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Abstract--The motion of diffusionless elongated spheroidal particles in vertical stagnation flow over 
a flat collector of a finite size is modelled by calculating hydrodynamic forces and torques acting on 
a rotating and translating particle. Far above the deposition surface, particle motion is governed by 
its far upstream initial orientation and geometry. In close vicinity to the surface, where a viscous 
boundary layer prevails, particles are shown to settle down vertically due to gravity. It is found that 
the deposition flux of spheroidal particles which are uniformly distributed far above the surface is 
equal to the flux of spheres with the same settling velocity. On the other hand, randomly oriented 
spheroids discharged from a point source near the stagnation centerline tend to deposit in the 
peripheral part of the collector surface. This is in contrast with the comparable behavior of spherical 
particles, which deposit in a single point on the collector surface. 

Effects of the particle geometry, inertial and gravitational forces, initial orientation, and flow 
parameters on particle deposition are studied by computing particle trajectories. An approximate 
method is proposed for trajectory calculation, in which particle orientation is frozen and equal to the 
initial orientation. It is shown that trajectories of the equivalent spheres (having equal volume, or 
average hydrodynamic resistance, or sedimentation velocity) considerably differ from the true 
trajectories of spheroidal particles. Significance of the obtained results is discussed in relation to 
various types of stagnation flows involving aerosol deposition processes and, in particular, to clean 
room applications. Copyright © 1996 Elsevier Science Ltd 

1. I N T R O D U C T I O N  

In the first paper  of  this series (Broday et al., 1996, here referred to as Par t  I) a general model  
for the mot ion  of  particles in vertical s tagnat ion flows was described. These flows are 
impor tan t  in various applications, including air sampling, filtration, separation by impac-  
tors, and flows in clean rooms.  Mot ion  and deposi t ion of  micron particles in such flows is 
a basic behavior  with a major  significance on technological  applications. 

In m a n y  cases, solid particles generated in industrial p roduct ion  processes have non- 
spherical  shapes (Kragelsky et  al., 1982). In particular, the length of  such nonspherical  
particles, generated and dispersed during the manufac tur ing  of  microchips, can exceed the 
critical spacing between adjacent conduct ing  lines in microelectronic devices, which is 
usually taken as one-fifth of  the physical spacing (Cooper,  1986). Therefore, deposi t ion of  
nonspherical  con tamina t ion  particles can result in a bigger damage  than that  of  their 
equivalent spheres. Deviat ion of  particle shape from spherical (i.e., increasing particle aspect 
ratio) may  enhance their electrostatic deposi t ion (Vincent et al., 1981; Jones et  al., 1983). 
This is a t t r ibuted to the ability of nonspherical  particles to hold larger electrical charges 
than their equivalent volume spherical counterpar ts  (Vincent, 1985), and to a lower minimal 
charge needed to significantly augment  the deposi t ion rate (Chen and Yu, 1991b). More-  
over, it is usually harder  to detect by optical instruments nonspherical  particles than 
spheres, since particle thickness (i.e., their minor  size) may be comparab le  to, or  less than, 
the wavelength of  the visual part  of  the spectrum. Thus, malfunct ioning of integrated 
circuits resulting from the deposi t ion of  nonspherical  particles is more  likely to happen (see 
Gill and Dillenbeck, 1989a, b). 
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Studies on motion and deposition of nonspherical particles were focused mainly on three 
flow geometries: (i) internal flows in tubes and channels (Gallily and Eisner, 1979; Asgharian 
and Yu, 1989; Chen and Yu, 1991a; Podgorski and Gradon, 1990; Shapiro and Goldenberg, 
1993; Johnson and Martonen, 1993), (ii) flows over cylinders and spheres relevant to 
filtration theory (Gallily et  al., 1986; Gradon et  al., 1989, 1990; Foss et  al., 1989), and 
(iii) flows bounded by a plane wall (Schiby and Gallily, 1980). Recently, Fan and Ahmadi 
(1995) studied the motion of nonspherical particles in coherent structures prevailing within 
turbulent flows. No work relevant for the deposition of elongated particles in vertical 
stagnation flows has been done yet, as far as the authors know. 

In Part I we formulated a general model for particle motion in physically realistic vertical 
stagnation flows. Deposition efficiencies of spherical particles were calculated as quantities 
independent of the particle initial height above the collector surface. This work deals with 
the comparable motion and deposition of elongated particles on the basis of that model. We 
analyze the coupled translational and rotational motions of elongated spheroidal particles 
in the flow under the influence of gravity. Effects of particle size, shape, initial location and 
orientation on their trajectories and deposition efficiencies are investigated. The results are 
discussed in relation to several applications, including particle deposition on horizontal 
wafers placed on workbenches in laminar-flow clean rooms. The risk of particle deposition 
on a workbench is evaluated for uniformly distributed contaminant particles in the flow, 
and for particles discharged from a point source. Other potential applications may include 
motion of nonspherical particles in cascade impactors (Kasper and Shaw, 1983) and air 
sampling. 

2. PARTICLE EQUATIONS OF MOTION 

General equations of motion of a diffusionless nonspherical particle in viscous flow have 
been described in Part I (see equations (6) and (7) of Part I). Here we use these equations, 
while specifically referring to axisymmetric prolate spheroidal particles of semi-axes a and l, 
with the aspect ratio fi -- 1/a > 1. The particles move in a viscous stagnation flow over 
a horizontal flat surface of size 2L under the influence of gravity (see Fig. !). 

