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Abstract. This paper presents an analytical and numerical study of transient free convection from a
horizontal surface that is embedded in a fluid-saturated porous medium. It is assumed that for time
T < 0 steady state velocity and temperature fields are obtained in the boundary-layer which occurs
due to a uniform flux dissipation rat;—‘i’ on the surface. Then, at= 0 the heat flux on the surface

is suddenly changed tgg and maintained at this value fér> 0. Firstly, solutions which are valid

for small and largé are obtained. The full boundary-layer equations are then integrated step-by-step
for the transient regime from the initial unsteady state=(0) until such times at which this forward
marching approach is no longer well posed. Beyond this time no valid solutions could be obtained
which matched the final solution from the forward integration to the steady state profiles at large
timest — oo.
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Nomenclature

k effective thermal conductivity.

K permeability of the porous medium.

q1 initial uniform surface heat fluxt( < 0).

q5 final uniform surface heat flux (> 0).

R ratio of the final surface heat flux to the initial surface heat flax; /g7

Ra, local Rayleigh number based on the initial heat §¢x = gﬂKq’l/xz/kow.
T fluid temperature.

To ambient fluid temperature.

AT  characteristic temperature, q’l’a(x)/k.

u,v seepage velocity components alongandy-directions, respectively.

Uc  characteristic velocity= (ar/x)(Ray)/2.

x,y Cartesian coordinates along the surface and normal to it, respectively.

Greek symbols

o effective thermal diffusivity.

B volumetric coefficient of thermal expansion.

) boundary-layer thickness &t= 0, = x(4/Ra) /4.
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nondimensional similarity variables y/5(x).

nondimensional temperature functiea,(T — Tx)/AT .

kinematic viscosity.

nondimensional transformed variabte ;/211/2.

ratio of composite material heat capacity to convective fluid heat capacity.
time.

nondimensional times a7 /o (8 (x))2.

streamfunction.

< 2 Qe O3

Subscript
w conditions at the horizontal surface.

1. Introduction

Convective heat transfer in porous media has received considerable attention in
recent years owing to its importance in various technological applications such as
geothermal systems, grain storage, fibre and granular insulation, electronic system
cooling, storage of agricultural products, chemical catalytic reactors, underground
diffusion of contaminants, coal combustors and porous material regenerative heat
exchangers. Recent books by Nield and Bejan (1999), Nakayama (1995) and Ing-
ham and Pop (1998) excellently describe the extent of the research information in
this area.

It has been established that the convection from vertical and horizontal surfaces
in a viscous fluid and in a fluid-saturated porous medium have much in common.
However, buoyancy induced flows adjacent to horizontal or nearly horizontal sur-
faces embedded in porous media have not been studied as extensively as those
adjacent to vertical surfaces, despite their important applications both in the envir-
onment and in technology. In contrast to the vertical surface, where the component
of the buoyancy force normal to the surface (i.e. normal to the main flow direction)
is neglected, and only its tangential component is considered, this approximation
breaks down when the surface becomes horizontal and the buoyancy force acts
perpendicular to the surface. When the temperature of a horizontal surface differs
from that of the ambient fluid, a vertical density gradient will be generated, indicat-
ing a longitudinal pressure gradient. If the resulting longitudinal pressure gradient
is large enough to overcome the upward directing buoyancy force, a convective
movement will be set up over the horizontal surface, resulting in a horizontal
boundary-layer flow.

Steady free convection boundary-layer flow in a porous medium above a heated
horizontal surface or below a cooled horizontal surface was first considered by
Cheng and Chang (1976) and Chang and Cheng (1983), and their analyses have
been very much refined and generalised since then. Recently, Merkin and Zhang
(1990), Nakayama (1995), Higuera and Weidman (1995), Leshil. (1995),
Chaudharyet al. (1996), Rees (1996) and Higuera (1997) have published very
detailed analytical and numerical solutions for this type of problem.
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Most of the recent investigations into boundary-layer flows over a horizontal
surface immersed in a porous medium have been directed towards the problem of
steady state free or mixed convection flow. Transient boundary-layer flow problems
on horizontal surfaces in porous media, on the other hand, have received relatively
little attention, so far. Perhaps, the first study on this problem was done by Johnson
and Cheng (1978), where similarity solutions were found for certain variations
of the wall temperature distribution. Pop and Cheng (1983) exploited the method
of integral solutions to attack the problem of transient free convection on a sud-
denly heated horizontal surface in a porous medium. Ingétaah (1985) used the
asymptotic expansion method to study the case of a suddenly cooled horizontal
surface embedded in a porous medium.

