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Abstract. In this paper, we demonstrate a reliable and robust system for localization of 
mobile robots in indoors environments which are relatively consistent to a priori known 
maps. Through the use of an Extended Kalman Filter combining dead-reckoning, ultrasonic, 
and infrared sensor data, estimation of the position and orientation of the robot is achieved. 
Based on a thresholding approach, unexpected obstacles can be detected and their motion 
predicted. Experimental results from implementation on our mobile robot, Nomad-200, are 
also presented. 
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1. Introduction 

Consider a typical indoors structured environment as shown in Figure 1. Given 
ultrasonic, infrared, odometry data and a representation of the environment, a 
robust method for localization of a moving mobile robot is desired. This lo- 
calization method should not rely on alterations of the environment (beacons 
or markers) or be infiu . . . .  ed by unexpected objects not depicted in the a priori 
environment. The problem to design methods enabling the estimation of the 
position and orientation of mobile robots is not new. Various sensors have been 
reported in the literature (Vision [8], Optical Range finders [4], Ultrasonic Bea- 
cons [9], Ultrasonic sensors [1, 5, 7]). The main issues affecting the design of a 
localization system is speed, cost and accuracy. 

Reported results on vision guided localization (Kak and Kosaka [8]) show 
superior accuracy but only with the reduction of speed and increased cost. Ultra- 
sonic beacon estimation dramatically improves speed with an expected decrease 
in accuracY but also requires that the environment be altered by the addition of 
ultrasonic beacons. Research in pure ultrasonic ranging has been directed to- 
wards statistical map matching, wall matching, and individual sensor-matching 
techniques. A static ultrasonic localization method by statistical map matching 
[7], requires a large amount of computational time. A wall-matching technique 
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Fig. 1. Typical indoor environment. 

proposed by Cox [4] performs well using optical rangefinders but its perfor- 
mance would likely decrease with the large beamwidth of ultrasonic sensors as 
compared to optical sensors since it requires a sensor with a small beamwidth. 
A similar wall-matching technique by Crowley [5], uses ultrasonic sensors and 
requires finding at least 3 consecutive sensors which form a line, thereby in- 
dicating the existence of a wall in the environment. Therefore, many sensors 
containing relevant data may be ignored. Predciado et al. [1] implemented a 
recursive method incorporating sensor information which improves the estimate. 
However, they do not attempt to accurately determine the expected sensor values 
by examining the entire sensor beamwidth but place a variance encompassing 
the entire beamwidth. Initially, in their recursive approach, the angle orientation 
is updated and, subsequently, positioned. This is less efficient than our method 
that updates orientation and position simultaneously. 

We want to design a system which can combine all relevant sensor information 
to accurately localize the robot while it is moving. In addition, this system should 
identify areas possibly containing obstacles not indicated in the a priori map. By 
defining these areas, an avoidance algorithm can be designed to optimally avoid 
the detected obstacles [11]. 

We present a system that combines the extended Kalman filter with a thresh- 
olding technique and successfully localizes a mobile robot with or without the 
addition of unknown obstacles in the environment. 

As shown in Figure 2 we obtain a rough estimation of the position and orienta- 
tion based on the differential increments of the encoder values, X~, Y~ and 0~. If 
we filter the sensor-information vector, Z, to consider only relevant information 
and combine this with the encoder-based estimation of position and orientation, 
we can derive a better estimate of the position and orientation using an extended 
Kalman filter. Furthermore, by comparing the sensor readings with the a priori 
known map and using a thresholding approach, unknown obstacles are detected 
and their motion estimated. Finally, we use a nonholonomic motion controller 
which uses the position and orientation estimates to navigate the vehicle and 
complete the system loop. 
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Fig. 2. Program layout. 

2. Problem Statement 

In order to state the problem, a descriptive analysis of both the vehicle and sensor 
models is necessary. 

