a closed system of equations. To exclude one
of the variables we introduce the function u(x) satisfying the
conditions u(0)\0, u(1)\1 and

0 f\0 fl[(0 fl[0 fk)u(x) (7)

Taking (7) into account one has for the averaged temperature

0 fb\0 fl[(0 fl[0 fk)m (8)

with m\:1
0
u(x) dx being a certain number from the range

0\m\1.
Substitution of 0 fb according to (8) into Eqs. (5) and (6)

results in

d0 fk
dq

\a110 fk]a120pb]f1(q) (9)

d0pb
dq

\a210 fk]a220pb]f2(q) (10)
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11
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3
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Equations (9) and (10) to functions 0
pb

and 0
fk

can be solved
analytically by e.g. the method of d’Alembert (Ref. [2] ):

0 fk]k10pb\[0 fk0]k10pb0]I1(q)] exp[ (a11]k1a21)q] (11)

0 fk]k20pb\[0 fk0]k20pb0]I2(q)] exp[ (a11]k2a21)q] (12)

Here 0
fk0

and 0
pb0

are the initial magnitudes of the temper-
atures of the fluid and the solid filling; k

1, 2
are the roots of the

characteristic equation

k1,2\[
a11[a22

2a21
^SA

a11[a22
2a21 B

2
]

a12
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(13)

I1,2(q)\
q

:
0

[ f1(q*)]k1,2 f2(q*)] exp[[(a11]k1,2a21)q*] dq*

(14)

For the typical particular case of zero boundary conditions
and a stationary temperature of the heat carrier (0

fl
\1, d0

fl
/

dq\0; f
1
(q)\const{f

1
, f

2
(q)\const{f

2
) Eqs. (11)—(14) are

of the form

0pb\
b1(ec1q[1)[b2(ec2q[1)

k1[k2
(15)

0 fk\
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(16)

where b
1,2

\( f
1
]k

1,2
f
2
)/c

1,2
and c

1,2
\a

11
]k

1,2
a
21

.
Thus the problem formulated has an exact analytical sol-

ution if the value m is known. Let us discuss a possibility to de-
termine it.

2.2
Determination of the value m
If the temperature 0

fl
of the heat carrier at the entrance of the

layer is time independent or has a finite limit i.e.

lim
q?=

0 fl(q)\const\1,

there is a stationary heat state of the system liquid—solid phase,
governed by the Eqs. (1), (2) with zero time derivatives

d0 f=
dx

](b1]b2)0 f=[b10p=\0 (17)

d20p=
dx2

]b3(0 f=[0p=)\0 (18)

where b
1
\a

1
/a

5
, b

2
\a

2
/a

5
and b

3
\a

3
/a

4
.

Let us average Eqs. (17) and (18) over x. According to
the condition of thermal isolation of the whole system, (4),
averaging of Eq. (18) results in equality of the averaged tem-
peratures of the liquid and solid phases: 0

fb=
\0

pb=
. Taking

this and boundary condition (3) into account one obtains
from integration of Eq. (17):

0 fk=\1[b20pb= (19)

On the other hand (8) holds also in a steady state. In this case it
looks as follows:

0 fb=\1[(1[0 fk=) m. (20)

Resolving the last equation respect to m and taking (19) into
account one obtains

m\
1
b2A

1
0pb=

[1B (21)
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Thus for determination of the parameter m it is necessary to
know the steady-state temperature 0

pb=
i.e. the solution of

Eqs. (17), (18).

2.3
Solution to the steady-state problem
Performing the Laplace transformation of Eqs. (17), (18) (Ref.
[3] ) we have

s0M f[1](b1]b2)0M f]b10
M
p\0 (22)

s20M p[s0pl]b3(0M f[0M p)\0 (23)

Here 0
f
and 0

p
are Laplace images of functions 0

f
(x) and 0

p
(x)

(the subscriptR is omitted to simplify notations), s is the
parameter of the Laplace transformation, 0

pl
is the mean

temperature of the solid phase at x\0. Resolving Eqs. (22) and
(23) we obtain:

0M p\
s20pl]s0pl(b1]b2)[b3

s3]s2(b1]b2)[(s]b2)b3
(24)

0M f\
1]b10

M
p

s]b1]b2
(25)

The image 0p(s) can be reduced to a tabulated one if the
denominator of (24) is reduced to the form

t(s)\(s[s1) (s[s2) (s[s3) (26)

where s
1,2,3

are the roots of the characteristic equation

t(s)\0. (27)

This is a cubic equation and Kardano’s formulas or a certain
numerical procedure (Ref. [2] ) can be used to solve it.

