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CELLULAR AUTOMATA AS AN ALTERNATIVE TO  (RATHER THAN AN 
APPROXIMATION OF) DIFFERENTIAL EQUATIONS IN MO D ELIN G  PHYSICS* 

Tommaso TOFFOLI  
MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA 02139, USA 

Cellular automata are models of distributed dynamical systems whose structure is particularly well suited to ultrafast, exact 
numerical simulation. On the other hand, they constitute a radical departure from the traditional partial-differential-equation 
approach to distributed dynamics. Here we dicuss the problem of encoding the state-variables and evolution laws of a physical 
system into this new setting, and of giving suitable correspondence rules for interpreting the model's behavior. 

1. Introduction 

1.1. Preview 

We shall present a train of thoughts that in 
summary runs more or less as follows. (a) There 
are novel computational resources which on cer- 
tain tasks may outperform conventional resources 
by very, very many orders of  magnitude. (b) In 
comparing the two classes of resources, it becomes 
obvious that the conceptual development of math- 
ematical physics must have been strongly 
influenced by the nature of  the available com- 
putational tools. (c) The new resources suggest a 
new approach to the modeling and simulation of 
physical systems; in particular, it i.s possible to 
replace the customary concepts of real variables, 
continuity, etc., with more constructive and 
"physically-minded" counterparts. 

1.2 Infinities in mathematical physics 

Mathematical physics, both classical and 
quantum-mechanical, is pervaded by the notion of 

* Tlais research was supported in part by the Defense Ad- 
vanced Research Projects Agency and was monitored by the 
Office of Naval Research under Contracts Nos. 
N00014-75-C-0661 and N00014-83-K-0125, and in part by NSF 
Grant No. 8214312-IST. 

t In particular, the elements of T are continuous with respect 
to the topology of Q and commute with the elements of S. 

a "continuum," that is, the set R of  real numbers 
with its natural ordering and topology. Maxwell's 
equations provide a typical example. There, space 
is a structure S diffeomorphic t o  R 3, and the 
electromagnetic field at each point is an element of 
Q = R 6, so that the phase space for the whole field 
is Q s = (R6)R 3, a very uncountable state set! On this 
phase space, we assign a dynamics in the form of  
a group of transformations T (time) indexed by R. 

How do we manage to specify in some construc- 
tive way the behavior of  a system beset by so many 
uncountable infinities? Part of  the answer is that 
we do not deal with the "generic" system. Rather, 
we concentrate on systems having such very special 
properties (e.g., continuity, uniformity, locality, 
linearity, or reversibility- Maxwell's equations 
happen to have all of these properties at oncet) 
that most of the infinities "cancel out,"  so to speak, 
and we can make some definite qualitative or 
quantitative statements about the system's behav- 
ior. Of those special properties, the most important 
for taming infinities is certainly continuity. Intu- 
itively, a small uncertainty about the system's 
initial state leads to a correspondingly small uncer- 
tainty about its final state, so that we don' t  have 
to worry about capturing its state with "infinite" 
precision, whatever that may mean. More pre- 
cisely, in mathematical physics, even when we 
choose for technical reasons to represent states as 
encoding an infinite amount of  information, the 
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temporal correlations between states introduced by 
the dynamics may be much more finite*. 

In conclusion, in modeling physics with the 
traditional approach, we start for historical rea- 
sons (see below) with mathematical machinery that 
probably has much more than we need, and we 
have to spend much effort disabling or rein- 
terpreting these "advanced features" so that we 
can get our job done in spite of  them. On the other 
hand, in this paper, we outline an approach where 
the theoretical mathematical apparatus in which 
we "write" our models is essentially isomorphic 
with the concrete computational apparatus in 
which we " run"  them. Starting from this finitary 
approach, the few infinities that we may still want 
to incorporate in a physical theory (e.g., as the size 
of  a system grows without bounds) are defined as 
usual by means of  the limit concept. However, in 
our approach the natural topology in which to take 
this limit is that of  the Cantor set, rather than that 
of  the real numbers. 

1.3. OM and new resources 

Traditional computation, whether by man or 
machine, involves the sequential processing of  a 
few dozen or at most a few thousand "objects." In 
symbolic computation the objects are formulas and 
the processing is done by means of  derivation rules, 
while in numerical computation the objects are 
finite numbers and the processing entails algebraic 
operations. (At a more microscopic level both 
kinds of  computation use set operations on very 
small sets of  symbols; however, both computers 
and people come already hardwired to perform 

* Cf. a very clear discussion by Everett [2]. The salient point  
is that  "the amoun t  o f  information in a state" is not  as 
important  a concept as " the amoun t  o f  correlation between two 
states." While information is measured in a way that  has  a 
certain amount  of  arbitrariness (it depends on the "gauge"  
chosen), correlation is a "gauge-invariant ,"  absolute quantity. 

t We call scalar a quanti ty whose values are naturally ordered 
and spaced on a linear s c a l e - a s  contrasted to quantities that  
range over an unstructured set. 

