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Abstract. This paper presents an analytical and numerical study of transient free convection from a
horizontal surface that is embedded in a fluid-saturated porous medium. It is assumed that for time
τ̄ < 0 steady state velocity and temperature fields are obtained in the boundary-layer which occurs
due to a uniform flux dissipation rateq′′1 on the surface. Then, atτ̄ = 0 the heat flux on the surface
is suddenly changed toq′′2 and maintained at this value forτ̄ > 0. Firstly, solutions which are valid
for small and largēτ are obtained. The full boundary-layer equations are then integrated step-by-step
for the transient regime from the initial unsteady state (τ̄ = 0) until such times at which this forward
marching approach is no longer well posed. Beyond this time no valid solutions could be obtained
which matched the final solution from the forward integration to the steady state profiles at large
timesτ̄ →∞.
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Nomenclature

k effective thermal conductivity.
K permeability of the porous medium.
q′′1 initial uniform surface heat flux (τ < 0).
q′′2 final uniform surface heat flux (τ > 0).
R ratio of the final surface heat flux to the initial surface heat flux,= q′′2/q′′1 .

Rax local Rayleigh number based on the initial heat fluxq′′1 ,= gβKq′′1x2/kαν.
T fluid temperature.
T∞ ambient fluid temperature.
1T characteristic temperature,= q′′1δ(x)/k.
u, v seepage velocity components alongx- andy-directions, respectively.
Uc characteristic velocity,= (α/x)(Rax)1/2.
x, y Cartesian coordinates along the surface and normal to it, respectively.

Greek symbols
α effective thermal diffusivity.
β volumetric coefficient of thermal expansion.
δ boundary-layer thickness atτ̄ = 0,= x(4/Rax)1/4.
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η nondimensional similarity variable,= y/δ(x).
θ nondimensional temperature function,= (T − T∞)/1T .
ν kinematic viscosity.
ξ nondimensional transformed variable,= η/2τ1/2.
σ ratio of composite material heat capacity to convective fluid heat capacity.
τ̄ time.
τ nondimensional time,= ατ̄/σ (δ(x))2.
ψ streamfunction.

Subscript
w conditions at the horizontal surface.

1. Introduction

Convective heat transfer in porous media has received considerable attention in
recent years owing to its importance in various technological applications such as
geothermal systems, grain storage, fibre and granular insulation, electronic system
cooling, storage of agricultural products, chemical catalytic reactors, underground
diffusion of contaminants, coal combustors and porous material regenerative heat
exchangers. Recent books by Nield and Bejan (1999), Nakayama (1995) and Ing-
ham and Pop (1998) excellently describe the extent of the research information in
this area.

It has been established that the convection from vertical and horizontal surfaces
in a viscous fluid and in a fluid-saturated porous medium have much in common.
However, buoyancy induced flows adjacent to horizontal or nearly horizontal sur-
faces embedded in porous media have not been studied as extensively as those
adjacent to vertical surfaces, despite their important applications both in the envir-
onment and in technology. In contrast to the vertical surface, where the component
of the buoyancy force normal to the surface (i.e. normal to the main flow direction)
is neglected, and only its tangential component is considered, this approximation
breaks down when the surface becomes horizontal and the buoyancy force acts
perpendicular to the surface. When the temperature of a horizontal surface differs
from that of the ambient fluid, a vertical density gradient will be generated, indicat-
ing a longitudinal pressure gradient. If the resulting longitudinal pressure gradient
is large enough to overcome the upward directing buoyancy force, a convective
movement will be set up over the horizontal surface, resulting in a horizontal
boundary-layer flow.

Steady free convection boundary-layer flow in a porous medium above a heated
horizontal surface or below a cooled horizontal surface was first considered by
Cheng and Chang (1976) and Chang and Cheng (1983), and their analyses have
been very much refined and generalised since then. Recently, Merkin and Zhang
(1990), Nakayama (1995), Higuera and Weidman (1995), Lesnicet al. (1995),
Chaudharyet al. (1996), Rees (1996) and Higuera (1997) have published very
detailed analytical and numerical solutions for this type of problem.
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Most of the recent investigations into boundary-layer flows over a horizontal
surface immersed in a porous medium have been directed towards the problem of
steady state free or mixed convection flow. Transient boundary-layer flow problems
on horizontal surfaces in porous media, on the other hand, have received relatively
little attention, so far. Perhaps, the first study on this problem was done by Johnson
and Cheng (1978), where similarity solutions were found for certain variations
of the wall temperature distribution. Pop and Cheng (1983) exploited the method
of integral solutions to attack the problem of transient free convection on a sud-
denly heated horizontal surface in a porous medium. Inghamet al. (1985) used the
asymptotic expansion method to study the case of a suddenly cooled horizontal
surface embedded in a porous medium.