It is worth mentioning here that the inclusion of unsteadiness into the governing
equations of any problem is important for the development of a more physically
realistic characterisation of the flow configuration. It is this approach that will
provide the best opportunity to discover new kinds of evolutions such as critical
situations, instabilities or chaotic structures governed by time-dependent bound-
ary conditions, especially in the cases where velocity and temperature fields are
coupled, that is convective flow problems. Moreover, time is a fundamental para-
meter in many practical situations at a variety of scales, for example in regulation
systems as well as in nuclear plant safety or in meteorology.

The present paper is concerned with the transient free convection boundary-
layer flow over a horizontal surface embedded in a fluid-saturated porous medium
of constant ambient temperature. Thus, we discuss the practical situation in which
the general transient arises from a sudden change in the level of energy input flux
on the surface of the plate, that is a steady input heatdluis changed at the
time 7 = 0 to a new steady level; and maintained at this value for > 0. A
thin inner boundary-layer is thus formed adjacent to the surface at small times.
An analytical solution is given for the velocity and temperature fields in this inner
layer using an asymptotic method, which is similar to that employed by Ingham
et al. (1985). However, the present generalisation and transformed equations are
different, since the surface heat flux condition on the plate has been imposed.
Then, a numerical step-by-step approach is utilised to derive a solution of the
full boundary-layer equations for the transient regime from the initial unsteady
state ¢ = 0) until such times at which this forward integrating approach is no
longer well posed. The methods used are similar to that successfully employed
by the present authors Hares al. (1996, 1997a, b, 1998) for the corresponding
vertical configuration. Beyond the time at which the forward marching approach
terminates, various methods have been used in an attempt to match the final profiles
of the temperature and streamfunction to their large time steady state solutions. A
detailed discussion of the failure of such methods for this problem is also presented.
The valid solutions obtained provide a qualitative picture of the nondimensional
velocity and temperature fields in the boundary-layer as well as the nondimensional
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surface temperature distribution. No doubt, these solutions are relevant to a proper
understanding of the general flow and heat transfer characteristics in porous media.

2. Governing Equations

Consider the problem of transient free convection above a horizontal impermeable
flat surface which is embedded in a fluid-saturated porous medium of ambient
temperatureT,,. We take Cartesian coordinates fixed in space withitaxis

along the horizontal surface and theaxis normal to it. They-axis is oriented
upwards, while the gravitational acceleration acts vertically downwards. The initial
steady situation is that of two-dimensional free convection due to a uniform heat
flux dissipation rate; at the surface. A transient begins when the heat flux on
the plate is suddenly changed at tiie= 0 to ¢; and maintained at this value

for T > 0. In the mathematical formulation of the problem, we assume that the
Darcy—-Boussinesq approximation is valid. With the further assumption that the
Rayleigh number is large so that the boundary-layer approximation can be applied,
the governing equations for the transient response are (see Nield and Bejan, 1999)

ou Jv

— 4+ — =0, 1
ox + ay @)
ou gBK 0T

R @)
ay Vv ox

T oT oT 9°T
o—+u—+v—=a—s, (3)
0T 0x dy 0y?2

for 7 > 0. Hereu(x, y, T) andv(x, y, T) denote the seepage velocity components
along thex- and y-directions, respectivelyT' (x, y, T) is the fluid temperature,

g is the magnitude of the acceleration due to gravKyjs the permeability of
the porous mediumy is the heat capacity ratio; is the kinematic viscosityp

is the volumetric coefficient of thermal expansion anik the effective thermal
diffusivity of the fluid-saturated porous medium.

For timet < O, the steady flow results from the uniform surface heat §lux
while for ¢ > 0 the transient flow is a consequence of the uniform heatgjux
Thus, the governing boundary-layer Equations (1)—(3) must be solved subject to
the following boundary conditions:

ux,00,7) =0, T(x,00,7T) = Ts,
0T ; @)
v(x,0,7) =0, “(x.0,7)=-%
dy k

wherek is the effective thermal conductivity.
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Fort > 0, we now introduce the time-dependent, nondimensional, reduced
streamfunctionf, and the temperature functiof, defined according to

V= US() fn 1), 0(n, ) = 1= (5)
= 9 9 9 t = 9
co(X n,T n AT
where
y af 506) ( 4 \Y4
= o T = T e, 0 X) =X e ’
=500 7 (5(x))2 Ra,
7N\ 1/2
Ue= - (Ra)¥2 = (Lﬂ qu) , (6)
X kv
Vi K 1.2
AT = 92900 o _ 8PKGxT
k kav

Further,n is the nondimensional similarity variable,s the nondimensional time,
8(x) is the boundary-layer thicknessat= 0, U, is the characteristic velocith T
is the characteristic temperature, ,Ra the local Rayleigh number based on the
initial heat fluxgy andy is the streamfunction which is defined in the usual way,
namelyu = dy/dy andv = —dy/dx.