We will mark all dimensional quantities by a tilde " ~  ", thereby reserving the non- 
marked letters for the following dimensionless quantities: 

x = f~/L, t = ~U/L ,  v = J / U ,  u = f i /U,  t o = C o L ~ U ,  

K = K/a ,  Q = C~/a, l'to = ~ o / a  3, I = I / m a  2, o = a /L ,  

mg  S t -  m U  9t = ~ L / a  2, D 2 = ff)ZLZ/a2, Ng - I m U '  # a L "  

In the above, x = xel + ye2 denotes the spatial location of the particle center of mass; t is 
the time variable; v is the translational velocity of the particle center of mass, expressed in an 
inertial coordinate frame; u is the air velocity; to is the particle angular velocity; K, ~2o, and 
Q are particle hydrodynamic translational and two rotational resistance tensors, respective- 
ly;/~ is the dynamic air viscosity; I is the particle inertia tensor, computed with respect to the 
particle center of mass which in the present case is also the center of hydrodynamic reaction 
(Happel and Brenner, 1983); g is the gravitational acceleration; and D e and 9t are generaliz- 
ed Laplacian and rotor operators, given by equations (12) and (13) of Part I. These 
operators, and also to and I are written in the particle-fixed coordinate system. Expressions 
for the hydrodynamic tensors K, f~o, and Q for spheroidal particles are listed in Appendix of 
Part I. 

In the dimensionless form, the equations of motion are 

d 7 Stcl t = A - 1 K A  ( u - v ) + ~ - D 2 u  --Ng~2, (1) 

[ Idto  ] 
St L d t -  (Ito) x to  = Q(~R x u) - f~oto, (2) 
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where A is the matrix of the cosines of direction, 

I cos0 - s i n 0 s i n q ~  sin0cos4~ ] 

A = sin 0 cos 0 sin ~b - cos 0 cos $ J . 

0 cos ~b sin 4) 

(3) 

Equation (1) of the translational motion is written in an inertial (laboratory) coordinate 
frame in which the particle translational velocity v is measured, and the rotational equation 
of motion (2) is written in a particle-fixed (noninertial) coordinate system in which the 
inertia matrix I is constant. These coordinate systems are related by the Euler angles via 
equation (3) (see Fig. 2). Furthermore, particle orientation is related to its angular motion by 

'7. . '~ "7. .'T 

= - ~bel + (0 + 0cos ~b)e~ + 0sin ~be~. (4) 

In contrast with spheres, particle orientation adds additional parameters governing the 
motion of nonspherical particles over Re (appearing in the normalization of the air 

Y, e2 *~ on ].e'9 

I J . . . . .  Or en tonspec c 
g limiting trajectories 

Fluid streamlines 

I Flat collector (workbench) 
i ~ 2 L  ~1 

Fig. 1. Schematic of streamlines and particle trajectories in vertical stagnation flow over a fiat 
collector. 

x,e 1 

Fig. 2. Euler angles relating the laboratory and the particle-fixed coordinate systems. 
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velocity field--equation (3) in Part I), a - - t he  ratio of particle to flow characteristic lengths, 
the gravitational parameter Ng, and the Stokes parameter St, which is the ratio of the 
particle relaxation time to the convection time. 

The velocity field, appearing in equations (1) and (2), is approximated by a superposition 
of three two-dimensional basic flows (see Part I): 

u(x, y) = uv - up + uf, (5) 

where Uv is the viscous stagnation-point flow, Up is the potential stagnation-point flow (both 
over an infinite plate), and uf is the potential flow normal to a plate of finite width of 2L 
(Milne-Thomson, 1968). The above velocity field adequately describes the flow velocity 
both close to and far from the surface over a wide range of flow Reynolds numbers 
Re = UL/v .  In the upstream region the velocity tends asymptotically toward the undistur- 
bed uniform flow where the streamlines are vertical. Close to the surface the flow field 
approaches the viscous stagnation-point flow (Schlichting, 1987) and accounts for the finite 
size of the collector plate. 

3. D E P O S I T I O N  E F F I C I E N C Y  

Deposition efficiency, r h, is a quantity used to characterize the amount of particles 
deposited between the coordinates Xwl and Xw2 of the collector surface (see Fig. 1). It is 
defined as the ratio between the actual particle deposition rate, riA, and a reference particle 
stream flowing toward the collector, fiR, and evaluated far upstream: 

riA 
~/t = __. (6) 

DR 

Consider the case where a spheroidal particle has reached its preferred azimuthal 
orientation, 4) = 7r/2, in a two-dimensional potential (extentional) stagnation flow (Brenner, 
1972), but its orientation angle 0 continuously changes as a result of rotation induced by 
flow velocity gradients. In this case, particle orientation is specified by only one angle, 0, 
varying between 0 and 27r. Consequently, the actual deposition rate, riA, appearing in 
equation (6) may be written as 

hA = j,. (X, Oi)y = y,lo~ d x  dOi, (7) 
~ t  

wherejy(x, 0i) is the orientation-specific vertical component of the particle flux, evaluated at 
a vertical particle-wall separation y = yi(Oi) which is the interception distance at the 
moment of capture (Fig. 1). For  freely rotating nonspherical particles, this final 01-depend- 
ent interception distance is not known a priori. 

The reference particle stream fiR, appearing in equation (6), is the amount  of particles per 
unit time, crossing at a far upstream location a horizontal surface of area (per unit depth) 
equal to the projection of (Xw2 - Xwl): 

;? fiR = (Xw2 -- Xwl)  j ,~ (Oo)dOo,  (8) 

wherejro~ (0o) is the orientation-specific x-independent vertical particle flux in the undistur- 
bed region (y = yo). 