It is worth mentioning here that the inclusion of unsteadiness into the governing
equations of any problem is important for the development of a more physically
realistic characterisation of the flow configuration. It is this approach that will
provide the best opportunity to discover new kinds of evolutions such as critical
situations, instabilities or chaotic structures governed by time-dependent bound-
ary conditions, especially in the cases where velocity and temperature fields are
coupled, that is convective flow problems. Moreover, time is a fundamental para-
meter in many practical situations at a variety of scales, for example in regulation
systems as well as in nuclear plant safety or in meteorology.

The present paper is concerned with the transient free convection boundary-
layer flow over a horizontal surface embedded in a fluid-saturated porous medium
of constant ambient temperature. Thus, we discuss the practical situation in which
the general transient arises from a sudden change in the level of energy input flux
on the surface of the plate, that is a steady input heat fluxq ′′1 is changed at the
time τ̄ = 0 to a new steady levelq ′′2 and maintained at this value forτ̄ > 0. A
thin inner boundary-layer is thus formed adjacent to the surface at small times.
An analytical solution is given for the velocity and temperature fields in this inner
layer using an asymptotic method, which is similar to that employed by Ingham
et al. (1985). However, the present generalisation and transformed equations are
different, since the surface heat flux condition on the plate has been imposed.
Then, a numerical step-by-step approach is utilised to derive a solution of the
full boundary-layer equations for the transient regime from the initial unsteady
state (̄τ = 0) until such times at which this forward integrating approach is no
longer well posed. The methods used are similar to that successfully employed
by the present authors Harriset al. (1996, 1997a, b, 1998) for the corresponding
vertical configuration. Beyond the time at which the forward marching approach
terminates, various methods have been used in an attempt to match the final profiles
of the temperature and streamfunction to their large time steady state solutions. A
detailed discussion of the failure of such methods for this problem is also presented.
The valid solutions obtained provide a qualitative picture of the nondimensional
velocity and temperature fields in the boundary-layer as well as the nondimensional
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surface temperature distribution. No doubt, these solutions are relevant to a proper
understanding of the general flow and heat transfer characteristics in porous media.

2. Governing Equations

Consider the problem of transient free convection above a horizontal impermeable
flat surface which is embedded in a fluid-saturated porous medium of ambient
temperatureT∞. We take Cartesian coordinates fixed in space with thex-axis
along the horizontal surface and they-axis normal to it. They-axis is oriented
upwards, while the gravitational acceleration acts vertically downwards. The initial
steady situation is that of two-dimensional free convection due to a uniform heat
flux dissipation rateq ′′1 at the surface. A transient begins when the heat flux on
the plate is suddenly changed at timeτ̄ = 0 to q ′′2 and maintained at this value
for τ̄ > 0. In the mathematical formulation of the problem, we assume that the
Darcy–Boussinesq approximation is valid. With the further assumption that the
Rayleigh number is large so that the boundary-layer approximation can be applied,
the governing equations for the transient response are (see Nield and Bejan, 1999)

∂u

∂x
+ ∂v
∂y
= 0, (1)

∂u

∂y
= −gβK

ν

∂T

∂x
, (2)

σ
∂T

∂τ̄
+ u∂T

∂x
+ v ∂T

∂y
= α ∂

2T

∂y2
, (3)

for τ̄ > 0. Hereu(x, y, τ̄ ) andv(x, y, τ̄ ) denote the seepage velocity components
along thex- and y-directions, respectively,T (x, y, τ̄ ) is the fluid temperature,
g is the magnitude of the acceleration due to gravity,K is the permeability of
the porous medium,σ is the heat capacity ratio,ν is the kinematic viscosity,β
is the volumetric coefficient of thermal expansion andα is the effective thermal
diffusivity of the fluid-saturated porous medium.

For time τ̄ < 0, the steady flow results from the uniform surface heat fluxq ′′1 ,
while for τ̄ > 0 the transient flow is a consequence of the uniform heat fluxq ′′2 .
Thus, the governing boundary-layer Equations (1)–(3) must be solved subject to
the following boundary conditions:

u(x,∞, τ̄ ) = 0, T (x,∞, τ̄ ) = T∞,

v(x,0, τ̄ ) = 0,
∂T

∂y
(x,0, τ̄ ) = −q

′′
2

k
,

(4)

wherek is the effective thermal conductivity.
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For τ̄ > 0, we now introduce the time-dependent, nondimensional, reduced
streamfunction,f , and the temperature function,θ , defined according to

ψ = Ucδ(x)f (η, τ), θ(η, τ) = T − T∞
1T

, (5)

where

η = y

δ(x)
, τ = ατ̄

σ (δ(x))2
, δ(x) = x

(
4

Rax

)1/4

,

Uc = α

x
(Rax)

1/2 =
(
αgβKq ′′1
kν

)1/2

,

1T = q ′′1δ(x)
k

, Rax = gβKq ′′1x
2

kαν
.

(6)

Further,η is the nondimensional similarity variable,τ is the nondimensional time,
δ(x) is the boundary-layer thickness atτ̄ = 0,Uc is the characteristic velocity,1T
is the characteristic temperature, Rax is the local Rayleigh number based on the
initial heat fluxq ′′1 andψ is the streamfunction which is defined in the usual way,
namelyu = ∂ψ/∂y andv = −∂ψ/∂x.