:[: These segments are o f  uniform width for I N T E G E R  vari- 
ables, and exponentially increasing width for REAL ones. 

higher-level operations on larger data "chunks.") 
Let's consider numerical computation as per- 

formed by ordinary computers. As long as fast 
computer memory is very expensive (as was the 
case until recently), it is necessary to encode infor- 
mation about a system's state in a very compact 
way. If  an n-bit machine word can encode 2 n 
different states, then, for instance, we use each one 
of  these states to represent a different value for a 
scalar quantityi;  thus we arrive at the I N T E G E R  
or REAL variables, of, say, FORTRAN,  where a 
portion of the real line is chopped up into a 
number of segments:l: and a different binary code 
is assigned to each segment. Representation com- 
pactness is bought at a price; i.e., processing o f  
these variables requires a rather complex piece of 
machinery called an '~arithmetic/logic unit" (for 
I N T E G E R  variable), or a much more complex 
piece of  machinery called a %floating-point" pro- 
cessor (for REAL ones); the latter mechanism can 
be simulated by a lengthy program running on the 
arithmetic/logic unit. The cost of  such hardware is 
many orders of  magnitudes larger than that of  a 
memory word, and thus the customary approach is 
to time-share it among the few thousand (or 
million) words that make up the memory. 

We shall consider now a different approach. 
Today, pure memory, i.e., without input/output 
buffering and access circuitry (such as the custom- 
ary binary-addressing tree), is essentially a free 
commodity: at one bit per micron square, one 
could pack ~ 1. Giga ( ~  2 ~°) bits on a l-inch chip. 
Then let's be bold, and decide to use some sort of  
u n a r y -  rather than b inary -  notation to encode a 
scalar variable. That  is, the value of the variable 
will be just the number of  ones in a certain portion 
of  memory; that's extremely l av i sh -an  integer 
that used to occupy a 16-bit word will now take 2 t6 

bits! However, this extravagance in storage buys us 
certain advantages in processing. A scalar variable 
is now just a "bag"  of  ones (the position of  each 
bit is irrelevant: each bit has the same weight), and 
to add two bags we can just "pour"  their contents 
together. As we shall explain in detail later, vari- 
ables that are encoded in a distributed, local, and 
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Fig. 1. The "sum" of two unary-encoded scalar variables, as 
performed by bit-wise ORing. 

uniform way (as our bags of  ones) naturally lend 
themselves to processing that is distributed, local, 
and uniform. 

For  instance (this is a very naive example - don' t  
laugh but read on!), suppose we have two of these 
2~6-bit words that we want to add. Let's be extrav- 
agant again, and attach a miniature arithmetic/ 
logic unit to each bit. This will be a simple OR 
gate, no more complex than the FLIP-FLOP 
which realizes a memory cell. Then we can proceed 
as in fig. 1.1. After just one propagation delay, the 
result register will contain the "sum" of  the two 
words. Note that, in this "sum," l 's that are in a 
homologous position in the two words will con- 
tribute only 1 - rather than 2 - to the total. Though 
the relative error decreases very fast as the l 's in 
the two words become sparse (intuitively, when our 
universe consists mostly of  vacuum), this is still an 
approximate and rather inefficient way of doing 
things, and that's why we call the example "naive." 
The important point is that all the processing is 
local. There is no feedback, no carries, no long 
lines that traverse the whole chip and whose capac- 
itance we have to charge and discharge. All can be 
done in a fraction of  a nanosecond. We wasted 
many powers of  two by using unary rather than 
binary encoding; but we recoup many powers of  
two from the fact that in our scheme memory only 
needs local access and thus can be somewhat 
denser, and processing is done locally and thus can 

* A well-known example of a cellular automaton is John 
Conway's game of "life" (cf. Martin Gardner, "The fantastic 
combinations of John Conway's game "life'," Scientific Ameri- 
can, 223:4 (1970) 120--123). This cellular automaton was shown 
by Bill Gosper to be computation-universal. For a systematic 
introduction to cellular automata, refer to Toffoli [8]. 

be extremely faster. It is this lack of  overhead that 
makes our approach attractive for many kinds of  
physical computation, where one deals with sys- 
tems that are inherently distributed over spacetime 
and subjected to laws that are local and uniform. 