2.1. DESCRIPTION OF ROBOT 

The robot (Fig. 3) is a 3-wheeled, cylindrical, zero-gyro radius robot. Sensor 
information is obtained from ultrasonic, tactile, and infrared sensor rings. In each 
ring, there are 16 individual sensors located at 22.5-degree increments around 
the robot. Odometry measurements are obtained from encoders located on a 
synchronous drive system. 

2.2. VEHICLE MODEL 

Assuming a two-dimensional world, we can define the robot configuration w.r.t. 
a world-coordinate frame W by vector Xw = [x~o Yw 0w] T containing its position 
and orientation. We consider another coordinate frame R which is the world- 

Ultrasonic and Infrared 
Sensor locations 

Ultrasonic Sensors 

Infrared Sensors 

Tactile Sensors 

Fig. 3. Mobile robot sensor configuration. 
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coordinate flame that defines the motion of the robot based on odometry. W and 
R are not the same, in general, because R includes the uncertainty accumulated 
by the integration of the error during rolling. Let's denote the configuration of 
the robot w.r.t. R by Xr = [xr Yr Or] T. The motion equations w.r.t, to R can 
be given by the unicycle model 

Xr = f ( X r ) "  u (1) 

[cos(0 ) i] 
[%0.> .: [:,1 ,:...,> 

described in [12], where ul,  u2 are the translation and rotational velocities re- 
spectively. The motion equations w.r.t. W can be easily obtained if the odometry 
error (wheel slippage, etc.) is included as noise n = [nl n2 n3] T and 

X~, = f ( X w )  . u + n (3) 
It is obvious that the addition of noise creates the relative motion between frames 
R and W, depicted in Figure 4. 

Current Robot Heading 

Wt'"'," ", ... -. 
R 

w~ w) 

Fig. 4. World and robot frames. 

2.3. DESCRIPTION OF SENSORS 

Any type of sensor inherently has disadvantages which need to be considered 
when using it. The three main sensing instruments used for this system, infrared, 
ultrasonic, and positional encoders have distinct disadvantages which need to be 
addressed. In the following paragraphs, an overview of the problems associated 
with each sensor are covered. 

2.3.1. Ultrasonic Sensors 

Each ultrasonic sensor has a beamwidth of approximately 23.6 ° [3]. By ex- 
amining all 16 sensors, we can obtain a 360 ° panoramic view fairly rapidly. 
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Unfortunately, ultrasonic sensors work upon a send/receive echo-type format. 
Therefore, no two sensors can be simultaneously activated unless specific soft- 

ware and/or hardware is included to distinguish the different sonar signals [2]. 
In order to decrease crosstalk (the transmit pulse of sensor 'i' being received 
and causing an erroneous value on another sensor), we must fire each sensor 
individually. In addition, since the Polaroid sensor modules combine a transmit 

and receive system into one compact package, we must blank the receive sys- 
tem such that the residual transmitted pulse on the sensors in not detected as a 
received pulse. Therefore, with the sonar system we can detect objects from a 

minimum range of 17 inches to a maximum range of 22 feet with a 30-degree 

resolution. 

2.3.2. Infrared Sensors 

Similarly to the sonic sensors, infrared sensors work upon a send/receive format. 
These sensors emit an infrared light from one source, and measure the amount 
of reflected light with two light detectors. Since these devices measure light 

differences, they are highly biased by the environment. Object color, object 
orientation, and ambient light all can contribute to erroneous readings but since 

the transmission signal is light instead of sound, we may expect a dramatically 
shorter cycle time for obtaining all infrared-sensor measurements. Considering 
all these problems as noise factors, we decided that infrared measurements are 
only acceptable for short distances. In our system, infrared sensors were used to 
provide information for the shorter than 17-in. area, where the ultrasonic sensors 
are not used. The overall range covered by the sensing system can be found in 

Figure 5. 
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Fig. 5. Sensing-system range. 
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2.3.3. O d o m e t r y  M e a s u r e m e n t s  

A low-level integration routine calculates odometric location using the current 
and previous translation (d~(k)),  and rotation ( re(k) )  sampled encoder values, of 
the mobile robot according to the following equation [13]. 