The equations governing the evolution of the functionsf (η, τ) andθ(η, τ) can
be obtained by substituting expressions (5) into the governing Equations (1)–(3). It
is found that these functions satisfy the following pair of coupled equations:

∂2f

∂η2
− η∂θ

∂η
+ θ = 2τ

∂θ

∂τ
, (7)

∂2θ

∂η2
+
(
f − 2τ

∂f

∂τ

)
∂θ

∂η
− θ ∂f

∂η
=
(

1− 2τ
∂f

∂η

)
∂θ

∂τ
, (8)

which are to be solved forτ > 0, subject to the boundary conditions

f (0, τ ) = 0,
∂θ

∂η
(0, τ ) = −q

′′
2

q ′′1
,

∂f

∂η
(∞, τ ) = 0, θ(∞, τ ) = 0.

(9)

For the steady transport of energy atτ = 0 we writef (η,0) = f0(η) and
θ(η,0) = θ0(η), say, so that the functionsf0(η) andθ0(η) are the solutions of the
coupled ordinary differential equations

f ′′0 − ηθ ′0+ θ0 = 0, (10)

θ ′′0 + f0θ
′
0− f ′0θ0 = 0, (11)
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where prime denotes differentiation with respect toη. The associated boundary
conditions (9) reduce to

f0(0) = 0, θ ′0(0) = −1, f ′0(∞) = 0, θ0(∞) = 0. (12)

At large times,τ → ∞, the profiles for the nondimensional streamfunction
f (η, τ) and the temperature functionθ(η, τ) are known to approach steady state
solutionsf (η,∞) = f∞(η) andθ(η,∞) = θ∞(η), respectively, associated with
the uniform heat fluxq ′′2 at the horizontal surface. The functionsf∞(η) andθ∞(η)
satisfy a pair of coupled ordinary differential equations of precisely the same form
as Equations (10) and (11) and are subject to boundary conditions similar to ex-
pression (12) with the modification thatθ ′∞(0) = −R, whereR = q ′′2/q

′′
1 . The

solution to this system can be recovered as a similarity solution of the original
system (10)–(12) so that the functions

f∞(η) = R1/4f0(ηR
1/4), θ∞(η) = R3/4θ0(ηR

1/4) (13)

represent the final steady state profiles of the streamfunction and temperature func-
tion, respectively.

3. Small Time Solution,τ � 1τ � 1τ � 1

In common with all problems involving impulsive changes in heat flux or tem-
perature, there is a brief period during which the transient effects are confined
to a thin, one-dimensional, unsteady boundary-layer adjacent to the surface whose
thickness is very small in comparison to that of the steady boundary-layer atτ = 0.
Specifically, forτ � 1 there exists an inner boundary-layer, whose evolution is
described by Equations (7)–(9), which is entirely contained within the initial steady
boundary-layer profile, in which the streamfunction and temperature attain their
steady state valuesf0 andθ0, respectively. This suggests that to obtain a solution at
small times, for which the appropriate length scale is the diffusion scaleτ 1/2, the
boundary-layer equations (7) and (8) have to be transformed by writing

f (η, τ) = τ 1/2F(ξ, τ), θ(η, τ) = τ 1/2G(ξ, τ), ξ = η

2τ 1/2
. (14)

Substituting these expressions into Equations (7) and (8) yields the coupled partial
differential equations

1

4

∂2F

∂ξ2
= 2τ 3/2∂G

∂τ
, (15)

1

4

∂2G

∂ξ2
− 1

2
G+

(
1

2
ξ − τ 2∂F

∂τ

)
∂G

∂ξ
= τ

(
1− τ ∂F

∂ξ

)
∂G

∂τ
, (16)

which have to be solved subject to the boundary conditions at the plate:

F(0, τ ) = 0,
∂G

∂ξ
(0, τ ) = −2R. (17)
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The solution in this growing inner layer is taken to match with that of the outer
steady boundary-layer, which at smallη can be approximated by series expansions
aboutη = 0 of the form

f0(η) = aη − 1
2bη

2+ 1
24abη

4 +O(η5), (18)

θ0(η) = b − η + 1
2abη

2 − 1
6b

2η3+O(η4), (19)

wherea = f ′0(0) = 1.26286 andb = θ0(0) = 0.82325. It follows, by substitution
of the transformation (20) into Equations (18) and (19), that for large values ofξ

the functionsF andG may be expressed as

F(ξ, τ) ∼ 2aξ − 2bξ2τ 1/2+ 2
3abξ

4τ 3/2+O(τ 2), (20)

G(ξ, τ) ∼ bτ−1/2− 2ξ + 2abξ2τ 1/2− 4
3b

2ξ3τ +O(τ 3/2). (21)

The behaviour of the inner boundary-layer solution asξ → ∞ is to be matched
with the steady outer solutions (20) and (21). It is the form of these asymptotic
expressions which suggests the appropriate perturbation expansion forτ � 1 as