The equations governing the evolution of the functigiig, ) ando(n, ) can
be obtained by substituting expressions (5) into the governing Equations (1)—(3). It
is found that these functions satisfy the following pair of coupled equations:

3% f a0 a0

2L T ie=2r, 7
oz o 0T e )
326 af\ 96 0 af\ 96

an2 dt) an Ay dn ) ot

which are to be solved far > 0, subject to the boundary conditions

f(o’ T) = 0, %(Oa T) = _q_%a
an q1 @)
af
—(00,7) =0, 6(c0,7)=0.
an

For the steady transport of energyat= 0 we write f(,0) = fo(n) and
0(n, 0) = 6p(n), say, so that the functiong(n) anddy(n) are the solutions of the
coupled ordinary differential equations

fo —nby+60 =0, (10)

65 + fobly — fibo =0, (12)
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where prime denotes differentiation with respectjtolhe associated boundary
conditions (9) reduce to

fo(0) =0, 65(0)=—1, fo(00) =0, 6o(c0)=0. 12)

At large times,r — oo, the profiles for the nondimensional streamfunction
f(n, t) and the temperature functigh(n, t) are known to approach steady state
solutions f (n, 00) = f(n) andod(n, 00) = 0 (n), respectively, associated with
the uniform heat flux;; at the horizontal surface. The functiogig () and6(n)
satisfy a pair of coupled ordinary differential equations of precisely the same form
as Equations (10) and (11) and are subject to boundary conditions similar to ex-
pression (12) with the modification thaf (0) = —R, whereR = ¢5/q;. The
solution to this system can be recovered as a similarity solution of the original
system (10)—(12) so that the functions

Foo(m) = RY* foRY%),  05(n) = R¥*0o(nRY*) (13)

represent the final steady state profiles of the streamfunction and temperature func-
tion, respectively.

3. Small Time Solution,T € 1

In common with all problems involving impulsive changes in heat flux or tem-
perature, there is a brief period during which the transient effects are confined
to a thin, one-dimensional, unsteady boundary-layer adjacent to the surface whose
thickness is very small in comparison to that of the steady boundary-layes &t
Specifically, fort « 1 there exists an inner boundary-layer, whose evolution is
described by Equations (7)—(9), which is entirely contained within the initial steady
boundary-layer profile, in which the streamfunction and temperature attain their
steady state valueg and6,, respectively. This suggests that to obtain a solution at
small times, for which the appropriate length scale is the diffusion acétethe
boundary-layer equations (7) and (8) have to be transformed by writing

f.0) = VPFE D, 0. 0) = 126G 1), E= .

21-1/2

Substituting these expressions into Equations (7) and (8) yields the coupled partial
differential equations

2
lB_F — 2T3/28_G

(14)

= — 15
4 9&2 ot ’ (15)
192G 1 1 IF\ 0G AF\ 0G
-—— — =G e ) —=r(1-1—)— 16
4982 2 +<2§ far)as t( fag)ar’ (16)

which have to be solved subject to the boundary conditions at the plate:

G
FO,t) =0, —(0,7) =—-2R. a7)

9§
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The solution in this growing inner layer is taken to match with that of the outer
steady boundary-layer, which at smaitan be approximated by series expansions
aboutn = 0 of the form

fo) = an — 3bn* + Habn* + O(°), (18)
Oo(n) = b — n + Sabn® — 2b°n* + O(n"), (19)

wherea = f3(0) = 1.26286 andh = 6p(0) = 0.82325. It follows, by substitution
of the transformation (20) into Equations (18) and (19), that for large valués of
the functionsF andG may be expressed as

F(§, 1) ~ 2a§ — 2b&%"? + 2abg*t% + O(7?), (20)
G(&, 1) ~ bt /% — 28 + 2ab&%c"? — 2p%E% + O(%?). (21)

The behaviour of the inner boundary-layer solutiortas> oo is to be matched
with the steady outer solutions (20) and (21). It is the form of these asymptotic
expressions which suggests the appropriate perturbation expansiorfdr as

F(&,7) = Fo(§) + tY2F1(§) + T F2(§) + T2 F3(8) + O(z?), (22)
G, 1) = T Y2Go(€) + G1(§) + TV2G2(8) + 1G3(6) + O(z¥?).  (23)

Substitution of these series into Equations (15) and (16) and equating the terms of
the same powers af gives rise to systems of ordinary differential equations from
which closed form solutions faF; andG;, wherei = 0, 1, 2, 3, can be obtained.

