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Abstract 

Modern hydrological models require information on hydraulic conductivity and soil-water retention characteristics. 
The high cost and large spatial variability of measurements makes the prediction of these properties a viable 
alternative. Fractal models describe hierarchical systems and are suitable to model soil structure and soil hydraulic 
properties. Deterministic fractals are often used to model porous media in which scaling of mass, pore space, pore 
surface and the size-distribution of fragments are all characterized by a single fractal dimension. Experimental evidence 
shows fractal scaling of these properties between upper and lower limits of scale, but typically there is no coincidence 
in the values of the fractal dimensions characterizing different properties. This poses a problem in the evaluation of 
the contrasting approaches used to model soil-water retention and hydraulic conductivity. Fractal models of the soil- 
water retention curve that use a single fractal dimension often deviate from measurements at saturation and at 
dryness. More accurate models should consider scaling domains each characterized by a fractal dimension with 
different morphological interpretations. Models of unsaturated hydraulic conductivity incorporate fractal dimensions 
characterizing scaling of different properties including parameters representing connectivity. Further research is needed 
to clarify the morphological properties influencing the different scaling domains in the soil-water retention curve and 
unsaturated hydraulic conductivity. Methods to functionally characterize a porous medium using fractal approaches 
are likely to improve the predictability of soil hydraulic properties, 0 1997 Elsevier Science B.V. 
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1. Introduction 

Predictions of flow and transport processes at a 
field-scale are needed in a range of applications 
from petroleum engineering to groundwater pollu- 
tion assessment. Modern hydrological models 
require information on transport coefficients and 
soil-water retention characteristics. A transport 
coefficient relates a flux to a driving force, whereas 

* Corresponding author. 

a soil-water retention characteristic defines the 
relationship between water content, H and pressure 
potential, li/. Both properties are closely related to 
the geometry of a porous medium (i.e. characteriz- 
ing the distribution of pore, solid space and/or the 
solid-pore interface). Measurements of hydraulic 
properties are expensive, time consuming and 
highly variable (Dirksen, 1991). Prediction of these 
properties is a viable alternative, especially when 
the prediction model contains a few parameters 
sensitive to textural and structural conditions. 
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PII s001~-795~(97)000~8-0 



Soils, and to a lesser extent rocks, are hetero- 
geneous systems composed of numerous, different 
and interacting components (van Damme, 1995). 
The complex nature of these porous media compli- 
cates any prediction of their hydraulic properties. 

The classical approach to model a natural 
porous medium is to assume that a system is 
invariant by translation. In other words, the system 
looks the same at different locations and the 
randomness associated with it can be handled by 
a finite sample size or by statistical techniques. 
Fractal systems, on the other hand, are invariant 
by dilation, i.e. the system looks identical under 
different magnifications (Adler, 1992). A fractal 
object has a hierarchical structure with larger units 
containing smaller units and smaller units enclos- 
ing even smaller units and so on ad infinitum. This 
is known as fractal scaling and is characterized 
with a power-law distribution. A power-law relat- 
ing a property of a fractal system to the scale 
remains the same as the scale changes. 

Soil structure is hierarchical with organizational 
levels ranging from a microscale (tactoides and 
microaggregates) to a macroscale (clods, pedons) 
(Hadas. 1987; Dexter, 1988). Scaling of soil physi- 
cal properties, compatible with a fractal model of 
soil structure. has been reported previously 
(Brooks and Corey, 1964; Campbell, 1974; Utomo 
and Dexter, 198 I ). A connection between geome- 
try and transport is facilitated when geometry can 
be described by a small set of parameters such as 
with a fractal model. Classical semi-empirical 
power laws such as Archie’s law and the 
Kozeny-Carman equation can be derived by 
assuming fractal scaling of various physical proper- 
ties of a porous medium (Muller and McCauley, 
1992). 

Hardy and Beier (1994), Korvin (1992a), 
Turcotte ( 1992) and Feder ( 1988) have reviewed 
fractal applications in the earth and geological 
sciences. Adler (1992) reviewed the application of 
fractals to quantify transport processes in porous 
media. Perfect and Kay ( 1995a) and Senesi ( 1996) 
reviewed fractal applications pertaining to soil and 
tillage research and to soil biology and biochemis- 
try, respectively. The objective of this paper is to 
review fractal models applied to the prediction of 
two important soil hydraulic properties, i.e. 

hydraulic conductivity and the soil-water retention 
characteristic. The working assumption in all these 
models is that there exists a theoretical relationship 
between the geometry of a porous medium and 
the flow through it. 

2. Fractal scaling: basic concepts and evidence for 
soils and rocks 

Mathematical fractals have been used to model 
the geometry of porous media. The most simple 
fractals are self-similar fractals constructed by 
repeating a pattern or generator onto a starting 
object or initiator. The initiator determines the 
dimensionality, whereas the generator defines the 
overall symmetry of the object and produces fea- 
tures at different length scales. The generator 
pattern is repeated n times and can result in either 
accretion or reduction of the initiator. The final 
fractal object contains a range of lengths, r= l/b’, 
where h is a scaling factor and i= 1. 2, 3...n. 
Examples of fractal objects generated by this pro- 
cess are shown in Fig. 1. In the Cantor bar 
[Fig. 1 (a)], the initiator is a solid line and the 
generator is a broken line. The initial solid line is 
divided into three equal segments and the middle 
third is removed (reductive algorithm). The process 
is then repeated for each of the remaining solid 
segments. The initiator for the Koch curve 
[Fig. 1 (b)] is also a solid line that is divided into 
three segments, but the middle segment is now 
replaced by two segments of the same length as 
the outer ones (accretive algorithm). The Sierpinski 
carpet and its three-dimensional counterpart the 
Menger sponge [Fig. 1 (c-d)] are produced by 
removal of squares or cubes from the initiator 
which is a plane or a cube, respectively. For 
example, in the Menger sponge, a cube of unit 
length is partitioned into 27 smaller cubes and 
seven cubes are removed. This processes is then 
repeated for each of the remaining solid cubes. 
The aforementioned fractals are deterministic since 
the same operation is repeated at all scales. 
Randomness can be introduced in these construc- 
tions in different ways to produce statistical 
fractals. 