For  diffusionless particles, the integral in equation (7) may be replaced by a comparable 
integral at a far upstream location, via the so-called orientation-specific limiting trajecto- 
ries. These are trajectories of particles which begin to move at a given initial orientation 0o 
and height Yo from points Xol, Xo2, and end their motion at the points Xwl, Xw2, respective- 
ly, where they touch the wafer surface, y = yi(Oi) (see Fig. 1). Clearly, trajectories of identical 
particles having identical initial orientations 0o, but different initial locations x0, do not 
intersect. Thus, all identical particles with the same initial orientation 0o passing the plane 
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Y =Yo in the interval xol(0O)< Xo < Xo2(Oo) will deposit on the wafer. Therefore, the 
integral over 0i at y = yi(Oi) in equation (7) can be replaced by an appropriate integral over 
0o at y = Yo, namely 

h A = N f°2~°°)vr(Oo)h(Oo)dxdOo = N [Xo2(0o) - -  xo l (OO)]Vy(Oo)h (Oo)dOo .  (9) 
dXo,(Oo) 

In the above equation, we have expressed the particle flux, jy~(0o), via the vertical 
component of the particle orientation-specific velocity vr(0o), the particle orientation 
distribution function h(Oo), and the particle volumetric number density N, i.e., 

jro~(0o) = Nh(Oo)vr(Oo). (10) 

Note that the particle-orientation distribution function is assumed to be position-indepen- 
dent in the undisturbed region. It is normalized to yield unity upon integration over all 
orientations. 

The initial coordinates Xol (0o) and Xo2(0o) of the orientation-specific limiting trajecto- 
ries, appearing in equation (9), ought to be calculated in the course of the solution. Then, 
integration over 0o should be performed for any (e.g., random) orientation distribution 
function h(Oo). The orientation-specific vertical velocity component, vr, appearing in equa- 
tion (9) may be determined by (Happel and Brenner, 1983) 

v r = - U mg [sin 2 0o cos 2 0o] 
- - ' - ~ - - L  K l l  -~- K 2 2  A '  (11)  

where K.  (i -- 1, 2) are the components of the translational hydrodynamic resistance tensor. 
Similarly, the undisturbed particle stream (8) may be expressed as 

fiR = g(xw2 -- Xwl) vr(Oo)h(Oo)dOo. (12) 

In particular, for particles with uniform orientation distribution h = (2r0-~. Hence, the 
undisturbed particle flow rate (12) adopts the form 

[ mg(K-K~l K--~2)I fiR = m(xw2 -- Xw0 -- V - -~- + . (13) 

Combining equations (6), (9), and (12), one obtains the total deposition efficiency of 
spheroidal particles in the form 

2n 
rh(St, Ng,/3, Re, Xwl, Xwz) = ~o [Xoz(0o) -- Xol(Oo)]Vr(Oo)h(Oo)dOo 

(Xw2 - -  Xw,)~'o z'~ vx(Oo)h(Oo) dOo (14) 

For spherical particles uniformly dispersed in the undisturbed region, neither of the 
quantities in equation (14) depends on 0o. With the use of the velocity field (5), equation (14) 
yields a yo-independent deposition efficiency of spherical particles (Part I), 

qt(St, Ng, 1, Re) - Xo2 -- Xol _ Xo. (15) 
Xw2 - -  Xwl Xw 

When all spheroids have the same orientation 0~, the orientation distribution h(Oo) can be 
expressed in the form 

h(Oo) = 6(0o - 0"), (16) 

where 6 is Dirac's delta function. Substitution of equation (16) into equation (14) defines an 
orientation-specific deposition efficiency, with a functional form similar to the middle term 
in equation (15), 

Xo2(0o) - Xol (0o) 
q(0o, St, Ng, fl, Re, Xwl , Xw2 ) = , (17) 

Xw2 - -  Xwl 
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wherein the asterisk is omitted. Numerical simulations, discussed in Section 4, show that the 
orientation-specific deposition efficiency (17) does not depend either on Xwl, Xw2 (and, 
hence, on the collector size Xw2 - Xwl), or on the initial particle vertical location Yo, i.e., 

q(Oo, St, Ng, fl, Re, Xwl, Xw2) = r/(0o, St, Ng, fl, Re). (18) 

Combining equations (14), (17), and (18), one obtains the total deposition efficiency in the 
form 

2n ~o t/(0o, St, Ng, [3, Re)vy(Oo)h(Oo)dOo 
~h(St, Ng, [3, Re) = .I 2" vy(Oo)h(Oo)d0o (19) 

For particles with a uniform orientation distribution, equation (19) can be simplified by 
using equation (13) to result in m (a  )llf? 

qt(St, Ng, [3, Re) = ~ + -fi- ~ + ~ t/(00, St, Ng, [3, Re)vy(Oo)dOo, (20) 

where Vy is given by equation (11). Note that due to geometrical symmetry of spheroids, the 
integrals in equations (19) and (20) need to be evaluated in the interval 0-re only. 

For the case q~ = ~/2, considered mostly in the present study, only two-dimensional 
trajectories can be described by the equations of motion (1) and (2). This is due to 
degeneration of the hydrodynamic translational resistance tensor, written in a laboratory 
coordinate system, to a symmetrical tensor with only two off-diagonal terms. In a more 
general case where, in addition to 00, particle initial orientation is also specified by the angle 
qSo, one has Vy = vy(Oo, 0o), h = h(Oo, ~bo), and all integrals appearing in equations (7)-(20) 
are to be replaced by appropriate integrals with respect to these two angular coordinates. 