xr(k) : x r ( k  - 1) + Ade" cos((re(k) + re (k  - 1))/2) 

yr ( k )  : y r ( k  - l) + Ade'  sin((re(k) + re (k  - 1))/2) (4) 

0r(k)  = r~(k) 

where Ade = de(k)  - d¢(k  - 1). Odometry, unfortunately, is very sensitive to 
errors. Unless we assume perfect rolling conditions, we should expect to obtain 
some odometry-measuring errors in the form of drift, bias, and slippage. When 
dead-reckoning is solely used, errors accumulate over time as integration errors, 
due to the nonholonomic nature of the rolling motion. Over short travel distances 
we can expect small errors but over long paths these errors will grow. 

2.4. MATHEMATICAL STATEMENT OF PROBLEM 

If dead-reckoning was used to obtain the configuration X~, from integration (i.e. 
if integration of Equation (1) was only used) then over large distances, this 
position would contain large integration errors. Therefore, the knowledge pro- 
vided by the system equations should be complemented by this of the ultrasonic 
and infrared sensors. Since those sensor measurements are not overlapping (i.e. 
only one range value is considered valid for each sector), we can combine these 
measurements thereby creating a sensor vector Z, which contains 16 elements 
signifying the distance for each sector. 

Therefore, we are looking for some function .F, that sequentially provides 
optimal estimates 

Xw(k) = ,~(2w(k - 1), Z ( k ) )  k = 1, 2 , . . .  (5) 

of the configuration of the robot by combining the system equations knowledge 
and the sensor readings. Optimality is in the sense that the estimates should 
minimize an error criterion 

J = E{(Xw(k) - Xw(k)) T. (Xw(k) - Xw(k))} (6) 

where E { .  } denotes the expected value of a random variable. 
In order to navigate in the environment, a motion controller of the form 

[ ul  ] = G ( X ~ ( k ) ,  X d ( k ) )  (7) 
u ( k )  = u2 

is needed to compute the control inputs to bring the robot to the desired config- 
uration X d ( k ) .  
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3. A p p r o a c h  o f  S o l u t i o n  

The problem, as stated above, was attacked using the Extended Continuous- 
Discrete Kalman filter [6]. In the following subsections, the adaptation of the 
Kalman filter to handle this problem is presented. 

3.1. MODEL EQUATIONS 

The system and measurement models are: 

J~w = f ( X w ( t ) )  + n (8) 

z k = hk(X( tk) )  + v k k = 1 . . . . .  16 (9) 

where n ~ N(0, Q), vk ~ N(0, R), are the odometry and sensor noises, zk are 
the sector k sensor measurements and hk, the kth measurements function, is the 
function relating the current configuration with the measurement that is expected 
to be received from the kth sensors. 

3.2. MEASUREMENT FUNCTIONS 

Given the current configuration Xw of the robot, we need to calculate the ex- 
pected sensor values for each sector. This is actually the minimum distance ray 
intersecting a wall contained in the kth sensor's beamwidth. Denoting x~ and 

i y~ as the coordinates of the minimum distance intersection for sensor k, and xsk 
i and Ysk as the coordinates of the kth sensor, at time instant ti, (see Fig. 6), we 

formulate the distance equation as: 

(10) 

i i i and i where xsk, Ys~, xk, Ysk are all functions of Xw. 

Arbitrary Wall 

i 
d k :  

Intercept @ Xi,Yi  18i 

t 1.5o fle~ees 

. ..-.,, 

.---- Sensor #i @ Xs,Ys,0s 

Fig. 6. Derivation of sensor measurement. 
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3.3. STATE PROPAGATION 

The state estimation propagation equation is: 

Xw = f(X~(t)) (11) 

In the implementation of the integration of the above equation we encounter 
timing problems due to the timing delay between decision of a new control 
and low-level implementation. If we assume that over short distances odometry 
is accurate, a fairly accurate odometry value based upon incremental encoder 
changes can be obtained. By reformulating the propagation equation we have: 

(cos 0di   sin 0d   i)/ xr) 
XwSt = sin(0diff) cos(0diff) I Ayr (12) 

0 0 \ A0r 

The rotation of the incremental odometry changes is necessary to realign the robot 
and fixed frames. 0aiff is the difference between the estimated and odometric 
angle of the wheels, which is equivalent to the difference between the world and 
mobile robot frames. 