The resulting expressions for the small time velodity,/9&, and temperatures;,
profiles may be readily established as

9F 8
7 = 2a — 4bETY? 4 éabs%?*/z +0(z?), (24)

1
G = bt V?2-264+2(1—R) (g erfcg — ﬁefz) +
4
+2abg?cY? — §b2$3r + O(t¥?), (25)

where erf¢ = (2//7) f;o e~“dr is the complementary error function.

Expressions (24) and (25) are applicable only to the development of the free
convection flow in the inner boundary-layer region, that isifeg 1. The velocity
and temperature functions which are valid for all valueg afe as follows:

af _dfo

e -Ju 2
an("’ T) = a7 (n) + O(z9), (26)
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2
0, 1) =6o(n)+(1—R) [n erfc (ﬁ) — ﬁ

Tl/Zen2/4rj| +O('L'2), (27)
at small times.

An important physical quantity is the nondimensional temperature on the plate
and at small times this function has the following explicit series expansion:

_ 2 2
0,(t) =0(0,7) =b ﬁ(l R)t7/< 4+ O(t9). (28)

4. Numerical Techniques

Initially the transient effects due to the change in the heat flux at the horizontal
plate are confined to a thin fluid region near to the surface and are described by
the small time solution. These effects continue to penetrate outwards through the
initial boundary-layer and eventually evolve into a new steady state flow. In order
to match these small and large time solutions, we now develop a numerical solution
of the full boundary-layer equations (1)—(3) by initially using the formulation (15)
and (16) in terms of, T and subsequently the nondimensional partial differential
equations (7) and (8) in terms of t.

The evolution of the pairs of interrelated functioRsG and f, 6 are separately
governed by the pairs of coupled partial differential equations (15), (16) and (7),
(8), respectively, which are each parabolic and can be integrated numerically using
a step-by-step method similar to that described by Merkin (1972), provided that the
coefficients of the corresponding terdG /3t anddd /9t remain positive through-
out the solution domain. This marching method enables the solution described by
the functionsfy(n), 6o(n) at timet = 0 to proceed in time and gives a complete
solution fort < 1,7, wherer, is the maximum value of reached in the forward

n?

integrating numerical scheme, which is less than the preciserfjreatisfying

0
0, 75) = 2r§£(0, ) =1 (29)

F
3

The application of the step-by-step scheme to the pair of coupled equations (15)
and (16) enables the accurate evolution of the temperature and velocity profiles to
be determined over a developing inner layer whose width increases with time. If
&5 andn,, are interpreted as being finite values of the spatial variables at which
the associated boundary conditions are to be applied, then at the exad} time
(No/2£55)? We must transfer to the step-by-step scheme applied to Equations (7)
and (8). We again adopt the notatignto denote the corresponding value wof
which is reached in our numerical techniques.

At the timetr = ¢, the forward integration approach breaks down and the coef-
ficients ofdG /9T anddd/at in the governing Equations (16) and (8), respectively,
are tending towards negative values at the surface of the horizontal plate. Based

*
™o
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upon the profilesf (n, t) and6(n, t,;") at this time and the asymptotic steady
state profilesf..(n) and6..(n), defined in Equation (13), we attempt to complete
the numerical integration and derive a solution ovgr< t < oo by adopting a
matching approach in Section 4.3.

4.1. NUMERICAL SOLUTION FORO < 1 < %y

In order to evaluate accurately the initial evolution of both the nondimensional fluid
velocity df/dn and the nondimensional fluid temperatérave apply the direct,
forward integration scheme to Equations (15) and (16) and begin the numerical
solution at the small time = 1y > 0. Thus, the governing pair of coupled
equations (15) and (16) must be solved subject to the boundary conditions (17),
the initial profiles

2
F(&, 1) ~ 2a& — 2bE%1y” + éabs“rg/z, (30)

_ 1
G, ) ~ bty > =26 +2(1—R) [s erfcé — ﬁe 52] +

1

4
+2ab?)% — §b2$3ro, (31)

which follow from the small time analysis, and the following conditions:

Foo, ) =T 720 (2VTEx),  G(Ew, 7) = T 7%00(2J/T6x),  (32)

where the undisturbed statgg(n) and 6y(n), following from the initial steady
solution, remain.

The finite spatial domain is divided inté® grid spacings of length® = £,/ N¢
and a variable time step is used, with the time step at the start oftthéme
increment being denoted hyz;. We also introduce the notatiaf} ; andG; ; to
represent the finite-difference approximations to the nondimensional streamfunc-
tion F and temperature functio&, respectively, at the poirit = (i — 1)h* for
some timer = t;.