4. SOLUTION METHODS 

A nonspherical particle placed in a nonuniform velocity field moves along a certain 
trajectory while constantly rotating. As discussed in Section 3, calculation of the orienta- 
tion-specific particle deposition efficiency requires knowledge of the initial locations Xoi(Oo) 
(i -- 1, 2) of the orientation-specific limiting trajectories as data input (see equation (17)). 
These initial locations can be calculated by a trial-and-error procedure of particle trajecto- 
ries simulations. These computations account for the coupled translational-rotational 
motions, and thus constitute a complicated numerical task. One commonly used way to 
facilitate the calculations is to perform calculations for "equivalent" spherical particles 
instead of exact integration of equations (1) and (2). These spheres are usually taken either as 
a volume-equal sphere of the same density, with a radius (Williams and Loyalka, 1991) 

rev = af t  1/3, (21a) 

or as a mass-equal sphere with the same spatially averaged hydrodynamic resistance/(, 
with a radius 

rer = a x/[32 - 1 (21b) 
ln([3 + ~ -- 1)' 

or as a mass-equal sphere with the same average sedimentation velocity, with a radius 

a / [ 3 1 n ( f l _ + ~ - - 1 )  
res = ~ /  N/[32 -- 1 (21C) 

Note that for random orientation distribution of spheroids of revolution, /( is given by 
(Happel and Brenner, 1983) 

= + (22) 
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In any nonuniform flow field nonspherical particles have preferred orientations. In 
particular, in stagnation flows (Brenner, 1972) the particle axis of revolution tends to align 
with the direction of flow extension. We thus perform simulations where the particle moves 
with several frozen orientations, and compare the trajectories of such simulations with the 
exact trajectories, which are calculated using the coupled equations (1) and (2). Deviations 
between the orientation-frozen and the exact particle trajectories serve to assess the error of 
the approximate simulations. 

In order to solve equations (1) and (2) initial conditions must be supplied, which specify 
the particle location, orientation, rotational and translational velocities far away from the 
workbench, where the flow is uniform. At this location, designated by the coordinates 
(Xo, Yo), we assume that the particles possess their (orientation-dependent) terminal settling 
velocities, i.e. they move along straight, generally inclined, trajectories (Happel and Brenner, 
1983): 

t = 0 :  X=Xo,  Y=Yo, 0 = 0 o ,  ~ = v x ,  t(00), f=Vy.,(Oo), (23) 

where vx.t, vr.t are the components of the particle terminal velocity. In particular, Vr,t is given 
by equation (11). 

A particle is assumed to be deposited on a smooth surface when it first touches it. That is, 
particle resuspension and rebound are neglected and simulations terminate at the moment 
of touching (Fuchs, 1986; Fan and Ahmadi, 1995). The interception distance yi(Oi) depends 
on the particle geometry and its orientation 0i prior to capture. The latter is generally not 
known a priori. In orientation-frozen simulations, one deals only with the translational 
equations of motion (1), with the matrix A known from the initial particle orientation. 
A major benefit of simulating the motion of particles with fixed orientation is that their final 
orientations and, hence, the interception distances are known. For the general case of 
rotating-translating particles, a general algorithm for the calculation of the orientation- 
dependent interception distance at the moment of capture was suggested by Fan and 
Ahmadi (1995). A much simpler code can be used for particles which move perpendicularly 
towards the collector surface. This behavior is characteristic of a particle moving in the 
vicinity of the surface under the influence of gravity (see Section 5), and when particle size is 
smaller than the boundary layer thickness. 

The computations were performed on a Silicon Graphics workstation using the ACSL 
ver.10 ODE solver. Three different algorithms for numerical integration were checked, 
namely Gear's stiff variable step and variable order, Adam-Mutton's variable step and 
variable order, and Runga-Kutta-Frehdberg's  variable step and fifth order. All the algo- 
rithms yielded close results which coincided to within four significant digits. 

5. RESULTS 

Trajectories of prolate spheroids placed in the given velocity field (5) were computed for 
various particle aspect ratios, sizes, initial orientations, and initial locations. In addition, 
calculations were performed for the equivalent spheres of radii rev, rer and res, given by 
equations (21a, b, c), respectively. 

Equivalent sphere motion: Figure 3 shows a comparison between trajectories calculated 
for (i) spheroids performing coupled rotational and translational motion (marked by solid 
lines), (ii) spheroids with fixed orientations performing translational motion only (marked 
by circles), and (iii) equivalent spheres. All particles begin their motion from the same 
location (Xo, Yo) in the undisturbed region. The trajectories of the equal-volume sphere (the 
dashed line which coincides with the line 0o = 0) and of the equal average hydrodynamic 
resistance sphere (the dotted line) do not adequately represent the trajectories of spheroidal 
particles due to their lack of sensitivity to particle initial orientation. A similar result (not 
shown in the figure) has been obtained for the sphere of the same average sedimentation 
velocity. Thus, modelling of motion of a spheroidal particle as of any of the equivalent 
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Fig. 3. Trajectories of a spheroidal particle (/J = 1.5) initiating from x0 = 0.001, Yo = 10 with 
different initial orientations: Re = 6700, Ng  = 0.74, St = 0.001. Solid lines spheroids performing 
coupled translational-rotational motions, circles--spheroids with fixed orientation, dashed 
l ine--equivalent  sphere of radius r~v (equation (21a)), dotted l ine--equivalent  sphere of radius rer 

(equation (21b)). 

spheres can lead to large errors. A similar conclusion has also been drawn for other systems, 
e.g. cyclones (Ingham and Bloor, 1991). 