In the above example we applied local pro- 
cessing to a machine word which encoded a scalar 
variable and which would typically represent a 
lumped quantity of  a physical model. But lumping 
is usually introduced artificially, in order to adapt 
a problem to the techniques of  ordinary numerical 
computation. However, if we are able to do local 
processing at an extremely fine scale, we might as 
well directly construct our models, much more 
naturally, as ones in which variables and parame- 
ters are distributed. We shall introduce a quite 
general class of  such models and discuss their 
re levance- in  the light of  the new computational 
r esources - fo r  both theoretical and practical 
mathematical physics. 

2. Cellular automata vs. differential equations 

2.1. Generafities 

We assume some familiarity with the concept of  
"cellular automaton"*.  

In the cellular-automaton model of a dynamical 
system, the "universe" is a uniform checkerboard, 
with each square or cell containing a few bits of  
data; time advances in discrete steps; and the "laws 
of the universe" are just a small look-up table, 
through which at each time step each cell deter- 
mines its new state from that of  its neighbors; this 
leads to laws that are local and uniform. Such a 
simple underlying mechanism is sufficient to sup- 
port a whole hierarchy of structures, phenomena, 
and properties. Cellular automata provide emi- 
nently usable models for many investigations in 
physics, chemistry, and biology, as well as for 
experiments in combinatories and for studies in 
parallel computation [8]. 

Many theoretical results have appeared on cellu- 
lar automata. Yet, the fundamental problem (as in 
the case of  partial differential equations, of  which 
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cellular automata represent a discrete counterpart) 
is to determine the temporal evolution of  the 
system, and this problem in general does not have 
an analytical solution. That  is, in order to describe 
the state q, that the system will attain in t time-steps 
starting from a given initial state q0, the only 
general method is to construct one-by-one the 
intermediate states qo, . . . ,  qt-t, i.e., to perform 
numerical integration. Note, however, that because 
of cellular automata 's  intrinsic discreteness, here 
numerical integration is an exact process (there are 
no truncation or round-off errors to worry about), 
and the results that one obtains have thus the force 
of  theorems. In other words, any properties that 
one discovers through simulation are guaranteed 
to be properties of  the model itself rather than a 
simulation artifact. 

2.2. Physical realization of cellular automata 

Much as Gutenberg developed a way to re- 
produce in an arbitrary number of  copies static 
information-bearing structures such as text, the 
introduction of  integrated-circuit technology has 
made it possible to replicate at will dynamic 
information-processing structures such as elec- 
tronic circuits. 

There are four main factors that determine the 
cost/performance ratio of  an integrated circuit, 
namely, circuit design and layout, ease of  mask 
generation, silicon-area utilization, and max- 
imization achievable clock speed; for a given tech- 
nology, the latter is inversely proportional to the 
maximum length of  critical signal paths. In terms 
of  these four parameters, cellular automata are 
perhaps the computational structures best suited 
for a VLSI realization. In fact, circuit design 
reduces to the design of a single, relatively simple 
cell, and layout is uniform; the whole mask for a 
large cellular-automaton array (that is, not only 
the cells with their internal connections but also the 
interconnections between cells) can be generated 
by a step-and-repeat procedure; essentially no sil- 

* Though from an abstract viewpoint speed is irrelevant, 
imagine having to do actual genetics research using generations 
of elephants rather than of Drosophila! 

icon area is wasted on long interconnection lines; 
and, because of  the locality of  processing, the 
length of  critical paths is minimal and independent 
of  the number of  cells. 

Ignore, for a moment,  what it is that a cellular 
automaton actually computes, and whether it can 
be put to any good use. The fact remains that if I 
put one-million dollars' worth of  cellular- 
automaton VLSI circuits in a black box, and ask 
somebody to simulate its behavior with one- 
million dollars' worth of general-purpose com- 
puter, their simulation will be perhaps 10 ~z (one 
million million) times slower. The challenge is, of  
course, unfair, because a general-purpose com- 
puter is optimized to do other things, but that is 
exactly the point! In other words, with suitably 
realized cellular automata one can see things that 
cannot be seen any other way. Whether these 
things are worth seeing-well ,  that's another 
matter, and this paper attempts to make educated 
guesses about it. Probably the issue can only be 
judged a posteriori. 

In this context, we have constructed a special- 
purpose cellular-automaton machine [9] which, 
although based on serial processing, is about a 
thousand times faster that a general-purpose com- 
puter programmed for the same task. Experiments 
in parallel dynamics using this machine have been 
very rewarding (cf. Vichniac [10]), and we have 
confirmed at least in a qualitative way the fea- 
sibility of the approach discussed in 2.3 below*. 