The fundamental equation applying to all frac- 
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Fig. I. Examples of deterministic fractals: (a) Cantor bar; (b) Koch curve; (c) Sierpinski carpet; and (d) Menger sponge. Adapted 
from Perfect and Kay (1995a). 

tals is the number-size relationship (Mandelbrot, 
1983; Feder, 1988): 

N(r) = kr - ‘, (1) 

where N(r) is the number of elements of length 
equal to r, K is the number of initiators of unit 
length and D is the fractal dimension. Eq. (1) is 
sometimes used in its cumulative form by replacing 
N(r) by the number of cumulative elements of 
length greater than or equal to r, N( > r). A defini- 
tion of D follows from Eq. ( 1): 

D = [log N(r) - log ti]/log( l/r) (24 

or 

D=log[A’( l/b’+‘)/N( l,‘b’)]/log(b). (2b) 

Frdctal dimensions can be easily obtained from 
the models shown in Fig. 1 assuming K = 1. For 
the Cantor bar, N( l/b”‘)/N( l/h’) =2, b = 3 and 

D-0.63; for the Koch curve h’( l/b’+‘)/N( l/b’)= 
4, b = 3 and D - 1.26; and for the Menger sponge, 
N( l/b’+‘)/N( l/b’)=20, b=3 and D-2.73. 

Fractal dimensions in natural objects are 
obtained from measurements. The basic measure- 
ment technique consists of measuring a property 
with units of regular shape and different character- 
istic size, 1. If the scaling of the property is fractal, 
the number of units of a certain characteristic size, 
N(Y), is related to / according to Eq. (1 j: 
N(d)~c/-~. ( 34 

The scaling of the property measured (length, 
area, or volume) is obtained from Eq. (3a) as: 

N(/)PDT~fDT-D, (3b) 

where D, is the topological dimension of the 
measuring units: D,= 1, 2 and 3 for a line, plane 
and volume, respectively. 
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Several different fractal dimensions can be used 
to characterize the geometry of a porous medium 
in relation to transport processes. Fractal scaling 
of aggregated mass, pore volume, pore surface 
(Fig. 2), and size-distribution of fragments have 
all been observed for geological materials such as 
rocks and soils. 

2.1. Fructul dimension of mass 

A fractal dimension of mass, D,, quantifies 
space-filling characteristics of the solid in a space 
of radius r (Fig. 2). For a mass fractal, scaling of 
mass, M, follows a relationship of the form: 

Mccr’-, D, Id, (4) 

where d is the embedding dimension, defined as 
the minimum number of coordinates needed to 
enclose an object, i.e. d=2 and 3 correspond to a 
two- and a three-dimensional space, respectively. 
Eq. (4) can also be applied to separate entities 
(e.g. soil aggregates) of different radii but similar 
shape. A fractal scaling of mass implies a decrease 
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Fig. 2. Cross-section of a porous medium showing distribution 
of solid, pore space and pore surface in an area of radius r. 

in bulk density, p, with r: 

Pi/P1 =(riIrl)Dm-d, (5) 

where pi and pi are bulk densities measured over 
a radius ri and rl, respectively, with ri>r,. In a 
system of small aggregates (units) clustering into 
larger ones, aggregate density scales as pi + 1 =ppi, 
with O<p < 1. The size of an aggregate scales as 
ri+l =bri for b>l, with i=l, 2, 3...n. At the nth 
generation, p,, =pnpI and r, =b”rI. Combining 
these two equations and eliminating n: 

(6) 

Comparing Eqs. (5) and (6), it can be seen that 
D, = d + (log p/log b). Since (log p/log b) is nega- 
tive D,ld (Onoda and Toner, 1986) and the 
density of a fractal object decreases with increasing 
values of r. For the Menger sponge d= 3, p = 20127 
and 6= 3 and, therefore, D,-2.73, which is the 
same D obtained from Eq. ( 1). 

Fractal dimensions of mass have been measured 
using several techniques. Images of soil or rock 
sections are covered with square grids each with a 
different square size t and the total number of 
squares in contact with the solid space, N(/), is 
obtained for each square size (box-counting tech- 
nique). The value of D, is calculated from a plot 
of the number of squares counted vs size, according 
to Eq. (3a). Others have obtained D, from meas- 
urements of mass or bulk density on aggregates of 
different sizes [Eqs. (4) and (5), respectively]. 
Table 1 summarizes D, values found in the litera- 
ture on soils. Typically, values for D, are between 
2.75 and 2.99 without any apparent trend with soil 
texture (Table 1). This lack of sensitivity suggests 
that other constants in Eqs. (l), (4) and (5) may 
be more useful for characterizing the geometry of 
porous media for the purpose of predicting trans- 
port processes. The constants in Eqs. (4) and (5) 
are related to the lacunarity or uniformity in the 
distribution of mass within a fractal object 
(Gouyet, 1996). Zeng et al. (1996) showed that 
lacunarity, measured from spatial variation of bulk 
density, was an important discriminator of soil 
structure. 
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Summary of values of fractal dimension of mass, D,, found in the literature 

Soil/soil texture Dill” Range Method Reference 

Sand 2.95 
Sandy loam-l 2.15 
Sandy loam-2 2.93 
Fine sandy loam 2.88 
Sandy loam/loam 2.92 
Loam 2.95 
Loam 2.85 
Silt loam 2.93 
Silt loam 2.90 
Silt loam 2.95 
Silt loam 2.91 
Silty 2.92 
Clay loam 2.93 
Clay loams 1.95.. 1.98 
Silty clay loams 1.93-l .98 
Clay 2.96 
Clay 1.98 
Clay 2.88 
Clay 2.89 
Sharpsburg soil 2.95 
Sharpsburg soil 2.8992.90 

10m ZplOh pm 
I-10mm 
l-10 mm 
0.0662.1 mm 
0.7556.5 mm 
0.75565 mm 
0.2557.5 cm 
0.75565 mm 
0.0662.1 mm 
0.7556.5 mm 
0.7556.5 mm 
10 ‘~106um 
0.7556.5 mm 
NAd 
NAd 
0.06-2.1 mm 
NAd 
0.25-7.5 cm 
0257.5 cm 
0.1 I-7.00 mm 
0.0883.19 mm 

Eq. (3a) 
Eq. (4) 
Eq. (4) 
Eq. (4) 
Eq. (5) 
Eq. (5) 
Eq. (5) 
Eq. (5) 
Eq. (5) 
Eq. (5) 
Eq. (5) 
Eq. (3a) 
Eq. (5) 
Eq. (3a) 
Eq. (3a) 
Eq. (5) 
Eq. (3a) 
Eq. (5) 
Eq. (5) 
Eq. (5) 
Eq. (5) 