Initial orientation: Trajectories of spheroidal particles are found to be very sensitive to 
their initial orientations (Fig. 3). Particles moving in the undisturbed region of stagnation 
flows do not experience an external orienting torque acting upon them and, hence, have no 
preferred orientation. Particles which begin their motion from about 0o = _+ 45 ° will 
deposit farther than those whose initial orientations are close to one of the field principal 
directions, i.e., 0 ° and 90 ° (trajectories of spheroids in the latter orientations are very close, 
and cannot be distinguished apart in Fig. 3). It may be inferred that the high sensitivity of 
the trajectories to particle initial orientations implies that the total deposition efficiency (19) 
should be determined by averaging the orientation-specific deposition efficiency via an 
appropriate orientation-distribution function h(Oo). The latter may be either measured 
(Bernstein and Shapiro, 1994) or calculated. Below we show that this averaging is unnecess- 
ary, and one can utilize previous results obtained for spherical particles in order to calculate 
the deposition efficiency of elongated particles. 

Orientation-fixed trajectories: Figure 3 shows that the trajectories of orientation-fixed 
particles are very close to the trajectories of freely rotating particles, beginning their motion 
with the same corresponding initial orientations. The differences between these trajectories 
(i.e. orientation-fixed and orientation-free) were found to decrease with decreasing aspect 
ratio. The relative inaccuracy in the determination of particle trajectories stemming from 
this approximation may amount  to 10% for large aspect ratios (/~ > 100). However, it is 
shown below that for the purpose of calculating deposition efficiencies via equations 
(17)-(19), the difference between two initial x-coordinates Xoi(Oo), for a given 00, can be 
evaluated sufficiently accurately by the orientation-fixed approximation. This is because the 
absolute error between trajectories of orientation-fixed and freely rotating particles is small. 
Nevertheless, all the results discussed below refer to freely rotating particles. 

Particle capture: Evolution of particle orientation during its motion is shown in Fig. 4 for 
different initial orientations, but equal initial location (Xo, Yo). It is seen that, irrespective of 
the initial orientation, particles terminate their motion almost horizontally, i.e., approach 
their preferred orientations as discussed in Section 3. Hence, particle final orientation is 
almost independent of the initial orientation (the latter, however, does affect the deposition 
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Fig. 4. Orientation evolution for a spheroidal particle (fl = 1.5) moving in a vertical stagnation flow 
with different initial orientations: Xo = 0.001, Yo = 10, Re = 6700, Ng = 0.74, St = 0.001. 

site as shown above). This observation may facilitate the formulation of the particle capture 
condition, required for termination of the simulations (see Section 4). 

In the final part of their trajectories particles move vertically. In typical industrial clean 
rooms, the Reynolds number based on the workbench width is of the order of 5000-10,000. 
For  these values of Re, the flow is characterized by a hydrodynamic boundary layer 
prevailing adjacent to the workbench surface. For  the above Re, the thickness of this layer is 
of order --, 0.03L, where L is the half-width of the workbench. Furthermore, the above 
described vertical segments of the trajectories span over a distance of order 0.003L. That  is, 
the vertical segments in the particle trajectories prior to capture expand no more than 10% 
of the thickness of hydrodynamic boundary layer. Hence, capture of micrometer particles 
occurs as a result of settling due to the gravity force rather than interception. Generalizing 
that result, this implies that interception, as a capture mechanism, is irrelevant for particle 

deposition in stagnation flows when aflx//-~e < 0.1. This, in turn, facilitates the condition for 
termination of the numerical calculations, as discussed in Section 4. It follows that the exact 
and orientation-frozen trajectories differ also in particle interception distance at the mo- 
ment of capture. This difference, however, has a weak effect on the deposition site since the 
final trajectory segments are normally short. The above observation, however, may not be 
valid in other applications, as well as for very slender particles whose lengths may exceed 
the final vertical segments of the particle trajectories. In addition, when inertial effects 
prevail, particles may obtain orientations which are different from those discussed above, 
especially in the vicinity of the symmetry line. In particular, this has been described in 
impactors by Kasper and Show (1983) (see also a discussion in Section 6). 

Particle trajectories: Trajectories of spherical particles in vertical stagnation flows have 
the following property (see Part  I): 

XO1 X02 
- -  - - - ,  ( 2 4 )  
Xwl Xw2 

which allows definition of a universal trajectory. For  nonspherical particles, universal 
trajectories in the above form do not exist even for particles starting their motion with 
identical orientations. This is because even in the case of settling in an undisturbed flow, the 
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trajectories of obliquely oriented nonspherical particles are not parallel to the direction of 
gravity. Rather, particles drift horizontally when neither of the particle principal directions 
coincides with the principal directions of the body-force field (Happel and Brenner, 1983). 
Moreover, due to this horizontal drift, nonspherical (e.g. spheroidal) particles may cross the 
field symmetry line and deposit on the opposite half of the surface (see Figs 3 and 4). For 
a given range of initial orientations, a spheroidal particle beginning its motion far enough 
from the surface (i.e., at large Yo) may cross the field symmetry plane for any Xo. 

Figure 5 depicts trajectories of spheroidal particles of St < 0.01 and the same aspect ratio, 
/~ = 27, but of different Ng. It is seen that as particle settling velocity increases, i.e., Ng 
grows, deposition occurs closer to the symmetry axis. This is similar to the behavior 
observed for spherical particles (see Part 1). 

Figure 6 depicts the effect of aspect ratio, ~, on particle trajectories. One can see that for 
a given Ng, spheroidal particles with larger aspect ratios shift horizontally much further 
than particles with lower [3. With [:¢ decreasing to 1, the trajectory approaches that of 
a sphere of equal mass and having the same average sedimentation velocity, with the radius 
res given in equation (21c). 
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Normally, the thickness a of elongated particles, such as polymeric chains, and fibers 
made of asbestos, glass, wool, linen, or cotton, varies much less than their length l (Cheng, 
1986; Asgharian and Yu, 1989). Trajectories of spheroidal particles of the same minor radius 
a but different lengths l are shown in Fig. 7. As expected, trajectories of heavier particles, 
characterized by larger fl, are steeper, causing the particles to deposit closer to the symmetry 
axis for all initial orientations. 