F(ξ, τ) = F0(ξ)+ τ 1/2F1(ξ)+ τF2(ξ)+ τ 3/2F3(ξ)+O(τ 2), (22)

G(ξ, τ) = τ−1/2G0(ξ)+G1(ξ)+ τ 1/2G2(ξ)+ τG3(ξ)+O(τ 3/2). (23)

Substitution of these series into Equations (15) and (16) and equating the terms of
the same powers ofτ gives rise to systems of ordinary differential equations from
which closed form solutions forFi andGi , wherei = 0,1,2,3, can be obtained.
The resulting expressions for the small time velocity,∂F/∂ξ , and temperature,G,
profiles may be readily established as

∂F

∂ξ
= 2a − 4bξτ 1/2+ 8

3
abξ3τ 3/2+O(τ 2), (24)

G = bτ−1/2− 2ξ + 2(1− R)
(
ξ erfcξ − 1√

π
e−ξ

2
)
+

+2abξ2τ 1/2− 4

3
b2ξ3τ +O(τ 3/2), (25)

where erfcξ = (2/√π) ∫∞
ξ

e−t2dt is the complementary error function.
Expressions (24) and (25) are applicable only to the development of the free

convection flow in the inner boundary-layer region, that is forη � 1. The velocity
and temperature functions which are valid for all values ofη are as follows:

∂f

∂η
(η, τ) = df0

dη
(η)+O(τ 2), (26)
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θ(η, τ) = θ0(η)+ (1−R)
[
η erfc

( η

2τ 1/2

)
− 2√

π
τ 1/2e−η

2/4τ

]
+O(τ 2), (27)

at small timesτ .
An important physical quantity is the nondimensional temperature on the plate

and at small times this function has the following explicit series expansion:

θw(τ) = θ(0, τ ) = b − 2√
π
(1− R)τ 1/2+O(τ 2). (28)

4. Numerical Techniques

Initially the transient effects due to the change in the heat flux at the horizontal
plate are confined to a thin fluid region near to the surface and are described by
the small time solution. These effects continue to penetrate outwards through the
initial boundary-layer and eventually evolve into a new steady state flow. In order
to match these small and large time solutions, we now develop a numerical solution
of the full boundary-layer equations (1)–(3) by initially using the formulation (15)
and (16) in terms ofξ , τ and subsequently the nondimensional partial differential
equations (7) and (8) in terms ofη, τ .

The evolution of the pairs of interrelated functionsF ,G andf , θ are separately
governed by the pairs of coupled partial differential equations (15), (16) and (7),
(8), respectively, which are each parabolic and can be integrated numerically using
a step-by-step method similar to that described by Merkin (1972), provided that the
coefficients of the corresponding terms∂G/∂τ and∂θ/∂τ remain positive through-
out the solution domain. This marching method enables the solution described by
the functionsf0(η), θ0(η) at timeτ = 0 to proceed in time and gives a complete
solution forτ 6 τ ∗n , whereτ ∗n is the maximum value ofτ reached in the forward
integrating numerical scheme, which is less than the precise timeτ ∗p satisfying

τ ∗p
∂F

∂ξ
(0, τ ∗p ) = 2τ ∗p

∂f

∂η
(0, τ ∗p ) = 1. (29)

The application of the step-by-step scheme to the pair of coupled equations (15)
and (16) enables the accurate evolution of the temperature and velocity profiles to
be determined over a developing inner layer whose width increases with time. If
ξ∞ andη∞ are interpreted as being finite values of the spatial variables at which
the associated boundary conditions are to be applied, then at the exact timeτ̃p =
(η∞/2ξ∞)2 we must transfer to the step-by-step scheme applied to Equations (7)
and (8). We again adopt the notationτ̃n to denote the corresponding value ofτ
which is reached in our numerical techniques.

At the timeτ = τ ∗n the forward integration approach breaks down and the coef-
ficients of∂G/∂τ and∂θ/∂τ in the governing Equations (16) and (8), respectively,
are tending towards negative values at the surface of the horizontal plate. Based
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upon the profilesf (η, τ ∗n ) and θ(η, τ ∗n ) at this time and the asymptotic steady
state profilesf∞(η) andθ∞(η), defined in Equation (13), we attempt to complete
the numerical integration and derive a solution overτ ∗n < τ <∞ by adopting a
matching approach in Section 4.3.