Bartoh et al. (1991 ) 
Young and Crawford (199la) 
Young and Crawford ( 199 1 a) 
Anderson and McBratney ( 1995); Rieu and Sposito ( 1991 b)b 
This studv 
This studyc 
Gimenez et al. ( 1994)d 
This study’ 
Anderson and McBratney (1995); Rieu and Sposito ( 1991b)b 
This study” 
This study’ 
Bartoli et al. (1991) 
This study’ 
Crawford and Matsui (1996) 
Crawford and Matsui (1996) 
Anderson and McBratney ( 1995); Rieu and Sposito (1991 b)b 
Crawford and Matsui (1996) 
Gimenez et al. ( 1994) 
Gimenez et al. ( 1994) 
Rieu and Sposito ( 1991 b)’ 
Anderson and McBratney ( 1995)* 

“Values of D, in the ranges l-2 and 223 correspond to embedding dimensions of two and three, respectively 
bData from Chepil ( 1950). 
‘Data from Lin (1971). 
dNA: not available. 
‘Data from Larson and Padilla (1990). 
‘Data from Wittmus and Mazurak (1958) 
gData from Eghball et al. (1993). 

2.2. Fractal dimension ofpore volume 

A fractal dimension of pore volume, D,, quanti- 
fies the space-filling properties of pore volume, 
VP, in a space of radius r (Fig. 2). Scaling of pore 
volume follows a power-law of the form: 

VpccrDv, D, Id, (7) 

where D, is the fractal dimension of pore volume. 
Fig. 2 shows that the space within the circle with 
radius r is composed by mass and pore space. 
Thus, Eqs. (4) and (7) are similar in form, but 
represent scaling of complementary properties, i.e. 
mass and pore space. The equivalent of Eq. (5) is 
the scaling of porosity 4, which measures the 
density of pore space. Table 2 summarizes pub- 
lished D, values for rocks and soils. Scaling of 
pore volume has been studied using two-dimen- 

sional images of cross-sections of soils and rocks 
with either the box-counting technique [ Eq. (3a)] 
or by a pore-size count [Eq. ( 1 )]. A comparison 
between Tables 1 and 2 shows that D, values are 
generally smaller and span a larger range than 
D, values. 

2.3. Fractal dimension of pore surjtice 

A fractal pore surface area, S, scales with r 
according to (Fig. 2): 

SccrDa, DT ID, Id, (8) 

where D, is a fractal dimension of pore surface 
area. Several techniques have been used to mea- 
sure D,. A surface can be probed with molecules 
of different characteristic size IO, and the D, obtained 
by plotting the amount of adsorbed molecules per 
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Table 2 

Summary of values of fractal dimension of pore volume, D,, found in the literature 

Material Range Reference” 

Sandstone 
Sandstone 
Chalk 
Dolomite 
Loam to silt loamb 
Loam to silt/clay loamb 
Silt loam-l’ 
Silt loam-2’ 
Silty clay loamb 
Clay loamb 
Clay-loam-Id 
Clayyloam-2d 
Clay 
Clayb 
Clayb 

1.69 10-‘~102pm 
I .70 <lmm 
I.80 10mm 
1.40 < 5mm 
1.82~1.81 SO-250 urn 
1.7221.79 50-250 pm 
1.44 I-1Omm 
1.22 l-10 mm 
1.78%1.70 50-250 urn 
1.68 1.75 50-250 urn 
1.59 0.5540 mm 
I .49 0.5.-40 mm 
1.74 IO-150 urn 
1.7991.78 50-250 pm 
1.85 50-250 urn 

Hansen and Skjeltorp (1988) 
Jacquin and Adler ( 1987) 
Jacquin and Adler ( 1987) 
Jacquin and Adler (1987) 
Anderson et al. (1996) 
Anderson et al. ( 1996) 
Peyton et al. (1994) 
Peyton et al. ( 1994) 
Anderson et al. ( 1996) 
Anderson et al. ( 1996) 
Gimenez et al. ( 1997a) 
Gimenez et al. ( 1997a) 
Ozhovan et al. ( 1993) 
Anderson et al. ( 1996) 
Anderson et al. ( 1996) 

“Ozhovan et al. ( 1993) determined D, from a pore-size count [Eq. (I)], the rest of the authors used the box-counting technique 
[Eq. (3a)]. 
bA.N. Allison, personal communication. 
‘Silt loam-l, forest; silt loam-2, grassland. 
dClay~loam-l, field cultivated with a chisel plow (fall) and a disc (spring); clayyloam-2, field cultivated only with disc in the spring. 

unit mass of adsorbent, IZ, versus P, according to 
Eq. (3a). An alternative is to use the same probing 
molecule but vary the size of the adsorbent, I^. The 
scaling of n with r is (Avnir et al., 1985): 

nKr”s-3 (9) 

Neimark (1992) proposed to estimate D, directly 
from Eq. (3b), by defining G as a mean radius of 
curvature of a set of equicurvature surfaces. 
Equicurvature surfaces can be obtained from the 
intrusion of a nonwetting fluid (e.g. mercury) into 
a porous medium, or from adsorption or desorp- 
tion isotherms. 

Table 3 summarizes published values of D, for 
various porous media. Values of D, are related to 
mineral composition and soil organic matter 
content. Larger fractal dimensions are associated 
with clay minerals (Avnir et al., 1985; van Damme, 
1995). Quartz particles, on the other hand, exhibit 
smoother surfaces that result in fractal dimensions 
close or equal to two (Avnir et al., 1985; Barak 
et al., 1996). Bartoli et al. (1992) found that D, 
increased linearly with organic matter content for 
two Oxisols in the range of pore diameters between 

about 0. I and 40 urn. They also reported a negative 
relationship between D, and pore volume indicat- 
ing that D, was a measure of the degree of pore 
volume filling. A decrease in values of D, after 
oxidation of soil organic matter and carbohydrates 
was observed for pores < 1 pm and attributed to 
a decrease of bonds between particles (Pachepsky 
et al., 1995a; Pachepsky et al., 1996a). At the same 
time, D, values decreased after organic matter 
oxidation for pores with diameters between about 
a 1.5 and 5 urn range (Pachepsky et al., 1995a). 