Deposition site: The influence of the initial orientation on the deposition site, xf, is 
summarized in Fig. 8, where one can see a strong dependence of xf on ft. Particles of any 
aspect ratio travel along the farthest trajectory above the collector surface if their initial 
orientation is 00 = + 45 °. This is unlike the case of spheroids settling in a stagnant fluid, 
where the maximal trajectory inclination angle (with respect to the gravity direction) 
depends on fl (Happel and Brenner, 1983). Moreover, for the given parameters (Ng = 0.1, 
Xo = 0.001), as the aspect ratio increases beyond about 2.5, particles with certain initial 
orientations never deposit on the collector. For fl > 5, particles beginning their motion with 
almost all initial orientations do not deposit on the collector at all. From all slender 
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spheroidal particles moving down toward the collector, only those are captured whose 
initial orientation angle 0o is close to 0 ° or 90 ~, which are the principal directions of the 
body-force field. Hence, a randomly oriented oblong spheroidal particle coming from 
a given location (e.g., Xo = 0.001) has less opportunities to deposit on the collector than any 
of its equivalent spheres. 

Effect of the initial location Xo: The above results mean that from all similar elongated 
particles located initially at Xo, it may happen that only a small portion, possessing certain 
initial orientations 0o, will deposit on a wafer placed on a workbench between the 
coordinates Xwl and Xw2 (Fig. 8). Thus, it may be inferred that the deposition efficiency of 
elongated particles is always less than that of the sphere with equal Ng. This is, however, not 
true, since the above calculations (Fig. 8) pertain to particles beginning their motion only at 
Xo = 0.001. It turns out that identical particles originating from different initial locations 
and having certain appropriate initial orientation angles 0o = Oo(Xo) will deposit on the 
same wafer. To show this, consider Fig. 9 exhibiting the effect ofxo on the deposition site. It 
is seen that the effect of changing Xo is to shift the particle deposition site xr by a value which 
is independent of ft. Indeed, the curve xf(Oo, Xo) may be obtained by shifting the comparable 
curve calculated for any other Xo by a value Axf dependent on Ax0, but independent of 00 
and [L This conclusion may also be drawn from the constant slope of the inclined lines in 
Fig. 10, plotted for 0o = 45 .  The distance Axf may thus be calculated for the equivalent 
sphere of the same settling velocity Ng as the spheroid. 

Figure 10 depicts the deposition site xf vs the initial location Xo. The curves are straight 
lines with the same (•]-independent) slope. For  spheres, characterized by a deposition 
efficiency 115 = ~/~(Ng), xf is (see Part I) 

XO 
X f  = q~'~'g"~l"~ ~ (25) 

In contrast to equation (25), Figs 9 and 10 indicate that for spheroidal particles, xf has the 
following functional form: 

XO 
xe + F(fl) sin (200). (26) 

rMNg) 

The coefficient F is assumed to be independent of particle orientation, and to be liable only 
on particle aspect ratio. Figure 11 depicts the function F(fi) defined in equation (26). It is 
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seen to be independent of the particle settling velocity Ng. A least-square approximation of 
F(/~) with a relative error not exceeding 2% is 

F(/~) ~ 1.761n[ln(/~) + 1][1 - 1.07exp( - ,v/~)]. (27) 

The total deposition efficiency qt (equation (19)) can now be calculated by substituting xf 
from equation (26) in place Of Xw in equation (17). This procedure shows that r/t of spheroidal 
particles is equal to qs of spherical particles of the same Ng. The latter is given in Part I. This 
observation is true for a wide range of ]~ when deposition is unaffected by the interception 

(which is the case when a / L ~ / ~  < 0.1), and as long as the orientation distribution is random 
at Yo. 

Deposition from a point source: Figure 12 depicts the distribution of particles (of a given 
Ng and/~) deposited along the workbench, which are discharged from a point source (i.e., 
a jet) at Xo = 0 with a uniform orientation distribution. Although such particles may deposit 
in a relatively wide x-domain, a sharp peak of the deposition density is observed, which is 
shifted to the peripheral part of the workbench with increasing/L Particles from a wide 
orientation interval (30-60 °) deposit within 1% area around the maximal deposition site. 
Deposition from an air stream uniformly loaded with particles may be considered as 
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a continuous superposition of point sources at different locations x0 in an otherwise clean 
air. Each of these sources yields a distribution similar to the one shown in Fig. 12, however, 
shifted by a distance proportional to Xo. When these shifted plots cover the whole collector 
surface, a uniform deposition pattern prevails, with particle deposition efficiency given by 
equation (19). 

Equation (19) is generally valid for infinitely extended uniform particle distribution. In 
practice, however, it might be used also for jet-like aerosol streams of finite width, provided 
that (for given Xwl, Xw2) all the values of Xol(Oo), X02(00) from which deposition is possible 
(equation (17)) lie within the bounds of the jet source. This case is usually called wide stream 
deposition (Fuchs, 1986). However, sufficiently narrow jets do not cover the entire range of 
Xol(Oo), Xo2 (0o) from which particles may deposit on a given wafer. For  such aerosol jets the 
deposition rate of randomly oriented oblong particles will be lower than that of spheres of 
the same Ng, and hence their deposition efficiency cannot be calculated as for spheres. This 
conclusion is especially true for jets containing particles of nonuniform orientation distribu- 
tion (see also the discussion in Section 6). 