Inverse transformation to the original 0
p
(x) results in

0p(x)\0pl[b3(1[0pl)
3
+
1

esix

(si[sp) (si[sp)

]b3b20pl
3
+
1

esix[1
si(si[sp) (si[sq)

(28)

where the subscripts p and q are related to the term number i as
follows:

p\0.5i2[2.5i]4, q\[0.5i2]1.5i]2 (29)

Performing integration of (28) over x from 0 to 1, one finds
0

pb
needed to calculate the value m according to (21):

0pb(x)\0pl[b3(1[0pl)
3
+
1

esi[1
si (si[sp) (si[sq)

]b3b20pl
3
+
1

esi[1[si
s2i (si[sp) (si[sq)

(30)

Formulas (28) and (30) can be used immediately if all roots
of Eq. (27) are real. As an analysis shows in certain cases it has
only one real root s

1
\a and two complex ones s

2,3
\b^j · c

with j\([1)1/2. In such a case one has

t(s)\(s[a) [ (s[b)2]c2], (31)

and the original 0
p
(x) is as follows:

0p(x)\0pl[
b3(1[0pl)

(a[b)2]c2 Aeax]ebx cos cx]
b[a

c
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]
b3b20pl

(a[b)2]c2 C[
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]
eax
a

[
2b[a
b2]c2

]ebx cos cx]
b(b[a)[c2

c(b2]c2)
ebx sin cxD . (32)

Averaging (32) one obtains

0p(x)\0pl[
b3(1[0pl)

(a[b)2]c2 C
2b[a
b2]c2

(1[eb cos c)]
eax[1

a

]
b(b[a)[c2

c(b2]c2)
eb sin cD]

b3b20pl
(a[b)2]c2

]T[
(a[b)2]c2
a(b2]c2)

]
ea[1

a2
[

2b[c
(b2]c2)2

][e b(b cos c]c sin c)[b]]
b(b[a)[c2
c(b2]c2)2

][e b(b sin c[c cos c)]c]U. (33)

Relationships (30) and (33) contain an unknown temper-
ature of the solid phase 0

pl
at the ‘‘hot edge’’ of the layer.

Considering 0
pl

as an arbitrary constant we determine from the
boundary condition (4) at x\1. Differentiating 0

p
(x) (defined

according to (28) or (32)) and assuming x\1 we put the
derivative equal to zero. The algebraic equation resulted in has
only one unknown value 0pl and resolving it one finds:

0pl\1/(1]b2z), (34)

where

z\
3
+
1

([1)i~1(sp[sq)esiN
3
+
1

([1)i~1si(sp[sq)esi (35)

in the case of three real roots s
1,2,3

or

z\
1[eb~a cos c][ (b[a)/c] eb~a sin c

a[a eb~a cos c][b (b[a)/c[c] eb~a sin c
(36)

if two roots are complex.
Thus relationships (30), (33), (35) and (36) allow to

determine the parameter m according (21) and consequently to
compute the time dependences of the temperatures 0

pb
(q) and

0
fk

(q). The choice between dependences (30) or (33) should be
done according to the sign of the determinant of the
characteristic equation (27). The original of the function 0

f
(x)

can be found from (25) according to the theorem of the
transform product

0 f (x)\e[(b1]b2)x]b1e[(b1]b2)x x
:
0

e(b1]b2)x* 0p(x*) dx* . (37)
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Fig. 1. The time dependence of the average temperature of the solid
filling for different sets of parameters

3
Results and discussion
Using Eqs. (15), (21), (30), (34) and (35) we have calculated the
averaged temperature 0

pb
of the solid phase as a function of the

dimensionless time q for different sets of the problem para-
meters a

i
. These results are displayed in Fig. 1. The data of

Ref. [1] found by numerical integration of Eqs. (1) and (2) are
also presented in the figure for comparison. There is practical
coincidence of the results of computations by different
approaches.

Certain peculiarities of computations by Eq. (33) should be
noted. As an analysis shows practically for all magnitudes of

the parameters a
i

the coefficients b
i

satisfy the relations:
b
2
\b

3
\b

1
and b

2
;b

1
. As a result the root a of Eq. (27)

approaches to zero. In such a case the Taylor series

ea[1
a

\
=
+
n/0

an
(n]1)!

(38)

should be used in calculations according to formulae (30) and
(33).

4
Conclusion
An exact analytical solution of the problem of thermal
interaction between a fluid flow and solid particles is found in
the framework of the model ODTPM. The relationships for the
volume average temperature of the solid phase and the
temperature of the heat carrier at the layer exit are found.

The approach developed gives a possibility to analyze the
efficiency of the fluid-solid phase systems in a more simple way
than it can be done on the basis of numerical calculations
(Ref. [1] ).
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