Pore outline fractal dimension D, = D, - 1 has 
been determined using image analysis of pore 
outline. The embedding dimension was d=2 in 
these studies. Pore outline fractal dimensions are 
sensitive to soil type (Kampichler and Hauser, 
1993; Anderson et al., 1996), soil management 
(Pachepsky et al., 1996b) and soil consolidation 
after tillage (Gimtnez et al., 1997a). 

There seems to be ample evidence for the fractal 
nature of pore surfaces of different earth materials 
with D, values covering a wide range between 2 
and 3 (Table 3), which is larger than the ranges of 
either D, or D,. This suggests that the D, may be 
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Table 3 
Summary of values of fractal dimension of pore surface, D,, found in the literature 

Material D*” Range Method Reference 

Sandstone 
Sandstones 
Sandstones 
Carbonates 
Carbonates 
Shales 
Sandy 
Sandy loams 
Sandy loam 
Loams 
Loam 
Loam- I 
Loam/silt loamb 
Loam-silt&lay loamb 
Silty 
Siltd loam-l 
Siltd loam-2 
Silty clay loamb 
Silty clay 
Clay loam 
Clay Ioamb 
Clays-l’ 
Clays-?’ 
Clay-loam- I g 
Clayyloam-2B 
Clayb 
CIayb 

I .69 IO -‘--IO2 urn 
2.51-2.87 10~3-102pm 
2.4992.89 IO-‘-> IO’ urn 
2.27-2.75 10~‘~>lOOpm 
2.0112.97 lO’~lO’um 
2.54-2.75 IO- ‘-> IO” pm 
2.75 IO-*-lo2 urn 
2.282.32 lo~1~~Io3 urn 
2.37 10~3~10’ urn 
2.3ll2.40 IO .‘-lO’um 
2.40 IO m3m 10’ pm 
2.23-2.28 IO- 2-1 urn 
1.20-l .25 50-250 pm 
1.20 ml.22 50-250 pm 
2.6992.90 10~2~102pm 
1.10 ‘NA 
1.31 ‘NA 
1.23 50-250 urn 
2.38 IO ~3 IO’ pm 
2.44 10 .j-lO’ urn 
1.17~ I.18 50-250 pm 
2.49-2.62 10~m2m10’ urn 
2.86-2.90 IO~‘~~IO’ urn 
I .25 0.5540 mm 
1.22 0.5540 mm 
I. I5~m I .24 50-250 pm 
1.16~1.19 50 250pm 

Eq. (3a) 
Eq. (3a) 
Eq. (3a) 
Eq. (3a) 
Eq. (9) 
Eq. (3a) 
Eq. (13) 
Eq. (9) 
Eq. (9) 
Eq. (9) 
Eq. (9) 
Eq. (13) 
E:‘D” 
E/D’ 
Eq. (13) 
Eq. (3a) 
Eq. (3a) 
E/D” 
Eq. (9) 
Eq. (9) 
E/D’ 
Eq. (9) 
Eq. (9) 
Eq. (9) 
I-3. (9) 
E/D” 
E/D” 

Hansen and Skjeltorp (1988) 
Katz and Thompson (1985) 
Krohn (1988) 
Krohn (1988) 
Avnir et al. ( 1985) 
Krohn (1988) 
Bartoli et al. ( 1991) 
Sokolowska ( 1989) 
Borkovec et al. (1993) 
Sokolowska (1989) 
Borkovec et al. (I 993) 
Pachepsky et al. (1996a) 
Anderson et al. (1996) 
Anderson et al. (1996) 
Bartoli et al. ( 1991) 
Young and Crawford ( 1991 b) 
Young and Crawford ( I99 I b) 
Anderson et al. ( 1996) 
Borkovec et al. ( 1993) 
Borkovec et al. (1993) 
Anderson et al. ( 1996) 
Bartoli et al. ( 1992) 
Bartoli et al. (1992) 
Gimtnez et al. ( 1997a) 
Gimenez et al. ( 1997a) 
Anderson et al. ( 1996) 
Anderson et al. (1996) 

“Values of D, in the ranges l-2 and 2 ~3 correspond to embedding dimensions of two and three. respectively. 
bA.N. Allison, personal communication. 
“Erosion-dilation method on images of soil section. 
%iIt loam-l, arable land; silt loam-2. meadow. 
‘NA: not available. 
‘Clays- I, rich in gibbsite: clay-2, rich in goethite. 
BClay-loan-l, field cultivated with a chisel plow (fan) and a disc (spring); clay-loam-2, field cultivated only with disc in the spring. 

more useful than either D, or D, for characterizing 
soil structure in models to predict transport 
processes. 

2.4. Fractcrl dimension of fragmen tution 

Fragmentation is a widespread phenomenon in 
nature. Tillage and weathering are examples of 
processes leading to soil fragmentation. A scale- 
invariant fragmentation process leads to a distribu- 
tion of fragment sizes that follow the cumulative 
form of Eq. (l), with D being the fragmentation 
fractal dimension, D,. Estimates of D, range 

between 1 and 5 (Wu et al., 1993). According to 
the fragmentation mode1 of Turcotte ( 1986, 1992), 
which assumes an incomplete fragmentation with 
a scale-invariant probability of fragmentation, Df 
should have values between 0 and 3. Physical 
interpretations of D > 3 in Eq. ( I ) are not straight- 
forward (Crawford et al., 1993b; McBratney, 1993; 
Perfect et al., 1993). 

The most direct way to estimate D, is to measure 
the number-size distribution of objects and then 
fit Eq. ( 1) to these data. However, it is traditionally 
the mass-size distribution that is measured in 
geology and soil science. Tyler and Wheatcraft 
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( 1989) and Perfect and Kay ( 1991) used Eq. ( 1) 
to calculate Df from the mass-size distribution of 
particles and aggregates, respectively. Eq. ( 1) was 
implemented indirectly by transforming a set of 
relative mass classes to particle/aggregate number, 
N( > u). Each mass class comprises particlejaggre- 
gate sizes between a lower and an upper size 
bound. The calculation of particle number from 
mass implies assumptions about a characteristic 
particle size (representing the size class) and par- 
ticle shape and density. The most common assump- 
tions are that particle size is the arithmetic mean 
between the upper and lower bounds and that 
particle density and shape are constant (Tyler and 
Wheatcraft, 1989; Perfect and Kay, 1991; Perfect 
et al., 1992). Scale-invariant shape and/or bulk 
density, however, cannot be assumed for soil- 
aggregates that are themselves considered to be 
fractal in the scaling of mass and/or voids 
(Logsdon et al., 1996). 