4.1. NUMERICAL SOLUTION FOR0< τ 6 τ̃n

In order to evaluate accurately the initial evolution of both the nondimensional fluid
velocity ∂f/∂η and the nondimensional fluid temperatureθ we apply the direct,
forward integration scheme to Equations (15) and (16) and begin the numerical
solution at the small timeτ = τ0 > 0. Thus, the governing pair of coupled
equations (15) and (16) must be solved subject to the boundary conditions (17),
the initial profiles

F(ξ, τ0) ≈ 2aξ − 2bξ2τ
1/2
0 +

2

3
abξ4τ

3/2
0 , (30)

G(ξ, τ0) ≈ bτ
−1/2
0 − 2ξ + 2(1− R)

[
ξ erfcξ − 1√

π
e−ξ

2
]
+

+2abξ2τ
1/2
0 −

4

3
b2ξ3τ0, (31)

which follow from the small time analysis, and the following conditions:

F(ξ∞, τ ) = τ−1/2f0
(
2
√
τξ∞

)
, G(ξ∞, τ ) = τ−1/2θ0(2

√
τξ∞), (32)

where the undisturbed statesf0(η) and θ0(η), following from the initial steady
solution, remain.

The finite spatial domain is divided intoNξ grid spacings of lengthhξ = ξ∞/Nξ

and a variable time step is used, with the time step at the start of thej th time
increment being denoted by1τj . We also introduce the notationFi,j andGi,j to
represent the finite-difference approximations to the nondimensional streamfunc-
tion F and temperature functionG, respectively, at the pointξ = (i − 1)hξ for
some timeτ = τj .

Given a complete solutionFi,j ,Gi,j , i = 1, . . . , Nξ + 1, at timeτj we require
the solution forFi,j+1,Gi,j+1 at the next timeτ = τj+1 = τj +1τj and adopt the
step-by-step finite-difference procedure similar to that described by Merkin (1972).
This numerical formulation is very well described by Hariset al. (1997a) and we
will not present it here.

Consider the system of linear algebraic equationsG1
k = 0 and the system

of nonlinear algebraic equationsG2
k = 0 resulting from the finite-difference ap-

proximations to the governing equations (15) and (16), respectively. Given initial
approximations to the solutions of these systems, it would be natural to assume that
an iterative approach could be utilised to successively determine better approxim-
ations by employing Newton’s method and alternately inverting the linear system
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associated withG1
k or G2

k using the Thomas algorithm for tri-diagonal matrices.
This approach was attempted and found to be successful initially, but ultimately
did not lead to a convergent solution after a short time interval. It was found that a
convergent solution at each time step could only be guaranteed forτ 6 τ̃n provided
that the systemsG1

k andG2
k were combined to produce a single systemGk = 0

of nonlinear algebraic equations which must be solved directly to determine the
values of the unknownsF2,j+1, . . . , FNξ ,j+1 andG1,j+1, . . . ,GNξ ,j+1 simultan-
eously. To solve the nonlinear system of algebraic equationsGk = 0 we utilise the
NAG routine C05PDF.

To accurately describe the initial evolution, the time increment1τ0 at timeτ =
τ0 is set to some prescribed small value and subsequently a time step doubling
procedure is adopted to reduce the computations at later times.

4.2. NUMERICAL SOLUTION FOR τ̃n < τ 6 τ∗n
As noted earlier, the restrictions to finite dimensionalξ andη spaces enable us
to transfer from the forward integrating solution procedure of Section 4.1 inξ , τ
variables to the corresponding version of the same approach inη, τ variables at
the precise timẽτp = (η∞/2ξ∞)2. Based upon the streamfunction and temperature
profiles at the final timẽτn reached in the numerical solution of the previous sec-
tion, we can now continue the step-by-step method, using a technique similar to
that described by Merkin (1972), towards the timeτ ∗p predicted by Equation (29).

The full boundary-layer equations (7) and (8) are now solved subject to the
boundary conditions (9) and the initial profiles

f (η, τ̃n) = τ̃ 1/2
n F (ξ, τ̃n)

∣∣∣∣
ξ=η/2τ̃1/2

n

, θ(η, τ̃n) = τ̃ 1/2
n G(ξ, τ̃n)

∣∣∣∣
ξ=η/2τ̃1/2

n

, (33)

where the conditions valid forη → ∞ are applied atη = η∞ = 2ξ∞τ̃
1/2
n , by

employing the numerical formulation used in the paper by Harriset al. (1997a).
The resulting system of nonlinear algebraic equationsGk = 0 can now be solved

to simultaneously determine the values off andθ at the next time step using the
NAG routine C05PDF, as in Section 4.1, based upon the initial profiles (33).

4.3. NUMERICAL SOLUTION FOR τ∗n < τ <∞
At large times the solutions for the nondimensional streamfunctionf (η, τ) and
the temperature functionθ(η, τ) are known to approach the steady state similarity
solution profilesf∞(η) andθ∞(η), respectively, associated with the uniform heat
flux q ′′2 at the horizontal plate surface, as derived in Equation (13). We must now
attempt to characterise the evolution of the profiles reached at timeτ ∗n , when the
numerical techniques of Sections 4.1 and 4.2 terminate, towards these final steady
state profiles.
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The matching technique originated by Dennis (1972) has been successfully
applied by the present authors to some related problems of impulsive changes in
uniform surface heat flux or temperature on vertical plates, see Harriset al.(1997a,
b, 1998) wherein comprehensive details of this iterative approach are presented. In
the finite-difference approximation to Equation (8) we replace∂θ/∂τ by either a
backward or a forward difference depending on whether the coefficient of∂θ/∂τ is
positive or negative, respectively, to attempt to achieve a convergent solution using
standard iterative techniques.