2.3. Partial differential equations in spaeetime 

Let us consider a partial differential equation 
with space- and time-independent parameters; for 
concreteness, let us choose the heat equation 

OT 
c~-f =kV2T.  (1.1) 

This is a mathematical model which is widely used 
for two reasons: (a) it may represent passably well, 
at a certain level of description, the behavior of a 
physical system, and (b) we have a rich catalog of 
techniques for making mathematical deductions 
from it. To what extent these deductions apply to 
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the physical system itself depends on how good 
correspondence (a) is. 

For instance, T(x, t) in (1.1) is a real-valued 
function defined at each point of (abstract) space 
and time. In the solution of (1.1), even if we assign 
T at time t - - 0  in a quite arbitrary way (for 
instance, as a sum of step functions), T will be a 
continuous function of x for any t > 0. This is 
important, since operationally we cannot measure 
a temperature at a point; we can only measure the 
mean temperature over afinite volume. The corre- 
spondence between system and model is then set up 
at this level; after that, a point temperature is 
defined, within the model, as the limit of mean 
temperature as the volume goes to zero. Continuity 
guarantees that this limit exists. 

Now, for volumes that are not too small the 
correspondence between measured mean tem- 
perature and its mathematical counterpart works 
well, in the sense that as we make the volume 
smaller the measured values fall within a smaller 
and smaller interval. However, beyond a certain 
point this correspondence breaks up, and the 
smaller we make the volume the wilder are the 
results that we get. This applies not only to con- 
tinuity in space but also to continuity in time: a 
temperature probe will reveal larger and larger 
fluctuations as its thermal inertia is made smaller. 

In conclusion, ifeq. (1. l) manages to model well, 
in the large, certain physical systems, it does so not 
because it rests on the axiomatics of  the calculus, 
which are not shared with the physical system, but 
because it must somehow capture other essential 
properties of  a diffusion process, such as locality of  
effects, conservation of  certain quantities, etc. 
Other mathematical approaches might be as (or 
more) successful at modeling a physical system in 
the large, and at the same time provide a better 
insight into a system's microscopic behavior. 

The great advantage of differential equations, 
such as (1.1), is that we have three centuries' 
experience with methods for their symbolic inte- 

* The choice of suitable differences, ostensibly made accord- 
ing to definite "correspondence rules," actually requires a 
certain amount of black magic to be really successful; cf. 
Labudde and Greenspan [3l for an interesting discussion. 

gration. As long as all computation had to be done 
by hand, it paid to stylize the physics in a certain 
direction so as to be able to handle the resulting 
mathematics. But few differential equations have a 
closed-form solution anyway, and the past fifty 
years have seen numerical computation make 
bolder and bolder claims at being recognized as an 
essential part of mathematics. 

The moment one gives up symbolic manipu- 
lation as a major motive for using differential 
equations, one starts wondering whether one 
should still keep them as the starting point for 
numerical modeling. In fact, they lead to concrete 
numerical computation (e.g., as run on a general- 
purpose computer) that is at least three levels 
removed from the physical world that they try to 
represent. That is, first (a) we stylize physics into 
differential equations, then (b) we force these equa- 
tions into the mold of  discrete space and time and 
truncate the resulting power series, so as to arrive 
at finite-difference equations, and finally, in order 
to commit the latter to algorithms, (c) we project 
real-valued variables onto finite computer words 
("round-off' '). At the end of the chain we find the 
computer -aga in  a physical system; isn't there a 
less roundabout way to make nature model itself?. 

2.4. The origin of scalar quantities 

The present subsection introduces in an informal 
way the main point of  this paper. 

A partial differential equation whose indepen- 
dent variables are space and time, such as (1.1) 
above, is translated into a finite-difference equation 
by the following process: (a) continuous space and 
time are replaced by a discrete grid, (b) the system's 
state at each point remains a continuous variable 
of the same kind (e.g., real, complex, vector) as in 
the original equation, and (c) derivatives are re- 
placed by differences between state-variables that 
are contiguous in space and time*. 

When one translates the finite-difference equa- 
tion into a computer algorithm, all one does is (a) 
discretize also the real variables, and further (b) 
restrict them to a finite range. State variables are 
then represented by finite, though quite large, sets. 
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The dynamics of  the system is expressed by essen- 
tially the same difference rules, with the proviso 
that overflow or underflow will abort  the com- 
putation; if the state set is made too small this 
aborting will happen so often as to make the 
method useless. 

In terms of  structure, if not of  interpretation, a 
cellular automaton is a computational scheme just 
like the above. The only difference is that the 
variables at each point of  the grid are only allowed 
to range over a very small s e t -  say, two states per 
cell, "0"  and " I . "  This, however, has profound 
consequences. 