Several improvements to the calculation pro- 
cedure of D, have been proposed. Tyler and 
Wheatcraft (1992a) proposed to calculate D, from 
mass-size distribution. The method does not 
require an estimation of particle size and is more 
sensitive to deviations from fractal scaling than 
the method of cumulative number. Based on results 
with the new method, they argued that only a 
limited number of soil textural classes can exhibit 
fractal distribution of particle sizes. Kozak et al. 
(1996) proposed an algorithm that does not use 
the arithmetic mean as a characteristic size of a 
mass class. Both modifications, however, still 
assume constant particle/aggregate shape and den- 
sity. Rasiah et al. (1993) presented a method that 
does not require the assumption of scale-invariant 
particle density and probability of fragmentation, 
but still assumes constant shape of soil particles. 
Despite the theoretical problems to estimate and 
interpret D,, this fractal dimension is still poten- 
tially useful to model soil hydraulic properties 
because particle size distribution is one of the soil 
properties more readily available. 

2.5. Fructul dimensions of connectivity 

An important property for transport through a 
porous medium is its connectivity. An intrinsic 

connectivity property of fractal systems is the 
spreading dimension, 4, defined as the number of 
sites, NS, accessible from a given origin in at most 
NC steps: 

NS(N,)ccN$, (10) 

where N, is called the chemical distance or distance 
of connectivity. Jacquin and Adler (1987) deter- 
mined d, for a number of rocks. It can be shown 
(Gouyet, 1996) that d, =D/Dmin, where D is the 
mass fractal dimension of a fractal network (for a 
Menger sponge D -2.73) and Dmin is the fractal 
dimension of the minimum path length between 
two points in the network. 

Another intrinsic dimension is the spectral 
dimension, defined as the average number of sites 
visited by a random walker after N, steps 
(Crawford et al., 1993a; Anderson et al., 1996): 

NS(N,)XIN$~, (11) 

where, in the context of diffusion in soil, d 
= D,jD, and D, is the fractal dimension defining 
a random walk. The spectral dimension is particu- 
larly relevant for simulating diffusion in a fractal 
network. For a particle diffusing in a macroscopi- 
tally homogeneous medium, its mean square dis- 
placement, r2, is linearly related to time, t. In a 
fractal medium, r2 x te, where E = d/D, < I, which 
indicates that diffusion is slower than in a macro- 
scopically homogeneous medium (anomalous 
diffusion). Crawford et al. (1993a) and Anderson 
et al. (1996) measured 2 and D, from two-dimen- 
sional thin sections of soils. Their data shows that 
d and D, are correlated and therefore the variabil- 
ity of E among soil structures is less than that of 
either 2 or D,. Values of E were between 0.61 and 
0.90 for soils. Values of d obtained from thin 
sections could be of limited value because E is also 
a function of water content, 0. Guerrini and 
Swartzendruber ( 1994) and Glasbey ( 1995) 
showed that water and gas diffusion, respectively, 
become more anomalous at lower water contents. 

2.6. Relutionships between d~jjferentfiactul 
dimensions 

The relationship among the different fractal 
dimensions is important because it could simplify 
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modeling of soil properties in general, and shed 
some light on the validity of the fractal models 
used for hydraulic properties in particular. For 
deterministic fractals such as the Sierpinski carpet 
or the Menger sponge, Eq. ( 1) describes the scaling 
of mass, pores and the solid-pore interface with 
D = D, = D, = D, (Friesen and Mikula, 1987; Rieu 
and Sposito, 1991a; Perfect and Kay, 1995b). 

For natural fractals, not generated by an exact 
iterative procedure, it is possible that D,, D, and 
D, are not equal. Katz and Thompson (1985) 
proposed that D,= D, in sandstones and used 
measured D, to calculate porosity. Ghilardi et al. 
( 1993) used a simulation experiment to study the 
scaling properties of a porous medium formed by 
the deposition of a collection of granules with size 
distributions of the type described by Eq. (1). 
They found that pore space and pore surface 
roughness of the resulting porous medium showed 
fractal scaling, with D,= D, = D,. In a later paper, 
Ghilardi and Menduni (1996) showed that the 
equality among fractal dimensions defining a frag- 
mentation process and those characterizing the 
spatial distribution of the fragments is a function 
of porosity and of the value of the exponent in 
the power-law of particle-size distribution. 
Crawford et al. (1993b), on the other hand, 
claimed that experimentally determined num- 
ber-size relationships do not convey information 
on scaling of mass or pore volume of the original 
structure because mechanical disruption randomly 
breaks the structure destroying information on the 
spatial arrangement of the constituent particles. 
According to Crawford et al. (1993b), assuming 
scale-invariant probabilities of fragmentation, D, 
is related to D,. The particles in the model of 
Crawford et al. (1993b) are solid, and therefore 
they are a better representation of rock fragments 
than they are of soil aggregates. For rock frag- 
ments, Nagahama (1993) has shown that D, and 
D, are related and that the values of both fractal 
dimensions increase with the energy density that 
is available for fragmentation. The relationship 
between D,, D, and D, is discussed in detail by 
Perfect ( 1997). 

There has not been experimental confirmation 
of the equality D,=D, for soils. A comparison 
between Tables 1 and 2 shows that. in general, 

D, exhibits a larger range of values than D,. 
Bartoli et al. (1991) found that the sandy and silty 
soils they studied did not exhibit fractal scaling of 
pore volume and that D, = 1.1 D,, suggesting that 
their three soils were mass and surface fractals (see 
Tables 1 and 3). Crawford and Matsui (1996) 
argued that since pore and solid complement each 
other in space (Fig. 2), only one of the two can 
be fractal. They measured D, and D, on images 
of thin sections of nine soils. Fractal dimensions 
were determined on subsamples of different size, 
r. They found that only D, was constant with r 
and concluded that their samples were mass fractal. 
However, the thickness of a thin section and its 
impregnation conditions mean that only a part of 
the pore system is visible and used for analysis. 
The nonvisible part is analyzed as solid. This 
experimental artifact complicates the interpreta- 
tion of their results, particularly the ones at small r. 