Consider a horizontal region far upstream, from which particles can potentially deposit 
on the workbench. This means that at any given point of this region, one can always find at 
least one orientation which leads to particle deposition on the workbench. Clearly, this 
region is symmetric with respect to the centerline, and hence can be characterized by width 
A'x0. This quantity can be evaluated by considering trajectories of the particles with initial 
orientations 0o = _+ 45 °, since such particles reach deposition sites which are farthest from 
their initial locations (Figs 3 and 8). Inserting 00 = _+ 45 c' and xf = -T 1 in equation (26), one 
obtains the following expression for A*Xo: 

A*xo = 2Ng[1  + F(/3)]. (28) 

Clearly A*xo increases with increasing particle aspect ratio since, for a given a, both Ng and 
F(/7) increases with 1. Therefore, limiting ourselves by a maximal expected particle length, 
say 1 . . . .  A*xo(lmax) represents the size of the region from where all particles with l < /max can 
arrive and deposit on the collector (e.g., the whole workbench). Thus, in order to prevent 
contamination, one should largely be concerned with regions from which potential con- 
tamination particles may come. As such, equation (28) may be used for risk assessment for 
deposition of nonspherical contaminant particles in clean rooms. 
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6. DISCUSSION 

For simplicity, we have chosen in most of the simulations ~bo = n/2. In that case 0o is the 
only angle which determines particle orientation and trajectory. However, several simula- 
tions were also performed with ~bo ~ n/2. These simulations show that trajectories of 
spheroidal particles in the flow field (5) are mainly affected by the angle between the gravity 
direction and the major particle axis, (e2,"-e~). This is due to a relatively weak dependence of 
the hydrodynamic drag force components on particle orientation. That is, the ratio between 
the lateral component and the longitudinal component of the drag force acting on a sphe- 
roid reaches a maximal value of 2 when fl ~ ~ .  In contrast to the minor effect that the 
orientation exerts on the hydrodynamic forces, particle orientation with respect to the 
direction of gravity has a dramatic effect on the trajectory. Simulations performed for 
gravity-free particles reveal that for all practical means, particle trajectories are almost 
independent of the initial orientation. Thus, it is preferable to define particle orientation 
with respect to the direction of gravity (or another dominant body force) rather than with 
respect to the characteristic flow direction. 

The viscous particle-wall interactions were shown to be significant in a close vicinity to 
the wall surface 37 < 10/(Hsu and Ganatos, 1989). Beyond this region, one can evaluate the 
viscous forces and torques as in the undisturbed flow with an error not exceeding 5%. Yet, 
the hydrodynamic force acting on settling spheroidal particles towards a fiat wall hardly 
depends on the particle-wall separation (Hsu and Ganatos, 1989). The wall effect was found 
to diminish with increasing particle aspect ratio fl (Gavze and Shapiro, 1996). For 
aflx/'-~ < 0.1, as in the present study, the distance 10/is much smaller than the thickness of 
the hydrodynamic boundary layer (in the cases studied less than 10% of it), which implies 
that the velocities are low. Hence, in this region the trajectories of particles moving towards 
a horizontal surface in a gravity field are almost vertical, and particle orientations are 
almost constant. 

To estimate the hydrodynamic wall effect, we note that inertialess spheroidal particles 
moving near a solid wall (where the flow is close to simple shear flow) acquire vertical lift 
and horizontal drift velocities (Gavze and Shapiro, 1996). In the hydrodynamic boundary 
layer, the drift velocity may be estimated (in a dimensionless form) as 

v~,. d = k x a f l x / ~ ,  (29) 

with the coefficient k of order unity. For a small ratio a = alL, this velocity is small and 
barely affects particle trajectories. The wall-induced lift velocity is even smaller than the 
drift velocity (Gavze and Shapiro, 1996). In view of the above estimates, one may conclude 

that, due to small values of the parameter a f l x / ~  < 0.1, the wall effect is negligible as 
compared with the influence of gravity. 

Particle hydrodynamic interactions, as computed in the present study, are based on the 
creeping flow assumption, i.e., Rep ~ 1. For small particles (a ~ 1) moving in close proxim- 
ity to the surface, where the flow may be approximated by a simple shear, the above 
condition yields that 

12(~ux/Oy)/v ~ 1, (30) 

where u~ is the x-component of the air velocity and l the particle length. Expressing the 
shear rate by using the numerical results obtained for viscous stagnation flow (Schlichting, 
1987), one obtains 

X(O'fl) 2 R e  3/2 ,~ 0.813. (31) 

This may serve as a criterion for the validity of the creeping flow assumption. This criterion 
is usually satisfied for clean room conditions where Re ~ 5000-10,000 and a ~ O(10-5). 
Furthermore, equations (30) and (31) can serve as criteria for the validity of the creeping 
flow assumption to other types of stagnation flows, in particular for flows over cylindrical 
and spherical collectors (in filtration-related applications) and in impactors. For such 
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applications one can identify 2L with the collector diameter D, and use in equation (30) the 
pertinent expression for the velocity gradient (e.g., from known analytical solutions for 
viscous flows around bodies of various shapes). 

The velocity field used in the present study is composed of three basic two-dimensional 
flows, two of them are potential flows. Any potential (i.e., irrotational) flow satisfies the Stokes 
flow equations. Thus, the use of potential flow components Up and uf (see equation (5)) in the 
generalized Faxen law (equations (10) and (11) in Part I) is legitimate. On the other hand, the 
viscous term u~ constitutes an exact solution of the Navier-Stokes equations, obtained with 
nonnegligible inertia terms. For such flows, the derivation of the generalized Faxen law 
(Happel and Brenner, 1983) is not valid, since they are applicable for flows in which the inertia 
terms are omitted. Therefore, strictly speaking, a linear combination of the three flows (5) 
cannot be used for the calculation of particle hydrodynamic interactions by means of the 
generalized Faxen law. To support our approach we note that the generalized Faxen 
expressions for the hydrodynamic force and torque are exact for uniform and shear flows. Any 
arbitrary flow field, which may be inertial at a certain (large) length scale (say L), may be 
viewed as a creeping flow at a sufficiently small s ca l~comparab le  to the particle size I. 
Moreover, use of the Faxen law for drag calculations of small (Brownian) particles is also 
justified by the Stokes Einstein relation (based on the convectiv~diffusion transport equa- 
tion) which is commonly employed for all flows (Bird et  al., 1960). 