It was deduced for the forward integration approach that ensuring convergence
of the solution of the governing boundary-layer equations (7) and (8) crucially
depends on solving for the unknown values of the nondimensional streamfunction
and temperature simultaneously. In view of this, an extension of the above method
is attempted in which tri-diagonal systems forf (η, τ) andθ(η, τ) are each set up
along lines of constantτ within the grid and solved alternately to derive new estim-
ates forf (η, τ) andθ(η, τ), using the Thomas algorithm for tri-diagonal matrices.
The further extension to solving for bothf (η, τ) andθ(η, τ) simultaneously along
a line of constantτ by constructing an associated system of nonlinear algebraic
equations would again require the implementation of the NAG routine C05PDF, as
in Sections 4.1 and 4.2, and clearly require a significant amount of computational
time per iteration through the grid for a suitable value ofτ∞. This further extension
has therefore not been attempted.

5. Results

The NAG routine D02HAF was used to solve the coupled ordinary differential
equations (10) and (11), subject to the boundary conditions (12). In this numerical
procedure an absolute error tolerance must be supplied and the upper range of
integration must be specified at some finite value instead of infinity. In all the results
presented in this paper a tolerance of 10−8 and an endpoint ofη = 14 were used as
it was found that any further decrease and increase, respectively, of the values did
not produce results which showed further significant variation.

In the discussion of the results which follow we concentrate on the two cases
R = 0.5 and 2.

5.1. RESULTS FOR0< τ 6 τ∗n
The restriction to a finite dimensionalξ space was achieved by takingξ∞ = 12
and thus the precise time at which transfer to the method of Section 4.2 takes place
is τ̃p = 0.34028, takingη∞ = 14. This value ofη∞ was taken to be sufficiently
large to ensure thatθ and∂f/∂η are negligible over an interval approachingη∞
and the results up toτ = τ ∗n obtained using larger values ofη∞ show no signi-
ficant deviation. The value ofξ∞ was separately increased but again provided no
discernible graphical variation. Furthermore, usingξ∞ = 12 the profiles of the
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nondimensional temperature and velocity function remained close to their initial
steady state values over an interval of theξ space approachingξ∞ for all times up
to τ̃n, when the transfer to the forward integration method inη, τ takes place, which
indicates thatξ∞ has been specified sufficiently large. For the caseR = 2, the
profile off (η, τ) was further observed to achieve a small local maximum slightly
above the value enforced to occur at the edge of the growing inner boundary-layer.
As this may be an indication that the boundary-layer thickness is increasing more
rapidly than expected, the value ofξ∞ was increased, keepingNξ = 200, but the
local maximum in the profile persisted.

The initial time τ0 and first time increment1τ0 were assigned the values
τ0 = 10−5 and1τ0 = 10−6, respectively. Any smaller values of these parameters
were found to produce results which are graphically indistinguishable from those
presented in the figures and, moreover, the values specified forτ0 and1τ0 are
consistent with those used by the present authors in related papers (see Harriset al.,
1997a, b, 1998). For the ratiosR = 0.5 and 2, the time step doubling criterion was
successful in steadily increasing the time increments and led to a time increment
of 1τ = 2.048× 10−3 at the timesτ = τ̃n = 0.3367 andτ = τ̃n = 0.3387,
respectively. The numerical values ofη∞ = 2ξ∞τ̃

1/2
n were therefore calculated to

beη∞ = 13.9258 and 13.9681 forR = 0.5 and 2, respectively.
The timeτ ∗n , denoting the largest value ofτ reached in the numerical scheme

beforeτ ∗p , defined by Equation (29), was found to beτ ∗n ≈ 0.4063 andτ ∗n ≈ 0.3879
for R = 0.5 and 2, respectively.

The main source of variation in the solutions for the nondimensional fluid tem-
peratureθ(η, τ) = τ 1

2G(ξ(η, τ), τ ) and fluid velocity function

∂f

∂η
(η, τ) = τ 1/2∂F

∂ξ
(ξ(η, τ), τ )

arise by considering changes in the number of grid spacesNξ . The values ofNξ

considered here wereNξ = 100 and 200 with corresponding values ofhξ = 0.12
and 0.06. It was observed in these cases that asNξ increases, and consequentlyhξ

decreases, the initial development of the numerical solution approached that of the
small time solution but further refinements of the grid were not possible due to the
already considerable computational time required forNξ = 200. Thus, the value
Nξ = 200 has been used in all the results presented in this paper. Furthermore, the
number of spatial grid points and final time increment atτ = τ̃n were continued
to the method described in Section 4.2 forτ̃n < τ 6 τ ∗n , so thatNη = 200 and
hη = η∞/Nη ≈ 0.07. An improvement in the accuracy of the solution was again
observed to occur as the spatial grid was refined fromNη = 100 toNη = 200.