Given a complete solutiof; ;, G; ;,i = 1,..., N® + 1, at timer; we require
the solution forF; .1, G; j+1 at the next timer = t;;.1 = r; + At; and adopt the
step-by-step finite-difference procedure similar to that described by Merkin (1972).
This numerical formulation is very well described by Haetsal. (1997a) and we
will not present it here.

Consider the system of linear algebraic equatigijs= 0 and the system
of nonlinear algebraic equatio® = 0 resulting from the finite-difference ap-
proximations to the governing equations (15) and (16), respectively. Given initial
approximations to the solutions of these systems, it would be natural to assume that
an iterative approach could be utilised to successively determine better approxim-
ations by employing Newton’s method and alternately inverting the linear system
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associated wittG! or G2 using the Thomas algorithm for tri-diagonal matrices.
This approach was attempted and found to be successful initially, but ultimately
did not lead to a convergent solution after a short time interval. It was found that a
convergent solution at each time step could only be guaranteed<dt, provided
that the systemg} and G? were combined to produce a single systém= 0
of nonlinear algebraic equations which must be solved directly to determine the
values of the unknowns?y ; 1, ..., Fy: ;41 @nd Gy jy1, ..., Gye j41 Simultan-
eously. To solve the nonlinear system of algebraic equatipnrs 0 we utilise the
NAG routine CO5PDF.

To accurately describe the initial evolution, the time incremenj at timet =
17p iS set to some prescribed small value and subsequently a time step doubling
procedure is adopted to reduce the computations at later times.

4.2. NUMERICAL SOLUTION FOR%, <1 < 7f

As noted earlier, the restrictions to finite dimensioBahnd n spaces enable us
to transfer from the forward integrating solution procedure of Section 4] in
variables to the corresponding version of the same approaghinvariables at
the precise timé, = (1../26x)2. Based upon the streamfunction and temperature
profiles at the final time, reached in the numerical solution of the previous sec-
tion, we can now continue the step-by-step method, using a technique similar to
that described by Merkin (1972), towards the tiggepredicted by Equation (29).

The full boundary-layer equations (7) and (8) are now solved subject to the
boundary conditions (9) and the initial profiles

f(n, %) = tY2F (£, %) . 0, T) = TG, T,) . (33)
§=n/2%,* §=n/25,*

where the conditions valid fop — oo are applied ay = 7. = 2%.%./%, by

employing the numerical formulation used in the paper by Hatrad. (1997a).
The resulting system of nonlinear algebraic equat@ns- 0 can now be solved

to simultaneously determine the valuesfoindé at the next time step using the

NAG routine CO5PDF, as in Section 4.1, based upon the initial profiles (33).

4.3. NUMERICAL SOLUTION FOR7t} <t < 00

At large times the solutions for the nondimensional streamfunction ) and

the temperature functiof\(, t) are known to approach the steady state similarity
solution profilesf., () andf(n), respectively, associated with the uniform heat
flux g5 at the horizontal plate surface, as derived in Equation (13). We must now
attempt to characterise the evolution of the profiles reached atdfimehen the
numerical techniques of Sections 4.1 and 4.2 terminate, towards these final steady
state profiles.
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The matching technique originated by Dennis (1972) has been successfully
applied by the present authors to some related problems of impulsive changes in
uniform surface heat flux or temperature on vertical plates, see Haaig1997a,

b, 1998) wherein comprehensive details of this iterative approach are presented. In
the finite-difference approximation to Equation (8) we replaégot by either a
backward or a forward difference depending on whether the coefficiet/ofr is
positive or negative, respectively, to attempt to achieve a convergent solution using
standard iterative techniques.

It was deduced for the forward integration approach that ensuring convergence
of the solution of the governing boundary-layer equations (7) and (8) crucially
depends on solving for the unknown values of the nondimensional streamfunction
and temperature simultaneously. In view of this, an extension of the above method
is attempted in which tri-diagonal systems f6¢n, T) andd(n, t) are each set up
along lines of constant within the grid and solved alternately to derive new estim-
ates forf (n, r) ando(n, t), using the Thomas algorithm for tri-diagonal matrices.
The further extension to solving for boif(n, ) andé (n, ) simultaneously along
a line of constant by constructing an associated system of nonlinear algebraic
equations would again require the implementation of the NAG routine CO5PDF, as
in Sections 4.1 and 4.2, and clearly require a significant amount of computational
time per iteration through the grid for a suitable value gf This further extension
has therefore not been attempted.