In conclusion, there is no clear experimental 
evidence about the nature of the relationship 
among the different fractal dimensions characteriz- 
ing soil structure. This limitation should be consid- 
ered when analyzing the different approaches to 
model soil hydraulic properties. 

3. Fractal models for soil hydraulic properties 

3.1. Soil-wuter retention 

Empirical models of soil-water retention, O( II/), 
have been known for a long time (Brooks and 
Corey, 1964; Campbell. 1974; van Genuchten, 
1980; Ross et al., 1991). The main problem with 
empirical formulations is their minimum impact 
on the understanding of soil-water phenomena, 
which limits the possibilities of extrapolating 
results to soils outside the data set that was used 
to fit the model. 

Three types of theoretical models for (I($) have 
been proposed based on a fractal organization of 
soil structure. The first type is a mass fractal 
(Sierpinski carpet or Menger sponge) in which the 
fractal dimensions of mass, pore surface and pore 
volume have the same value (Rieu and Sposito, 
1991a; Perfect et al., 1996, 1997). The second 
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approach is based on a fractal surface in which 
water is retained in cavities and irregularities and 
connected through thin films (de Gennes, 1985; 
Pape et al., 1987; Toledo et al., 1990). At higher 
water contents, a surface fractal also results in a 
power-law distribution of pore sizes (Friesen and 
Mikula, 1987). In this approach, there is no con- 
sideration of the scaling of mass. The third 
approach considers a fractal pore size distribution 
without any assumption about the geometry of 
mass and the solid-pore interface (Tyler and 
Wheatcraft, 1990; Pachepsky et al., 1995b; Perrier 
et al., 1996). 

The basic equation used to derive a fractal 
model of water retention assumes a power-law 
distribution of pore volumes according to Eq. ( 1) 
in its cumulative form, N(>r). The expression 
relating pore volume, I$( > r), to pore diameter. r, 
is given by (Pfeifer and Avnir, 1983; Friesen and 
Mikula, 1987; Perrier et al., 1996): 

- Vp(>r)ccN(>r)r3=Ar3-D+ v,, (12) 

where A is a constant that reflects both the size 
and geometry of a porous media sample and V, is 
a constant of integration (Pachepsky et al., 1995b: 
Perrier et al., 1996). Soil-water content, (I, is the 
amount of water retained in pores <Y. expressed 
per unit of total (sample) volume Vr, i.e. 
V,( <r)/&. Porosity, 6, is then $J = 0 + Vr( > r)/V, 
and d0/dr = -d V( > r)/dr. Eq. ( 12) assumes that 
the accessibility of any pore does not depend on 
smaller pores. Commonly, a Young-Laplace equa- 
tion of the form rcc l/$ is used as a pore desatura- 
tion function, where $ is the pressure necessary to 
evacuate a pore with diameter >r. All pores with 
a diameter ri <r are saturated with water, while 
pores with ri > r are completely empty. 

Ah1 and Niemeyer ( 1989) employed Eq. ( 12) to 
model a soil-water retention curve, without evalu- 
ating the constant of integration V,. Their equation 
is written as: 

0 $D-“. (13) 

This expression can be derived for a porous 
medium with a fractal distribution of mass, fractal 
distribution of pore volume, or fractal pore surface 
(Friesen and Mikula, 1987; Crawford et al., 1995; 
Perrier et al., 1996). This represents a problem if 

morphologically derived fractal dimensions are to 
be used in the prediction of retention and/or 
transport properties in porous media because mass, 
volume, and surface fractal dimensions usually do 
not coincide. This model does not contain upper 
and lower scaling limits. Eq. (13) has been applied 
to soil-water retention data (Ah1 and Niemeyer, 
1989) and to mercury porosimetry data (Friesen 
and Mikula, 1987; Bartoli et al., 1991; Bartoli 
et al., 1992: Bartoli et al., 1993; Friesen and 
Laidlaw, 1993; Pachepsky et al., 1995a). 

Bird et al. (1996) proposed to complement 
Eq. (13) with a desaturation function of the form 
0 K r/j ~’ to account for water held in surface irregu- 
larities for ri>r. Their equation is: 

H~cB i”-” ,*-‘*L3 I !P3 vx,-,” 
D-l D-l 3-D 3-D’ 

(14) 

where B is a constant < 1. Eq. (14) incorporates 
lower, &,, and upper, $,in, limits to the distribu- 
tion of pressure potentials and it does not predict 
complete desaturation at pressure potentials lower 
than li/,,, (ri > r). The desaturation function pro- 
posed by Bird et al. ( 1996) corresponds to a 
nonfractal surface (de Gennes, 1985), and there- 
fore is expected to perform poorly in materials 
with fractal surfaces such as sandstones (Davis, 
1989). To our knowledge, Eq. (14) has not been 
tested against experimental soil-water retention. 

Tyler and Wheatcraft (1990), using a Sierpinski 
carpet algorithm, derived an expression for soil 
water retention similar to Eq. ( 13). Their formula 
incorporates a saturated water content, 8,, and an 
air entry value, ~,in. as an upper limit for a fractal 
scaling, i.e. : 

(‘les = ($/$min JD ’ 3 (15) 

where D is a fractal dimension in the range 
01 Di2 (a consequence of the two-dimensional 
construction selected to develop the model). 
Eq. (15) assumes that the lower limit of water 
content is zero, i.e. $-+m and H-+0. Tyler and 
Wheatcraft (1990) recognized that a Sierpinski 
carpet yields a porosity, or saturated water 
content, fl,, of unity. Since this property of the 
carpet is not realistic for soils, they developed 
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Eq. (15) from the cumulative pore number-size 
distribution of the Sierpinski carpet, which at high 
enough number of iterations, is a good approxima- 
tion of Eq. (1). From that point of view, the Tyler 
and Wheatcraft (1990) model is a representation 
of the scaling of a fractal pore space without 
consideration on the distribution of mass. 