Figure 1 shows the variation of the temperature profilesθ(η, τ) at various times
τ calculated forR = 0.5 and 2. The steady state solution as predicted by Equa-
tions (10) and (11) is also included in this figure. We see that the nondimensional
temperature profiles evolve fromτ = 0 towards the large time steady state solution
although initially the effects of the change in surface heat flux of the plate are not
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Figure 1. Variation of the nondimensional temperature functionθ(η, τ) as a function ofη,
shown at various values ofτ during the evolution from the initial unsteady state atτ = 0 to
the termination of the forward integration approach atτ = τ∗n , and the large time solution
valid asτ →∞: (a)R = 0.5; (b)R = 2.

felt near the outer edge of the boundary-layer. As time progresses towardsτ = τ ∗n
the effect of the impulsive change in the surface conditions penetrate further into
the initial steady state boundary-layer but the profile of the temperature overshoots
the large time solution before the step-by-step method breaks down. This observa-
tion is further demonstrated in the evolution of the nondimensional plate surface
temperature with timeτ in Figure 2 whereθw(τ) is found to have both reached a
value beyond its predicted steady state value by the timeτ ∗n and to be continuing to
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Figure 2. Variation of the nondimensional wall temperatureθw(τ) as a function ofτ , the small
time solution and the steady state solutions atτ = 0 and asτ → ∞, where the transition
between the solution methods of Sections 4.1 and 4.2 and Sections 4.2 and 4.3 occur at the
indicated times̃τn andτ∗n , respectively: (a)R = 0.5; (b)R = 2.

rapidly decrease or increase with time according as to whetherR = 0.5 orR = 2,
respectively. The numerical, transient solution is also shown to develop closely
following the small time solution (28) and is graphically almost identical when
τ < 0.15 for bothR = 0.5 and 2. As the numerical solution begins to deviate
from the small time analytical solution, this truncated series approximation (28)
becomes invalid.
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Figure 3. Variation of the nondimensional wall velocity∂f (0, τ )/∂η as a function ofτ , the
small time solution and the steady state solution asτ →∞, where the transition between the
solution methods of Sections 4.1 and 4.2 and Sections 4.2 and 4.3 occur at the indicated times
τ̃n andτ∗n , respectively. (a)R = 0.5; (b)R = 2.

The evolution of the nondimensional fluid velocity at the plate surface
∂f (0, τ )/∂η with timeτ is also presented in Figure 3. Again, the transient solution
initially follows the constant small time solution predicted in Equation (26), which
indicates that the approach of∂f (0, τ )/∂η towards its predicted final steady state
value is much slower than the corresponding evolution of the plate surface tem-
perature. Furthermore, up to the timeτ ∗n at which the forward integration method
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terminates, there is an insignificant change in the whole of the∂f (η, τ)/∂η profile.
When viewed graphically, the profiles of the velocity function∂f (η, τ)/∂η at τ ∗n
are almost indistinguishable from the corresponding initial steady state profiles and
it is for this reason that the evolution of the velocity profiles, in a similar form to
those presented in Figure 1 forθ(η, τ), are not presented here for the time period
over which the forward integration approach is applicable.

5.2. RESULTS FORτ ∗n < τ <∞
The matching technique originated by Dennis (1972) was applied in order to pre-
dict the evolution of the known profiles of the temperature and streamfunction
reached at the termination of the forward integrating approach of Sections 4.1 and
4.2 towards the predicted large time steady state profiles. This technique was im-
plemented with a constant time increment which was chosen to be almost identical
to the spatial step size, as required in Harriset al.(1997a, b, 1998). The spatial grid
size specified atτ = τ ∗n , from the termination of the forward integration approach,
was continued here so that both ann = 100 and ann = 200 spatial grid were
applied. Although the valueη∞ ≈ 14 has been shown to be valid forτ 6 τ ∗n , this
value ofη∞ was additionally extended, with a corresponding increase inn. The
final steady state profiles were enforced at various values ofτ∞ up to τ∞ = 20.
In all cases, forR = 0.5, the solution diverged rapidly and thus no convergent
results could be derived based upon the profilesf (η, τ ∗n ) and θ(η, τ ∗n ) specified
at τ = τ ∗n . To attempt a more gradual approach towards the expected solution,
an under-relaxation method was employed with a small relaxation parameter but
again this approach eventually led to divergence.

In the first extension of the method described here, based upon solving tri-
diagonal systems forf (η, τ) andθ(η, τ) along lines of constantτ within the grid,
we found that again no convergent solution could be achieved. Furthermore, in a
related paper by Inghamet al.(1985) the impulsive cooling of a horizontal surface,
for which the governing boundary-layer equations have a similar appearance to
Equations (7) and (8), was studied and, despite no difficulties occurring for the
corresponding problems on vertical surfaces, the method of Dennis (1972) again
proved ineffective in matching the small and large time solutions.