3.4. COVARIANCE MATRIX PROPAGATION 

The error covariance matrix is defined as P = E{(X~,(k) - Xw(k)).  (Xw(k) - 
X~,(k)) T} and its time propagation is governed by the following matrix Ricatti 
equation 

P(t) = F(2~(t))P(t) + P(t)FT(Xw(t)) + Q (13) 

In order to improve the accuracy of the error covariance propagation, we decided 
to use a Taylor series second order approximation to the propagation equation 
by using the 2nd order time derivative of the error covariance matrix 

oP(t) ~. 
P(t)  - - - .  Xw (14) 

O X~o 

where F is defined as 

Of(X(t))ox(t) X(t)=-,Yw(t) F(2~(t), t) - (15) 

3.5. FILTER EQUATIONS 

The model of the mobile robot and the measurement function hk that is of 
trigonometric form, are both inherently nonlinear. Therefore, an extended version 
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of the Kalman filter is necessary. Listed below are the Filter Equations: 

= 2 k ( - )  +/ k[zk - h k ( X k ( - ) ) ]  

Pk(+) = [ I  - KkHT(2k(--) ) ]  - P k ( - )  

Kk = Pk(+)HTR;  1 

with Hk defined as 

Ohk(X(tk)) 

(16) 

(17) 

where X k ( - )  is the expected state just before the arrival of the kth measurement 

(it is obtained by state equation integration, as described in Section 3.3), ~ k ( + )  is 
the expected state just after the arrival of the kth measurement, P k ( - )  is the error 
covariance matrix just before the arrival of the kth measurement (it is obtained 
by error covariance matrix equation integration, as described in Section 3.4) and 
Pk(+) is the error covariance matrix just after the arrival of the kth measurement. 

There are two methods in order to calculate the Kalman gain matrix Kk [6]. 
We chose the form shown above so that the largest matrix inversion would be 
of a 3 x 3 matrix. 

3.6. UNEXPECTED OBSTACLE CLASSIFICATION 

During robot operation, various unexpected obstacles may interfere with robot 
localization. Suppose, an unexpected obstacle detected by sensor j is located 
in the environment as shown in Figure 7. In addition, suppose that sensor T 
expected to catch the comer at A as its distance measurement, missed comer A. 

Consider now the profile of the difference value (i.e. actually received range 
signals - predicted range signals) from the 16 sensors as presented in Figure 8. If 
we examine the difference between predicted and actual sensor information for 

Actua  
Expected Reading 

"% 

Fig. 7. Sensing discrepancies. 
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Fig. 8. Sensor comparison. 

this example, we would notice a large discrepancy between valid and incorrect 

data for those two cases. Therefore, an alteration is introduced so that the 

Kalman filter will not be incorrectly biased by sensor readings i and j .  In 

normal operation, each sensor has a variance associated with it, indicating the 

uncertainty that we have about the incoming data from the sensor. If we decrease 
this uncertainty factor for a given sensor, we decrease the bias that the robot has 

from that sensor. By significantly increasing this uncertainty factor we essentially 
remove its contribution to the Kalman filter. If a threshold is created, as shown 
in 8, then all values outside the threshold are considered incorrect and ignored. 

In addition to unbiasing the filter due to incorrect measurements, this method 

also helps to detect possible unexpected obstacles. In the event that an un- 
modelled object is in the field of view of the sensors, these return values are 

considerably lower than the predicted values. When comparing the actual to 

predicted sensors value, we will obtain a large negative discrepancy. Now, if we 
consider the missed edges problem, we will obtain the inverse. In the missed 

edge case, we will obtain actual values dramatically larger than the predicted. 
Therefore, through this thresholding method we can identify the type of sensor 
discrepancy, missed edge or unmodelled feature. 