Equations similar to Eq. ( 15) were proposed by 
Brooks and Corey ( 1964) and Campbell ( 1974). 
In the Brooks and Corey (1964) formulation, a 
residual water content, 0,, is subtracted from the 
numerator and denominator of the left hand side 
of Eq. (15) i.e.: 

s,=(e-e,>/(e,-e,)=(~l~,i,)-“. (16) 

where S, is an effective saturation, 2 is a pore size 
distribution parameter and 0, is defined as a water 
content at $-x. Rawls et al. ( 1982) summarized 
H,, H,, i and qmin for the eleven USDA textural 
classes using data from 5350 soil horizons. Values 
of /? were in the range 0.13 <i, 10.59 increasing 
from sand to clay. Brakensiek and Rawls (1992) 
used the 1, =2-L values in Rawls et al. ( 1982) to 
calculate D values according to Eq. (15). Since 
Rawls et al. (1982) fitted the Brooks and Corey 
( 1964) model [Eq. ( 16)], the D values in 
Brakensiek and Rawls ( 1992) are in the range 
between saturation and residual water content. 
Clapp and Hornberger ( 1978) fitted water reten- 
tion data from 1446 horizons to Eq. (16) with 
8, = 0. Their i, values were 0.09 I). 5 0.25, increas- 
ing also with clay content. The smaller range of 
fitted I, values for the Clapp and Hornberger 
(1978) data set, as compared with those in 
Brakensiek and Rawls ( 1992), is probably caused 
by the choice of 8,=0 made by Clapp and 
Hornberger ( 1978). 

Rieu and Sposito (1991a) developed a model of 
soil structure for a mass fractal (Menger sponge) 
in which the scaling of mass, pore volume and 
pore-solid interface are fractal with the same 
fractal dimension (D, = D, = D,). They developed 
the concept of incomplete fragmentation to 
account for the mechanical coherence of structured 
soils. In their model, self-similar soil aggregates 
are separated by a self-similar network of fractures. 
A bulk volume is formed by aggregates of different 
size with a number-size relationship given by 

Eq. ( 1). In the completely-fragmented medium, an 
aggregate of volume Vi contains a number N of 
aggregates of a smaller volume class, Vi + i and a 
pore volume Pi formed by pore elements arranged 
around the volumes V,+i, with i=O...n-1; I’,, 
corresponds to the residual solid volume. The 
scaling between successive volumes and/or pores 
sizes is given by a linear similarity ratio b < 1, A 
pore coefficient, r, defined as the quotient Pi/Vi, 
is related to b by r= 1 - b3-D. The fractal dimen- 
sion D, of the porous medium is obtained accord- 
ing to Eqs. (2a) and (2b). In an incompletely 
fragmented medium, the number of aggregates of 
volume Vi is less than that in a completely frag- 
mented medium. At each level of the construction, 
part of the pore space is replaced by bridges linking 
some of the aggregates and bringing mechanical 
coherence to the soil mass. The degree of fragmen- 
tation is determined by a probability of fragmenta- 
tion or clustering factor, F (0 <F-c 1 ), obtained 
from F= 1 -T,/T, where I-, is the pore coefficient 
for the incompletely fragmented soil. The Rieu 
and Sposito ( 1991 a) expression for water retention 
for structured soils is: 

* 
H==B,-l+ __ L 1 DC3 

timin ’ 
(17) 

where Dif is a fractal dimension for a partially 
fragmented (or structured) soil mass and 0, is the 
saturated water content. Note that B,+ 1 as $-+ co, 
which corresponds to a Menger sponge with an 
infinite number of recursive steps (Perrier et al., 
1996). By defining a residual solid volume V,, 
Rieu and Sposito ( 1991a) set Ic/,,,aX < CX to represent 
both the solid and the pore spaces. Values for Di, 
were between 2.76 (sandy soil) and 2.99 (silty clay) 
(Rieu and Sposito, 1991b.c) in agreement with 
published data on fractal dimensions of soil mass 
(Table 1). The model deviates from experimental 
data, however, at water contents close to satura- 
tion and at very low water contents. 

Perrier et al. (1996) evaluated the constant of 
integration V, in Eq. (12) as a pore volume 
between a lower, Y,in=O, and an upper, rmaxr pore 
diameter: 

V,=Ar&f’. (18) 
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The I$ is then a representation of maximum 
possible pore space. The definition of V, implies 
that the entire pore system is fractal. Introduction 
of V, resulted in a formulation similar to the Rieu 
and Sposito ( 1991a) model: 

(19) 

where VT is a sample volume. Limits for the 
quotient V,/Vr= 9 are tY,<,P< 1. A limit of 9= 1 
corresponds to a Menger sponge with infinite 
recursive steps in which V,= I;; (Perrier et al., 
1996). Eq. ( 17) is a special case in which 9 = 1 but 
9 # 0,. A limit of 9 = 0,, on the other hand, implies 
that I’,= V, and Eq. (19) reduces to the Brooks 
and Corey (1964) formulation [Eq. (15) with an 
exponent of D - 31. Thus, Eqs. ( 15) and ( 17) are 
particular cases of a more general Eq. (19). 
Eq. ( 15) results in lower values of D than Eq. ( 17) 
(Perrier et al., 1996; Perfect et al., 1997). 
Parameters 9 and D of the Perrier et al. (1996) 
model are not independent and often the equation 
does not converge or it results in values of 9> 1. 
which are physically impossible (Perrier et al., 
1996; Perfect et al., 1997). 

Another way to look at V, is to consider it in 
relation to sample size ~ note that the definition 
of V, [Eq. (IS)] contains the constant A from 
Eq. (12). At a fixed Y,, decreasing sample sizes 
may not statistically represent a fractal porous 
medium (Brakensiek and Rawls, 1992; Tyler and 
Wheatcraft, 1992b). From that perspective, V, is 
a representative elementary volume (REV; Bear, 
1972). 