At nondimensional times just afterτ ∗n the nondimensional velocity near the
horizontal surface is such that

q(η, τ) = 1− 2τ
∂f

∂η
(η, τ)

is either negative or very small and tending towards a negative value. Figure 4
demonstrates how the profiles of the nondimensional temperatureθ(η, τ) and ve-
locity ∂f (η, τ)/∂η evolve beyondτ = τ ∗n , for R = 0.5, using an approach in
which we set the termq(η, τ) ≡ 0 at all points for which it is negative. The profiles
of nondimensional temperature are observed to continue to decrease with nondi-
mensional time until a minimum profile is reached at aroundτ = 2. The profile
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Figure 4. Variation of the solution profiles withη, showing the evolution from the valid solu-
tions atτ = τ∗n determined using the technique in which we setq ≡ 0 whenever it becomes
negative, together with the initial unsteady state atτ = 0 and the large time solution valid
asτ → ∞, for the caseR = 0.5. (a) Profiles of the nondimensional temperature function
θ(η, τ); (b) Profiles of the nondimensional velocity function∂f (η, τ)/∂η.
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Figure 5. The evolution withτ from the valid solutions atτ = τ∗n , using the technique in
which we setq ≡ 0 whenever it becomes negative, together with the small time solution and
the large time solution valid asτ → ∞, for the caseR = 0.5. (a) The nondimensional wall
temperatureθw(τ); (b) The nondimensional wall velocity∂f (0, τ )/∂η.

then begins to increase throughout and passes over the predicted large time steady
state profile. The profile continues to grow with the value of the nondimensional
temperature becoming significantly above zero at the edge of the spatial domain.
The boundary-layer grows in size until the numerical solution technique fails to
converge at some time beyond aboutτ = 20. The same growth in the boundary-
layer thickness is observed in the evolution of the nondimensional velocity function
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profiles. These profiles are again seen to initially evolve such that the change in the
surface heat flux does not affect the velocity function near the outer edge of the
boundary-layer before the solution overshoots the predicted large time steady state
profile and continues to decrease for all values ofη, eventually becoming negative
throughout the spatial domain 06 η 6 η∞. Clearly the termq(η, τ) has become
positive throughout the domain again as time increases and we return to solving
the original finite-difference equations, namely those described in Section 4.2.
To demonstrate further the above behaviour, the evolution of the nondimensional
surface temperatureθw(τ) and velocity on the surface∂f (0, τ )/∂η are presented
in Figure 5. Thus, rather than approaching steady state values, the solutions dis-
cussed here continue to remain highly transient at large times and the right-hand
sides of the governing boundary-layer equations (7) and (8) do not become small.
Figure 5(b) shows that the velocity on the surface becomes negative whenτ is
large and hence reversed flows have been detected. Clearly, the numerical scheme
is inappropriate at such times as the flow of information in this parabolic equation
is in the wrong direction. This clearly illustrates that this matching approach has
failed.

Setting the termq(η, τ) ≡ 0 at all points where it is negative for the case of
R = 2 did not allow a valid solution to be reached very far beyondτ ∗n . Instead,
an oscillatory behaviour soon developed and the technique failed to converge.
To ensure that these oscillations were not due to increasing errors arising from
the local maximum in the profile off (η, τ) observed in Section 5.1, the forward
integration approach using the(η, τ) variables defined in Section 4.2 was begun at
the initial timeτ0 using the small time approximation, as described for the method
of Section 4.1. Exactly the same characteristic oscillations were found to arise at a
similar time beyondτ ∗n .

6. Conclusions

The transient free convection from a horizontal flat surface, embedded in a fluid-
saturated porous medium, which develops due to a sudden change in the surface
heating rate has been analysed thoroughly. An analytical solution which is valid
for small times and a large time numerical similarity solution profile have been
obtained for some values of the physical parameterR, representing the ratio of the
final surface heat flux to the initial surface heat flux. The cases ofR = 0.5 andR =
2 considered here are representative of the two possible cases of a decrease and
increase in the surface heating rate, respectively. It has been shown that the small
time transient is initially confined within the established boundary-layer region
near the surface, corresponding to the initial heating situation. Later, convection
effects modify the solution at a greater distance from the horizontal surface.

A numerical solution of the full boundary-layer equations has been obtained
using a forward integration technique and the results have been validated against
the small time analytical solution. However, a time is reached at which this march-
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ing approach is no longer well posed and beyond this time we have not been able
to continue the transient solution towards the large time temperature and velocity
profiles. This difficulty was found to arise due to the change in sign of the time
derivative term within one of the governing boundary-layer equations. The failure
to match the small and large time solutions therefore makes the present problem
somewhat distinct from related transient convection problems on vertical surfaces,
arising due to impulsive changes in surface heat flux or temperature, for which
no such difficulties have been reported. Consequently, the question of whether or
not it is possible to reach the predicted large time regime based upon the initial
conditions posed here remains unresolved.

Work is now in progress to investigate other possible large time solutions and
on performing a linear stability analysis on the steady state solutions. These invest-
igations should provide further insights into this very interesting problem.
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