Clearly, with only two states per cell, it is out of  
the question to think of a cell as an approximation 
of  a scalar variable (as we did with cells of  type 
REAL or I N T E G E R  in FORTRAN),  or to think 
of  a Boolean expression involving the states of  
adjacent cells as an approximation of a real func- 
tion of real variables (as we did with F O R T R A N ' s  
algebra). Intuitively, if a picture's essential features 
are on the same scale as the picture's "grain",  then 
we have no picture at all. Now, we could program 
the cellular automaton (by choosing a suitable 
local rule and suitable initial conditions) to simu- 
late a conventional difference-equation scheme; 
certain blocks of  cells would represent machine 
words, other blocks would realize arithmetic/logic 
units, e t c . - b u t  this is very unnatural and ex- 
tremely inefficient. Instead, we shall try an 
or ig inal -  and much more na tu r a l -  approach. 

As an aid to intuition, we shall think of  l 's  as 
"balls" floating in a "vacuum" of  O's. Let us 
consider the m e a n  dens i t y  ct v over a certain volume 
V, i.e., the fraction of cel ls-within  that 
volume - that are occupied by a ball. a will always 
be a number between 0 and 1. If  V consists of  only 
one cell, then ct can take on only two values, that 
is, either 0 or 1. If  V consists o f - s a y -  100 cells, 
then the possible values for ~ will sample the 

* The concept of  "density" in this discussion can be taken as 
a prototype for other scalar variables such as pressure, tem- 
perature, etc. 

t The exact shape of this "sphere" does not matter. On an 
orthogonal lattice one might as well take a cube. 

interval [0, 1] much more finely: 0.00, 
0.01 . . . .  ,0.99, 1.00. As the size of  V grows toward 
infinity, the range of ~ approximates better and 
better the unit on the real-line. 

However, in order to speak of  a "density field"* 
we would like to define the density at  a po in t .  Let 
x be a point of  the grid, and Vx., the "sphere" t  of  
radius r and center on x. Let ~x,r be the mean 
density in this sphere. For  the moment,  we shall 
associate with a point x the whole sequence of  
mean densities ~.,,  ct~.z,... (without attempting to 
take its limit as r goes to infinity). 

A few remarks are in order. (1) There is a 
trade-off between spatial resolution and resolution 
in the density domain. If r is small, we are looking 
at a definite place, but density is coarse-valued; to 
get finely-spaced values on the density scale we 
have to look at a large volume. (2) Let us take a 
random configuration (of cell states for the cellular 
automaton). For  a fixed r, let us study how the 
density ~x.r varies as we move in space. If  r = 1 
(one-cell radius), then as we move x we get for ~t~,, 
a sequence of  O's or l's, with no correlation 
between the elements of  the sequence. As r in- 
creases, the values of 0t will move up and down the 
unit interval in a smoother and smoother fashion, 
so that in the limit we can speak of  a continuous 
function. This continuity is not imposed from 
above, but arises quite naturally if we observe that 
large spheres centered on neighboring points have 
much overlap, and thus share most terms in the 
summation that defines mean density. (3) We shall 
see later that, once we introduce a dynamics, we 
encounter an analogous discontinuity in the small 
and continuity in the large as we move in t ime  

rather than in space. (4) Here, we are using unary 
notation to represent the scalar quantity ~, as in 
the example 1.3, but without committing ourselves 
to computer words - or "bags" - of  a definite size. 
Moreover, under these circumstances the unary 
representation is not as wasteful as it might appear 
on first sight. When we want high resolution, and 
thus must use large bags, it turns out that most of 
the bits that make up one bag are shared by the 
neighboring bags (cf. (2) above); no matter how 
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large r is chosen, encoding is done at a constant 
cost of 1 bit per bag! (5) At least so far as the 
present static picture is concerned, the properties 
of  "density" as defined in our model parallel quite 
closely those of  any of  the so-called "point  vari- 
ables" of actual physics (e.g., charge density, tem- 
perature); indeed, the latter are "smooth"  statisti- 
cal constructs based on an actual "granular"  
substrate, and lose their meaning when one, at- 
tempting to take a microscopic limit, undermines 
their very statistical base. (6) F ina l l y - and  this is 
an essential point - the practical trade-off for using 
small-valued variables interacting only locally is 
that with the same bulk amount  of computer space 
and time we can handle a grid that is thousands of  
times finer both in space and in time (cf. 1.3, 2.2). 
Thus, even though the interactions between such 
simple cells cannot but be elementary, we can hope 
to synthesize quite complex interactions through 
massive iteration. We know that the Gaussian 
curve can be handled by the mathematician by 
means of  symbols on the paper* and can be drawn 
to any approximation by the numerical analyst; 
but whenever we find this curve in nature we don' t  
see the mathematician or the ana lys t -we  see an 
unsteady hand shooting at the same target over 
and over and o v e r . . .  (cf. Borel [1] for a very 
relevant discussion). 