5. Results

The NAG routine DO2HAF was used to solve the coupled ordinary differential
equations (10) and (11), subject to the boundary conditions (12). In this numerical
procedure an absolute error tolerance must be supplied and the upper range of
integration must be specified at some finite value instead of infinity. In all the results
presented in this paper a tolerance of&and an endpoint of = 14 were used as
it was found that any further decrease and increase, respectively, of the values did
not produce results which showed further significant variation.

In the discussion of the results which follow we concentrate on the two cases
R =05and 2.

5.1. RESULTS FORO < 7 < 7

The restriction to a finite dimension&lspace was achieved by takigg, = 12

and thus the precise time at which transfer to the method of Section 4.2 takes place
is T, = 0.34028, takingy., = 14. This value ofj,, was taken to be sufficiently
large to ensure that anddf/dn are negligible over an interval approaching

and the results up to = t,; obtained using larger values gf, show no signi-

ficant deviation. The value d&f,, was separately increased but again provided no
discernible graphical variation. Furthermore, usig = 12 the profiles of the
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nondimensional temperature and velocity function remained close to their initial
steady state values over an interval of éhgpace approaching,, for all times up
to 7,, when the transfer to the forward integration methogl,in takes place, which
indicates that,, has been specified sufficiently large. For the cAse- 2, the
profile of f(n, t) was further observed to achieve a small local maximum slightly
above the value enforced to occur at the edge of the growing inner boundary-layer.
As this may be an indication that the boundary-layer thickness is increasing more
rapidly than expected, the value &f was increased, keeping® = 200, but the
local maximum in the profile persisted.

The initial time 1o and first time incrementAty were assigned the values
70 = 107° and Aty = 1075, respectively. Any smaller values of these parameters
were found to produce results which are graphically indistinguishable from those
presented in the figures and, moreover, the values specifiet, fand Aty are
consistent with those used by the present authors in related papers (seetyris
1997a, b, 1998). For the ratidgs= 0.5 and 2, the time step doubling criterion was
successful in steadily increasing the time increments and led to a time increment
of At = 2.048 x 1072 at the timesr = 7, = 0.3367 andr = %, = 0.3387,
respectively. The numerical valuespf, = zsoof,}/ 2 were therefore calculated to
ben,, = 139258 and 13.9681 foR = 0.5 and 2, respectively.

The timet, denoting the largest value ofreached in the numerical scheme
beforer;, defined by Equation (29), was found totje~ 0.4063 andr,; ~ 0.3879
for R = 0.5 and 2, respectively.

The main source of variation in the solutions for the nondimensional fluid tem-
peratured (n, 1) = t2G(£(n, t), t) and fluid velocity function

af _ 1/28F

an("’ T)=1 T &M, 1), 1)
arise by considering changes in the number of grid spaesThe values ofv®
considered here wermg® = 100 and 200 with corresponding valueshf= 0.12
and Q06. It was observed in these cases thaVasncreases, and consequenify
decreases, the initial development of the numerical solution approached that of the
small time solution but further refinements of the grid were not possible due to the
already considerable computational time requiredNér= 200. Thus, the value
N% = 200 has been used in all the results presented in this paper. Furthermore, the
number of spatial grid points and final time increment at 7, were continued
to the method described in Section 4.2 for< v < 1, so thatN” = 200 and
h" = ns/N" ~ 0.07. An improvement in the accuracy of the solution was again
observed to occur as the spatial grid was refined fddim= 100 toN" = 200.

Figure 1 shows the variation of the temperature profiles t) at various times
7 calculated forR = 0.5 and 2. The steady state solution as predicted by Equa-
tions (10) and (11) is also included in this figure. We see that the nondimensional
temperature profiles evolve from= 0 towards the large time steady state solution
although initially the effects of the change in surface heat flux of the plate are not
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Initial unsteady solution #o(y) at 7 =0
Numerical solution at 7 = 0.040
Numerical solution at 7 = 0.181
Numerical solution at 7 = 7 = 0.4063
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Figure 1. Variation of the nondimensional temperature functéqm, t) as a function ofy,
shown at various values af during the evolution from the initial unsteady staterat 0 to
the termination of the forward integration approachrat 7,7, and the large time solution
valid ast — oo: (a) R = 0.5; (b) R = 2.

felt near the outer edge of the boundary-layer. As time progresses towasds

the effect of the impulsive change in the surface conditions penetrate further into
the initial steady state boundary-layer but the profile of the temperature overshoots
the large time solution before the step-by-step method breaks down. This observa-
tion is further demonstrated in the evolution of the nondimensional plate surface
temperature with time in Figure 2 wherd,, (7) is found to have both reached a
value beyond its predicted steady state value by the tjivead to be continuing to
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Figure 2. Variation of the nondimensional wall temperatéyg(t) as a function of, the small
time solution and the steady state solutions at 0 and ast — oo, where the transition

between the solution methods of Sections 4.1 and 4.2 and Sections 4.2 and 4.3 occur at the
indicated times;,, andr,’, respectively: (aR = 0.5; (b) R = 2.