In the case of unpredictable obstacle detection no additional information, ex- 
cept that it exists somewhere in the sensors beamwidth, can be obtained. To 
simplify the calculations, it is assumed that the object is centered in the mid- 
dle of the beam. The sensor indicates the existence of an object at a certain 
distance from the robot in a specific sector. If we project from this sensor, the 
distance measured, as shown in Figure 9, we obtain as estimated position of the 
unexpected obstacle (Zo, Yo) using the following equation: 
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Fig. 10. Unexpected obstacle detection. 

Xo = "2w + ( m  + z i ) .  cos(O~, + (i - 1).  22.5 °) 

Yo = Yw + ( m  + zi)  " sin(0~, + (i - 1). 22.5 °) 

(18) 

(19) 

where m is the robot 's  radius and zi is a sensor detecting the unexpected obstacle. 
In that way a collection of  obstacle positions corresponding to the same obstacle 
is gathered. For example, in Figure 10, position 1, 2 and 3 correspond to the 
actual obstacle faces. 

Obstacle movement  can be extrapolated using equations: 

Z o ( k )  - X o ( k  - 1) 
v~(k) = (20) 

T 
y o ( k )  - y o ( k  - 1)  

Vy(k)  = (21) 
T 
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where vx, v v are approximate estimates of the translational velocities along the 
x and g axis' based on position (Xo, Yo) at times k, k - 1. Position (Xo, Yo) can 
be obtained by averaging three (3) obstacle face locations obtained in 18, 19 as 
shown in Figure 10. 

If the relative obstacle motion is radial w.r.t, the robot, the proposed scheme 
works quite well. For tangential motion it may give poor results. This is primarily 
due to the beamwidth of the sensors. Tangential motion within a sensor's beam 
is not detected and unless a new sensor is effected by the obstacle motion the 
obstacle will appear to be stationary w.r.t, the robot. 

Since this detection scheme will be primarily used to prevent collision this 
deficiency is not catastrophical. The algorithm will accurately estimate any object 
with relative motion towards the robot while objects not on collision paths are 
estimated with less accuracy. Implementation problems and results are discussed 
in the following sections. 

4. Implementation 

Implementation of the localization system required compromises based on numer- 
ous experiments. In the following paragraphs, problems and solutions associated 
with each area are highlighted. 

4.1. DEFINITION OF THE A PRIORI MAP 

In order to make the system stable, we needed to minimize the number of cal- 
culations per cycle. We decided to simplify the a priori map definition so that 
the calculations involved in h(X~) are minimized. In ignoring any fine detail of 
the hallway (i.e. the 49 doors which are depressed from the hallway by approxi- 
mately 5 inches) and selecting motion control gains accordingly, we decrease the 
robot's sensitivity to a non-ideal map. By ignoring these doors, we unfortunately 
increase the uncertainty in position and orientation. 

4.2. SENSOR VARIANCES 

The accuracy of ultrasonic sensors is highly dependent on the texture of the 
reflecting surface. Rough surfaces will return the wavefront produced by the 
sensor at any incident angle as opposed to smooth surfaces which will return 
only wavefronts which are incident on the surface at near to perpendicular angles 
as depicted in Figure 11. In our environment, we have several plasterboard-type 
walls which are considered to be of smooth texture. Based on the assumption, that 
we will not receive valid data from those walls due to the reflectivity properties 
mentioned above, all sensors that did not meet an incident angle requirement, O~q 
on a smooth wall, were essentially removed by increasing the sensor variance 
on that sensor. 
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Wall : Rough 

Wall Smooth 

Fig. 11. Ultrasonic wave behavior. 