And now let's introduce some dynamics. To be 
specific, assume that balls interact according to 
some definite local rule but maintain their identity. 
For  example, Norman Margolus has constructed a 
very clever "billiard ball" cellular-automaton rule 
of  this kind [6] in which balls are conserved, 
undergo elastic collisions, and all travel at the same 
speed in one of  four possible directions (except 
during a collision, where they slow down for a 
moment before bouncing back); this rule also 
supports clumps of  balls that stick together and act 
as hard mirrors. Margolus'  rule is strictly 
reversible-i.e., any configuration for the whole 
cellular automaton has exactly one predecessor (as 
well as exactly one successor as in any deterministic 

* But already its integral is not expressible in terms of  
elementary functions. 

rule), and computationally universal. Reversibility 
guarantees, among other things, that the relations 
between microscopic and macroscopic behavior 
satisfy the laws of  thermodynamics, while univer- 
sality implies that in general there is no analytical 
shortcut to the system's dynamics - in other words, 
that there is no better way to tell what the system 
will do than let it do it and watch it! 

Well, if we watch very closely a cellular autom- 
aton like this we see a binary computer in oper- 
ation. But let's stand a certain distance away, and 
we will see clouds in all shades of  gray pulsating 
and swirling and colliding and mixing . . . .  In other 
words, if we associate with each point in space the 
"level of  gray," (i.e., the mean density) in its 
vicini ty-  rather than just the Boolean value of  the 
cell at that p o i n t - t h i s  scalar point-variable 
evolves smoothly, much as if it were "driven" by 
a differential equation. 

Let's see what is involved in this new inter- 
pretation. For  a fixed r, we have a density field ~x.r. 
If  r = 1, this is a Boolean-valued field whose 
evolution is deterministic and given directly by the 
cellular automaton rule. If r >> 1, we have a scalar 
field whose evolution is nondeterministic; however, 
knowing the field at neighboring points, we can 
reconstruct from the cellular automaton rule the 
probability distribution P(A~) that the field will 
change by an amount  d~ in one time-step. If  P is 
very sharp, we have a mechanism that is substan- 
tially identical to a finite-difference algorithm. We 
may expect P to be sharp when (a) the rule is 
suitably chosen, (b) the value of  r was selected 
within a suitable range, and (c) the value of  the 
field is not too close to 0 or to 1. (In our inter- 
pretation, 0 and 1 correspond to, respectively, 
"vacuum" and "infinite" density. Near these ex- 
tremes our scheme fails to model a 
finite-differential equation because P will not be 
sharp enough to give an essentially deterministic 
result; on the other hand, near the same extremes 
a F O R T R A N  program will fail because of  
overflow or underflow conditions.) 

In conclusion, we have an efficient com- 
putational mechanism based on microscopic prim- 
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itives; in this model one can introduce in a rather 
natural way, as derived constructs, macroscopic 
scalar quantities which, given an appropriate mi- 
croscopic dynamics, behave much as the quantities 
predicated by the differential-equation model. The 
two models are definitely different, but the area of 
overlap permits one to establish "correspondence 
rules" between them, so as to arrive at criteria for 
determining to what extent a microscopic dynam- 
ics is indeed "appropriate"  for generating the 
desired macroscopic behavior. 

2.5. A counting argument 

The variety of differential equations that one can 
write is enormous. In a cellular automaton, on the 
other hand, once we select the neighborhood on 
which the new state of  cell will depend, all the 
choice we have for synthesizing the desired behav- 
ior is in assigning entries in the look-up table that 
defines the local map. With few states per cell, this 
choice doesn't seem too wide. For  example, if the 
new state of a cell depends on the current state of  
the cell itself and of its immediate neighbors (say, 
North,  South, East, and Wes t ) -  five neighbors in 
a l l - then ,  with two states per cell, the table will 
consist of only 25= 32 binary entries. No matter 
how cleverly one assigns these entries, one certainly 
can't  do much with the material at hand. 

However, even in this simple case. the number of 
different laws that one can write is 232 ( ~  one 
billion!). With nine neighbors (as in the game of 
"life"), this number climbs to 2 z9 (,~ 10~5°), more 
than one could explore in the universe's lifetime. 
Of course, many of these will be trivial variations 
on the same theme, and most will be utterly 
uninteresting; but at least we know there is plenty 
of room to play. 