The finite-size flat collector surface (i.e. workbench geometry), as employed in this work, 
is characterized by sharp edges at x = + 1. Accordingly, the flow field used here has 
singularities at these points, in the vicinity of which the velocity grows to infinity due to not 
accounting for separation of the flow from the surface (Lesnic et  al., 1994). This may have an 
influence on the particle deposition flux upstream (i.e., at smaller x). However, for a domain 
(wafer) located sufficiently far from the edges, the deposition efficiency is not affected by the 
edge effects. In addition, edge effects diminish with decreasing distance between the particle 
and the workbench surface (Dagan et  al., 1982). More elaborate computer calculations of 
flow fields over realistic flat collectors geometries, which are free of sharp edges, or 
accounting for separation of the flow at the plate edges, can provide a better evaluation of 
the particle deposition flux in the plate margin regions. 

It was found in Section 5 that when St < 0.01 and a / ~ , , ~  < 0.1, the deposition efficiency 
of spheroidal particles uniformly distributed in the undisturbed flow is equal to that of 
spheres with the same dimensionless settling velocity Ng. This is because nonspherical 
particles coming from different locations x0 tend to deposit on the collector as a result of 
their orientation-dependent horizontal drift. In contrast to this so-called wide stream 
deposition (Fuchs, 1986), a different situation occurs when these particles come from a jet, as 
in cascade impactors. In this case the range of possible locations x0 is quite narrow, so many 
particles miss the collector plate. Thus, nonspherical particles with a uniform orientation 
distribution and originating from jet sources will deposit in smaller amounts than their 
spherical counterparts. 

In reality, elongated particles tend to align themselves with the flow streamlines, as has 
been shown experimentally by Kasper and Shaw (1983) for the deposition of long-chain 
aggregates in impactors. Generally, particle motion in these devices is controlled by inertia 
forces. However, particles which arrive at the peripheral part of the flow (far from the jet 
center) move in the air for a sufficiently long time, exceeding their characteristic relaxation 
time mitre .  These particles behave like inertialess, i.e., they align themselves with the flow 
streamlines (as in Fig. 4). On the contrary, elongated particles moving close to the jet center 
tend to orient themselves vertically till the moment of impaction. As a result, the orientation 
of particles deposited in this central region is random (Kasper and Shaw, 1983), which 
clearly results from the inertial effects governing their motion. In addition, there might be 
a significant effect of chain (initial) orientation in the jet that affects its motion, especially 
near the centerline (cf. Fig. 3). This may have a spreading effect on the deposition site and on 
the total amount of particles deposited on each impactor stage, which might explain 
partially some of the results found by Kasper and Shaw (1983) for the wide size distributions 
(in terms of the aerodynamic diameter) of deposited chains. 
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The efficiency calculations performed here assume perfect particle capture with no 
bouncing. In fact, the probabili ty of particle sticking to a solid surface depends on several 
factors, including inertia, angle of impaction, properties of the surface, etc. (Wang, 1986). 
Generally speaking, the finer the particles, the lower the impaction velocity, and the closer 
the impaction angle to n / 2 ,  the greater the sticking probability. Moreover,  elongated 
particles are more likely to stick to surfaces than spheres of the same volume (Fuchs, 1986). 
This process, however, should be further investigated. 

7. C O N C L U S I O N S  

We showed that trajectories of individual spheroidal particles may be approximated 
reasonably well by calculating only the translational motion of the particles, with their 
initial orientation fixed. However, the error, resulting from this approximation,  in comput-  
ing particle trajectories increases with/3. Trajectories of all equivalent spheres (i.e., of the 
same settling velocity, volume, aerodynamic drag, etc.) differ significantly from those of the 
spheroidal particles because they do not take into account the orientation-dependent 
particle horizontal drift in a gravity field. In particular, a spheroidal particle can cross the 
flow symmetry plane and deposit on the opposite half of the collector surface. 

The deposition efficiency of a swarm of noninteracting spheroidal particles in vertical 
stagnation flows is the same as that of the equivalent spherical particles with the same 
settling velocity, Ng. This observation holds for particles uniformly dispersed far above the 
collector surface, and as long as the interception capture mechanism does not affect the 

deposition, that is a/3x/Ree < 0.1. This is true in spite of the significant influence of particle 
shape and orientation on each individual trajectory: even a small deviation from sphericity 
results in considerable effects on the deposition site of a given particle. Therefore, the 
decision whether to look at a particle as a sphere or as a fiber depends on the specific goals 
of the investigation. 

Deposition sites of spheroidal particles can be calculated from equations (26) and (27) via 
the deposition efficiency of spherical particles (Part I). A simple expression (28) is proposed 
for the size of the far upstream region from which particles may deposit on the collector. The 
size of this region is proport ional  to Ng and increases with the particle aspect ratio. 

The deposition distribution of nonspherical particles discharged from a point source with 
random initial orientations has a distinguished peak, resembling qualitatively the expected 
deterministic deposition pattern of elongated particles discharged from an aerosol jet with 
orientations close to the preferred orientation. For  aerosol streams with uniform orienta- 
tion distribution, the location of this peak in the deposition distribution is shifted to the 
peripheral part  of the collector plate when particle aspect ratio increases. 
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