Through experimentation, the variance dependency on distance was found. 
Generic ultrasonic sensors do not contain any orientation information of the 
reflecting surface, though it may be possible to obtain feature information as 
proposed by [3]. If we assume that we can accurately predict robot location 
and orientation, we may place an orientation variation to improve the system 
responce. Through additional experimentation with the entire system an orien- 
tational variance was determined. The resulting variance equation for sensor 'i' 
is: 

Ri i  = d*k" (0.04 + 0.51 sin(0inc)l) (22) 

where d~ is defined in Equation (10) and 0inc is the angle from perpendicular 
that the predicted sensor ray encounters the wall. Both parameters are depicted 
in Figure 6. 

The variance defined above is used unless, as detailed before, either of the two 
conditions is encountered 

(1) [di - zil > dthreshold 

(2) 0inc > 0req 

4.3. ODOMETRIC VARIANCES 

Odometric variances are dependent on the type of floor surface. In our expe r- 
iments, we have a carpeted floor. Through experimentation we obtained the 
variances diag(Q) = [0.001 0.001 0.0001] T, where Q was defined in Section 3. 

4.4. MOTION CONTROLLER 

The selected motion control algorithm was of the form 

Ul = - k ( x e  cos Ow + ge sin 0w) + J:a cos 0w + ~/a sin 0,v (23) 
1 

U2 = ~ [--k(ye COS Ow --  We sin Ow) - ~ca sin 0w + Yd cos Owl (24) 

where x¢(t)  = xw( t )  - xd( t ) ,  ye(t) = gw(t)  -- pa(t) are the position errors 
and xa( t ) ,  pa(t)  are the reference trajectories. It was implemented in order to 
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track a desired trajectory and designed by Pappas and Kyriakopoulos [12]. This 
algorithm was chosen because of it is highly robust in correcting any type of 
error in robot position. 

4.5. SOFTWARE 

The navigation and localization algorithm was developed in C. Using a Nomadic 
Technologies interface, we communicated with the mobile robot. The structure of 
the code is depicted in the flow chart of Figure 12. New sensor information for all 
sensors, can be obtained roughly every 2 seconds. Since the Kalman filter utilizes 
past information, only new sensor information should be incorporated. Therefore 
localization was performed only once every five cycles i.e. approximately 2 
seconds. Using dedreckoning between localization cycles we can have fairly 
accurate estimates of the position. Additionally, the error covariance matrix 
needs to be updated since error covariance varies into proportion to the traveled 
distance. 

1 

Fig. 12. Main program flow chart. 

5. Experimental Results 

The proposed Extended Kalman Filter localization algorithm was tested using a 
Nomadic Technologies' Nomad 200 mobile robot. The Nomad 200 is comprised 
of a 486 33Mhz Computer, with a radio link of 19200 baud rate to a Unix sparc2 
Computer. Low-level motion control is achieved through a Gahlil motion con- 
troller. Currently, we are controlling motion through a rotational and translational 
velocity command. The Sensing capabilities of the Nomad 200 are 16 ultrasonic, 
infrared and tactile sensors. Currently, the localization algorithm is running on a 
Sparc2 computer. This was only done to facilitate corrections to the localization 
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code. The total cycle time for localization and Motion control, including modem 
communication to the robot, is approximately 150-200 milliseconds. 

5.1. LOCALIZATION 

In order to test the localization method, we selected to experiment with the robot 
in our floor hallways. In these experiments, some of the laboratory doors were 
left open to test if erroneous reading are rejected. Seventy percent (70%) of 
the walls in our lab are smooth plasterboard which results in poor ultrasonic 
measurement for sensors not parallel to the wall. The remaini.ng thirty percent 
of the walls are 9-in. square bricks. The depressions in the brick usually give 
a fairly accurate reading up to 50 degrees from perpendicular. The entire path 
is a carpeted floor. A rectangular path was selected with a total distance of 360 
feet. Robot Velocity was set at 5 in./second because of the slow time to update 
all sonic sensors. 