To have even more choice, one can enlarge the 
neighborhood and use more than two states per 
cell. However, in the many hours we have s p e n t  
trying to construct rules that would do what we 
wanted, we have learned that blind exploration of 
such an enormous territory is not very rewarding. 
There are better ways to expand the number of  

choices in a structured fashion, with more predict- 
able results, making explicit use of analogies from 
physics or of known combinatorial results. For 
example, one can make rules that are second-order 
in time (a class of  these automatically yields behav- 
ior that is invariant under time reversal); one can 
make them dependent on the parity of  space or 
time (odd or even steps, or black or white squares 
on the checkerboard); one can compose into a 
sequence ("microcode") a small number of 
different rules involving few neighbors; etc. 

After all, even though there exists an un- 
countable number of  differential equations, the set 
of  those that we can explicitly write down is only 
countable, and so is the set of cellular-automaton 
rules. In conclusion, even though the language of 
cellular automata uses different primitives than 
differential equations, there is no a priori reason 
why it shouldn't have comparable expressive 
power. 

As it happens, we have discovered extremely 
simple cellular-automaton rules for the "heat"  
equation (a first-order partial differential equation) 
and the "wave" equation (second'order). These 
two equations are the cornerstones of  much math- 
ematical physics. (See color plates enclosed in [9].) 

3. The concept of continuity in the dynamics of 
cellular automata 

3.1. Generalities 

The above considerations suggest that, in spite 
of their discreteness, cellular automata may still 
support some concepts of  continuity and metric, 
but not the same as in the real-number topology. 
Then, we shall look elsewhere. We shall start with 
some miscellaneous considerations. 

Observe, first, that while the set of cell-states is 
finite and the set of  cells is countable, the set of  all 
configurations (i.e., the phase space) is un- 
countable, and indeed has the cardinality of  the' 
real-number continuum. Thus, our phase space is as 
large as that of  finite-difference schemes (in spite of 
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the fact that these use real numbers for cell states). 
In other words, we have as much infinity to play 
with as the other g u y s -  only ours is organized in 
a different way, and locally things are always finite. 

Second, continuity means, intuitively, that we 
can choose states that are so close that their 
successors are still arbitrarily close. But cell states 
belong to a finite set, so that there is a discrete 
jump between one and the other. How can one 
have an arbitrarily small distance between states in 
this situation? 

Third, all cellular automata having the same 
"format"  (grid shape, number of  states per cell) 
have the same phase space. On the other hand, 
they may have very different dynamics. In each 
dynamics the trajectories will interconnect the 
points of  phase space in a totally different way. 
Can we hope to find a single phase-space topol- 
ogy that is natural and relevant to all o f  these 
dynamics? 

3.2. The Cantor-set topology 

Consider the generic cellular automaton. Its 
cell-state set A ( "A"  for alphabet") is a finite, 
unstructured collection of symbols, and cannot 
but be given the discrete topology. Its phase space 
C ( " C "  for "configurations") is the Cartesian 
product A s of  countably many copies of  A, in- 
dexed by the elements of  the space group S (i.e., the 
grid's symmetry group). If  S were finite, then C 
would naturally inherit the discrete topology; but 
for an infinite index set the natural topology for the 
Cartesian product is the Tychonoffproduct topol- 
ogy, which is coarser than the discrete topology. In 
the product topology, open sets can be visualized 
as follows. Let us assign definite values to a finite 
number of cells, and consider the set of all 
configurations that match the given assignment 
(i.e., the values of  all other cells are "don ' t  care's.") 
Call such a set a pattern. Then an open is an 
arbitrary collection of  patterns. 

* I am indebted to Leonid Levin and Douglas Lind for 
formulating it and suggesting its use in proposition 1. 

I f  the terms of  the countable Cartesian product  
are finite sets (having, of  course, more than one 
element), as in our case, then the Tychnoff product 
topology coincides with the topology of  the famil- 
iar Cantor set ( . . .  take the unit segment on the real 
line, remove the middle third, and iterate on what 
is left.) Thus, we get the same "Cantor-set" topol- 
ogy for all nontrivial cellular automata (i.e., those 
having at least one dimension and at least two 
states per cell). 

3.3. A topological characterization of cellular auto- 
mata 

Now, one can prove the following. Let ~ be the 
automaton's  global map (i.e., its dynamics, or the 
generator of  the time group). Then, for all cellular 
automata, 

Property 1 (continuity). z is continuous with respect 
to the Cantor-set topology [7]. 

We also know that, by definition, 

Property 2 (commutativity). z commutes with any 
element a of  S (the space group) 

(Briefly, time and space commute.) Finally, for 
every cellular automaton 

Property 3 (local finiteness). There exists a con- 
tinuous function q: C--*Q, where Q is a finite set, 
such that, if c, c" are distinct configurations, there 
exist a shift a e S  for which q a ( c ) ~  qa(c'). 