rapidly decrease or increase with time according as to whéther0.5 or R = 2,

respectively. The numerical, transient solution is also shown to develop closely
following the small time solution (28) and is graphically almost identical when
7 < 0.15 for bothR = 0.5 and 2. As the numerical solution begins to deviate
from the small time analytical solution, this truncated series approximation (28)

becomes invalid.



TRANSIENT FREE CONVECTION FROM A HORIZONTAL SURFACE 111

a
1.3
1 2 ] T =", /
i T="T)
—~
=
s 1.1+
N’
si&
1 o4 | - Steady state solution at 7 = 0, f3(0),
* and small time solution from Equation (28)
——  Numerical solutions for + < 7
N N Numerical solution for 7 > 7
—-—  Large 7 steady state solution, f..(0) = R f5(0)
0.9+
I ' I ' I I
0.0 0.1 0.2 0.3 0.4
T
1.8
--------- Steady state solution at 7 = 0, f§(0),
and small time solution from Equation (28)
B ——  Numerical solutions for 7 < 7
----- Numerical solution for 7 > 7,
—-—  Large 7 steady state solution, f.,(0) = R} £(0)
1.6
~_~
=~
=) n
N
i€
1.4 T="1
T="7, \
1.2 S I L R
0.0 0.1 0.2 0.3 0.4
T

Figure 3. Variation of the nondimensional wall velocityf (0, t)/dn as a function ofr, the

small time solution and the steady state solutiom as oo, where the transition between the
solution methods of Sections 4.1 and 4.2 and Sections 4.2 and 4.3 occur at the indicated times
7, andz,’, respectively. (aR = 0.5; (b) R = 2.

The evolution of the nondimensional fluid velocity at the plate surface
a1 (0, t)/an with time 7 is also presented in Figure 3. Again, the transient solution
initially follows the constant small time solution predicted in Equation (26), which
indicates that the approach &f (0, t)/dn towards its predicted final steady state
value is much slower than the corresponding evolution of the plate surface tem-
perature. Furthermore, up to the timgat which the forward integration method
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terminates, there is an insignificant change in the whole of thie, t) /97 profile.

When viewed graphically, the profiles of the velocity funct@®fy(n, t)/dn at t;*

are almost indistinguishable from the corresponding initial steady state profiles and
it is for this reason that the evolution of the velocity profiles, in a similar form to
those presented in Figure 1 fé(n, 7), are not presented here for the time period
over which the forward integration approach is applicable.

5.2. RESULTS FORT, < T < 00

The matching technique originated by Dennis (1972) was applied in order to pre-
dict the evolution of the known profiles of the temperature and streamfunction
reached at the termination of the forward integrating approach of Sections 4.1 and
4.2 towards the predicted large time steady state profiles. This technique was im-
plemented with a constant time increment which was chosen to be almost identical
to the spatial step size, as required in Haetial. (1997a, b, 1998). The spatial grid
size specified at = 7,7, from the termination of the forward integration approach,
was continued here so that both an= 100 and am = 200 spatial grid were
applied. Although the valug,, ~ 14 has been shown to be valid for< ', this
value ofn., was additionally extended, with a corresponding increase. ifihe
final steady state profiles were enforced at various values,afp to 7., = 20.
In all cases, fork = 0.5, the solution diverged rapidly and thus no convergent
results could be derived based upon the profif€s, z*) and6(n, t,) specified
att = ;. To attempt a more gradual approach towards the expected solution,
an under-relaxation method was employed with a small relaxation parameter but
again this approach eventually led to divergence.

In the first extension of the method described here, based upon solving tri-
diagonal systems fof (n, t) andé(n, t) along lines of constant within the grid,
we found that again no convergent solution could be achieved. Furthermore, in a
related paper by Inghast al. (1985) the impulsive cooling of a horizontal surface,
for which the governing boundary-layer equations have a similar appearance to
Equations (7) and (8), was studied and, despite no difficulties occurring for the
corresponding problems on vertical surfaces, the method of Dennis (1972) again
proved ineffective in matching the small and large time solutions.