We can see in Figure 13 that we can succesfully localize the mobile robot, even 
though odometry has dramatically failed. The slight deviations we see from a 
path directly down the center of the hallway is due to room and elevator doors 
that were not modelled. If we compare the difference between odometry and the 
Kalman Filter based estimated position against the desired trajectory (see Fig. 14) 
we can see that our localization algorithm successfully removes the integration 
error existent coming from odometry. Finally, if we compare odometry and the 
estimated orientation against the desired orientation we also see an improvement 
(see Fig. 15). The 10-degree oscillations in the routine are sue to the oscillatory 
converging behavior of the control algorithm and the unmodelled doors. 

In tabular form the results obtained from 10 successive runs are presented: 
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Fig. 13. Mobile robot navigation. 
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Fig. 14. Distance from desired trajectory. 
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Fig. 15. Angle from desired rotation. 

Table 1 

Maximum X error (navigation) 18.1" 
Maximum Y error (navigation) 12.5" 
Maximum 0 (navigation) 25.8 ° 
Maximum normed error (navigation) 18.1" 

Final X error 30.0" 
Final Y error 3.0" 
Final 0 error 10 ° 
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The errors in Y and 0 during navigation can mostly be attributed to the unmod- 
elled door jams. The X error is attributed to the featureless in X information 

obtained from the long hallways. The larger errors at the final position are partly 

due to the nonholonomic controller. 

5.2. OBSTACLE DETECTION 

Equations (18), (19) and (21) show that in order to accurately determine the 
velocity of an obstacle the time at which each sensor is triggered is needed. In 
order to achieve this, serious hardware modifications should be made. But in 
order to test the value of the idea Matlab simulations were performed. Two cases 

were tested: 

(1) Object Moving Directly to the Robot. The motion is shown on Figure 16. If 
we examine normed error between the position of the nearest obstacle face and 
the estimated position of that face of the robot we see that we can obtain a fairly 
accurate estimation of the position as shown in Figure 17. If we examine the 
difference between actual and estimated velocity a fairly accurate estimation of 

the velocity is obtained as displayed on Figure 18. 

Moving Obstacle 

~ _~"/sec 

150" 

R o b o t  

72" 

Fig. 16. Radial relative motion. 

0.6 

! s i .................................................... 

o~ ............................ ~ .............................. i ................. i i 

o~ .......................... i ......................... i ............................. i ............................... i ............................. 

o.~ o ~ ......................... 4 .......................... i ......................... ~ ...................... + ....................... 

0 $ 10 15 20 25 

Semnd~ 

F i g .  17.  P o s i t i o n  e r r o r ,  r a d i a l  a p p r o a c h .  
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Fig. 18. Velocity error, radial approach. 

7 2 "  

Fig. 19. Tangential relative motion. 

3 4 5 6 7 

Fig. 20. Position error, tangential approach. 
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-z 

1 2 3 4 5 7 

Fig. 21, Velocity error, tangential approach. 

(2) Object Moving Tangentially to the Robot. Similarly, the motion is shown 
on Figure 19. Poor estimates of position/velocity are obtained as depicted on 
Figures 20, 21. As explained above this is attributed to the beamwidth of the 
sensors. 

6. D i s c u s s i o n  - F u t u r e  W o r k  

Using this method, we have shown that we can successfully localize a mobile 
robot in a partially known environment. Currently, the entire system is controlled 
from a Sparc2 computer. Initially, we plan to transfer the algorithm to the mobile 
robot's 486 computer to improve speed and autonomy. Since sensor information 
is obtained while the robot is in motion, we have essentially reduced the accuracy 
of the localization system (i.e. sensors are not all localized to one point in 
space). By possibly translating sensor information, we can effectively bring all 
sensor information to one point in space. In order to do so, the times where 
sensors are triggered should be available. To achieve that, serious hardware 
modifications should be made. We have shown that we can detect unexpected 
objects in the environment (see Figure 8). By correlating the unexpected objects 
detected between successive samples, we can obtain a rough approximation of 
object location and speed. Using this information, we are going to implement 
a collision prediction and avoidance scheme designed by Kyriakopoulos and 
Saridis [10]. 
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