By taking Q = A ,  q can be interpreted as a 
"window" function which projects a configuration 
on the coordinate axis of  a selected cell. This 
obvious property is used in proposition 1 below to 
rule out certain pathological cases*. 

The important fact in all o f  this is that, among 
the dynamical systems consisting of the Cantor set 
with a dynamics ~ and a discrete group of  trans- 
formations a, 
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Proposition 1. Properties 1-3 above constitute a 
complete characterization of  cellular automata.  

Thus, we see that, in addition to local finiteness 
and commutat ivi ty between space and time (prop- 
erties which are put in the very definition of  a 

cellular automaton) ,  continuity in the Cantor-set 

topology is the characterizing property of  the dy- 
namics of  cellular automata.  (The various com- 
ponents of  this characterization were rediscovered 
in bits and pieces by several workers in cellular- 

au tomaton t h e o r y -  including myself [8]-  but had 
been known for a while, under the heading of  
"shift dynamical systems," to more professional 
mathematicians [4, 5].) 

3.4. The local point o f  view 

We shall try to interpret the results of  the above 
subsection. 

The main point is that  to understand what goes 
on in a cellular au tomaton  it is not necessary to 
look at an entire, infinite configuration. Rather,  

one's attention can be turned to specific place, and 
one's scope should be widened, in concentric cir- 
cles, so to speak, only as longer and longer evo- 
lution times are considered. Thus, the customary 
picture which represents the state of  a system as a 
point tracing an orbit in phase space is somewhat 
misleading: in general, we cannot handle in a 
finitary way the exact position of the point itself 
(which encodes an infinite amount  of  information); 
on the other hand, we can project the point on a 
finite subset of  axes, and we can enlarge this subset 
as need requires. We shouldn' t  try to (and, at any 
rate, we can ' t )  take in the whole picture! 

We shall give but one example of  the "con- 
spiracy" that forces us to take a local viewpoint. 

* To make the connections with the traditional fie criterion 
for continuity, recall an obvious property of cellular automata, 
i.e., that the speed of propagation of information is bounded. 
If two configurations coincide within a radius r, and thus have 
a distance less than ~2 -r then their successors will coincide 
within a radius of at least r - 1, and thus their distance will be 
less than ~2 -~'- t). This is all that is needed to arrive at a 6iE 
criterion. 

The Cantor  set is a metric space, that is, it admits 
of  metrics compatible with its topology. What  
does this repertoire of  metrics have to offer? We are 

faced with the problem of  finding a satisfactory 
metric (a yardstick for "closeness") for a uniform 

system that extends infinitely in space. Because of  

spatial symmetry, all cells " look the same;" intu- 
itively, we would require of  our metric that if we 
change a 0 into a 1 in a given cell, we should move 
away a certain distance in phase space, and this 
distance should be the same no matter  which cell 

we choose. But it turns out [8] that none of such 
"un i form"  metrics is compatible with the Cantor-  

set topology; in which direction should we relax 

our requirements? 
Here is one way. In spite of  being immersed in 

a uniform sea of  cells, we shall pick one arbitrarily. 
B 

By what criterion? Well, by where we are! In 
comparing two configurations, we make a list of  
the places where they don ' t  match; a mismatch 
occurring "here"  will be given a weight of  ½, and 
in general any mismatch occurring within a shell of  
thickness 1 and radius r will be given a weight 
2-(r+ ~)kr a- i (where d is the dimensionality of  the 
space), so that successive shells will contribute at 
most 1/4, 1/8, etc. Thus, the distance between two 
identical configurations will be 0 and the distance 
between two configurations that differ everywhere 
will be 1. This metric is compatible with the Cantor  
topology. In this metric, two configurations get 
closer and closer as the nearest point where they 
differ moves away from us*. Quite seriously, we 
could characterize the Cantor  topology as the 
topology of self-centeredness. What  is nice is that 
other observers, with their own center of  interest 
different from ours, may choose their own version 
of  the metric, but nonetheless we will all agree on 
the same topology. 

4. Conclusions 

We have presented and motivated a new mathe- 
matical approach to the modeling of  distributed 
physical systems. This approach is suggested by the 
availability of  new, high-performance simulation 
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tools, and yields models whose formal structure 
closely matches that of the available com- 
putational resources. 

In particular, we have discussed a concept of 
continuity that is adequate for an operational 
approach to physics over the whole range from 
macroscopics to microscopics, and yet does not 
postulate, like differential equations, an infinite 
amount of information within a finite volume. 
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