At nondimensional times just after* the nondimensional velocity near the
horizontal surface is such that

9
q(n,t) =1-— ZTB—f(n, T)
n

is either negative or very small and tending towards a negative value. Figure 4
demonstrates how the profiles of the nondimensional temperétyre) and ve-

locity daf (n, )/dn evolve beyondr = t, for R = 0.5, using an approach in
which we set the term(n, t) = 0 at all points for which it is negative. The profiles

of nondimensional temperature are observed to continue to decrease with nondi-
mensional time until a minimum profile is reached at aroang 2. The profile
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Figure 4. Variation of the solution profiles with, showing the evolution from the valid solu-
tions atr = t;* determined using the technique in which we get 0 whenever it becomes
negative, together with the initial unsteady state at 0 and the large time solution valid
ast — oo, for the caseR = 0.5. (a) Profiles of the nondimensional temperature function
6(n, 7); (b) Profiles of the nondimensional velocity functidyi(n, t)/an.
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Figure 5. The evolution withr from the valid solutions at = t,5, using the technique in
which we sety = 0 whenever it becomes negative, together with the small time solution and

the large time solution valid as — oo, for the casek = 0.5. (a) The nondimensional wall
temperatur®,, (r); (b) The nondimensional wall velociyf (0, )/an.

then begins to increase throughout and passes over the predicted large time steady
state profile. The profile continues to grow with the value of the nondimensional
temperature becoming significantly above zero at the edge of the spatial domain.
The boundary-layer grows in size until the numerical solution technique fails to
converge at some time beyond abaeut 20. The same growth in the boundary-
layer thickness is observed in the evolution of the nondimensional velocity function
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profiles. These profiles are again seen to initially evolve such that the change in the
surface heat flux does not affect the velocity function near the outer edge of the
boundary-layer before the solution overshoots the predicted large time steady state
profile and continues to decrease for all valueg,afventually becoming negative
throughout the spatial domainQ n < 5. Clearly the terny(n, t) has become
positive throughout the domain again as time increases and we return to solving
the original finite-difference equations, namely those described in Section 4.2.
To demonstrate further the above behaviour, the evolution of the nondimensional
surface temperature, () and velocity on the surfacgf (0, )/9n are presented
in Figure 5. Thus, rather than approaching steady state values, the solutions dis-
cussed here continue to remain highly transient at large times and the right-hand
sides of the governing boundary-layer equations (7) and (8) do not become small.
Figure 5(b) shows that the velocity on the surface becomes negative wigen
large and hence reversed flows have been detected. Clearly, the numerical scheme
is inappropriate at such times as the flow of information in this parabolic equation
is in the wrong direction. This clearly illustrates that this matching approach has
failed.

Setting the terny(n, T) = 0 at all points where it is negative for the case of
R = 2 did not allow a valid solution to be reached very far beyejidinstead,
an oscillatory behaviour soon developed and the technique failed to converge.
To ensure that these oscillations were not due to increasing errors arising from
the local maximum in the profile of (, ) observed in Section 5.1, the forward
integration approach using tlig, t) variables defined in Section 4.2 was begun at
the initial timetg using the small time approximation, as described for the method
of Section 4.1. Exactly the same characteristic oscillations were found to arise at a
similar time beyond;,".

6. Conclusions

The transient free convection from a horizontal flat surface, embedded in a fluid-
saturated porous medium, which develops due to a sudden change in the surface
heating rate has been analysed thoroughly. An analytical solution which is valid
for small times and a large time numerical similarity solution profile have been
obtained for some values of the physical paramg&teepresenting the ratio of the
final surface heat flux to the initial surface heat flux. The casé&s-ef0.5 andR =
2 considered here are representative of the two possible cases of a decrease and
increase in the surface heating rate, respectively. It has been shown that the small
time transient is initially confined within the established boundary-layer region
near the surface, corresponding to the initial heating situation. Later, convection
effects modify the solution at a greater distance from the horizontal surface.

A numerical solution of the full boundary-layer equations has been obtained
using a forward integration technique and the results have been validated against
the small time analytical solution. However, a time is reached at which this march-
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ing approach is no longer well posed and beyond this time we have not been able
to continue the transient solution towards the large time temperature and velocity
profiles. This difficulty was found to arise due to the change in sign of the time
derivative term within one of the governing boundary-layer equations. The failure
to match the small and large time solutions therefore makes the present problem
somewhat distinct from related transient convection problems on vertical surfaces,
arising due to impulsive changes in surface heat flux or temperature, for which
no such difficulties have been reported. Consequently, the question of whether or
not it is possible to reach the predicted large time regime based upon the initial
conditions posed here remains unresolved.

Work is now in progress to investigate other possible large time solutions and
on performing a linear stability analysis on the steady state solutions. These invest-
igations should provide further insights into this very interesting problem.
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