Perfect et al. (1996, 1997), using a similar model 
to that of Rieu and Sposito (199la), introduced a 
parameter that represented a pressure potential 
needed to drain the smallest pores present in a 
Menger sponge, $m,,. Their formulation is (Perfect 
et al., 1997): 

(20) 

This equation, with D-3 = -c, was proposed by 
Ross et al. ( 1991) as an empirical alternative to 

Eq. ( 15). Perfect et al. ( 1996, 1997) fitted Eq. (20) 
to soil-water retention data from six soils. A 
detailed comparison for one of the soils showed 
that Eq. ( 15) (with D-3 as the exponent) and 
Eq. (17) underpredicted water content at low and 
high pressure potentials. Eq. (20), on the other 
hand, provided a better fit to the soil-water reten- 
tion data without bias over the range of pressure 
potentials considered. Values for D, however, were 
in the range 2.91-4.37, with 91% of the D values 
greater than 3. Values of D > 3 are not physically 
meaningful and imply that some of the assump- 
tions of the model are wrong or that the soils used 
were not mass fractal. For a mass fractal porous 
medium the water retention curve is concave when 
plotted in a semi-log scale (Fig. 3). Typically, a 
concave soil-water retention curve corresponds to 
a coarse-textured soil in contrast with fine textured 
soils, which produce a convex curve (Fig. 3). An 
alternative explanation is that fine-textured soils 
tend to be surface fractal. 

de Gennes ( 1985) derived a soil-water retention 
model from two models of surface fractals: itera- 
tive pits (self-similar pits within pits) and iterative 
floes (self-similar grains fused to grains). Both 
models resulted in a soil-water retention curve of 
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Fig. 3. Observed and predicted water retention curves for two 
soil cores from the Elora data set of Perfect et al. ( 1996) giving 
a positive and negative estimate of D when fitted with Eq. (20). 
Parameter estimates for the convex curve (circles) are: 
~min=4x10-‘kPa.~,,,=1x104kPa and D=3.28. 
Parameter estimates for the concave curve (squares) are: 
I,+,,, = I x 10-l kPd, I),,,.~ =5x IO4 kPa and D=2.97. 
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the form: 

* 

( 1 

OS-3 

H=H, ~ 

ti . 
(21) 

ml” 

Eq. (21) is identical in form to Eq. (15), but in 
this case, the exponent is D,. Davis ( 1989) found 
that a fit of Eq. (21) to water retention data for 
Berea sandstone in the range 0.7-9.4 MPa gave a 
D,=2.55 (coefficient of determination - 1.00). In 
that range of pressure potentials, water was proba- 
bly present in pockets of water connected through 
films (Davis, 1989). Pape et al. (1987) developed 
a model similar to the de Gennes (1985) model in 
which a pore surface is an ideal fractal, but pore 
volume is a nonideal fractal (Rigaut, 1984). 
According to this model, the graph of log 0 versus 
log $ is curvilinear and approaches asymptotically 
the constant value of 0,. This concept is interesting 
because an asymptotic approaching to a constant 
at one or both ends of a soil-water retention 
provides more flexibility to a model of soil-water 
retention (van Genuchten and Nielsen. 1985). 

Pachepsky et al. (1995b) also noted that equa- 
tions derived from Eq. ( 12) do not perform well 
at both low and high pressure potentials. They 
proposed to replace the constant A in Eq. ( 12) by 
a probability integral function, f(r), of the form: 

,f(r) = 1 
VG exp - F 

(In r-ln f)’ 

202 1 ’ 
(22) 

where u and r are the variance and geometric 
mean radius of a log-normal distribution of pores, 
respectively. Eq. (22) was selected because it pre- 
dicted satisfactorily soil-water retention of fine- 
textured soils. Their final equation relating volu- 
metric water content and pressure potential is: 

(23) 

where 0, is a matching water content and $* is 
the pressure potential at 8,/2. According to the 
derivation prc jcedure the following relations should 
be obtained: 

In 0, = ln(?,4 

In r* =ln V+ 

/ (3-D)2 o2 

2 ’ 
(23a) 

3-D)a’. (23b) 

Pachepsky et al. (1995b) found that both 
Eqs. (23a) and (23b) gave similar fractal dimen- 
sions for two soils and they concluded that the 
variance of the pore size distribution 0 was an 
important variable that increases the precision in 
a determination of a water retention curve. 
Variance of a pore-size distribution also depends 
on the volume sampled according to the concept 
of a representative elementary volume (REV ). 

Tyler and Wheatcraft (1989) used the D, from 
primary particles to estimate a soil-water retention 
curve according to the model of Arya and Paris 
( 1981). In their original work, Arya and Paris 
( 198 1) divided a cumulative particle-size distribu- 
tion into a number of fractions. For each fraction. 
pore volume was calculated from the mass in the 
fraction and the bulk density, which was assumed 
constant and equal to the bulk density of the 
structured soil. Pore volume was represented by a 
single cylindrical pore with a radius related to 
particle size and pore length. Pore length was 
approximated by the number of particles lying 
along a pore-wall multiplied by particle diameter. 
By acknowledging that soil particles are not spheri- 
cal, they increased the number of particles in each 
fraction by raising it to a power > 1. Tyler and 
Wheatcraft (1989) showed that the empirical 
parameter of Arya and Paris ( 198 1) was the fractal 
dimension of the pore-wall, D,. They further 
assumed that D,= D,- 1 and estimated D, from 
the particle size distribution. Since bulk density is 
constant and pore-wall is fractal, Tyler and 
Wheatcraft ( 1989) modeled the soil-water reten- 
tion curve as a surface fractal in a way consistent 
with the model of Crawford et al. (1993b). In a 
later paper, Tyler and Wheatcraft (1992a) revisited 
the method used to calculate D, and showed that 
fractal scaling is only applicable to a limited 
number of textural classes. Recently. Kozak et al. 
( 1996) analyzed 2600 samples to conclude that 
only 20% of the samples exhibited fractal scaling 
of particle size distributions. Given the uncertain- 
ties in the fractal scaling of particle size distribu- 
tions, present models of soil-water retention based 
only on D, are not recommended. Kravchenko 
and Zhang ( 1997) modified the model of Tyler 
and Wheatcraft ( 1989) to account for a fractal 
distribution of mass. They also assumed 



174 l3. Girnk: et al. : Engineering Geology 48 ( IY97) 161 --IX3 

D,= Df - 1, but estimated Df from an aggregate 
size distribution. This model is an improvement 
over the earlier model of Tyler and Wheatcraft 
(1989), but the assumed relationship between D,, 
from an aggregate size distribution, and D, should 
be taken cautiously (Crawford et al., 1993b). 

All previous models represent a soil-water reten- 
tion curve as a simple power law with the slope 
related to a fractal dimension, to correspond with 
the model of Campbell ( 1974). Empirical models 
often require more than one exponent to fit a soil- 
water retention curve in the complete range of 
saturation (van Genuchten and Nielsen, 1985; Ross 
et al., 1991). More than one fractal dimension, or 
even a combination of models, could be needed to 
fit the entire curve from saturation to dryness. 

Since Eqs. ( 15) and (2 1) have the same form, a 
power-law could fit the entire range of soil-water 
contents, with a possible change in the value of 
the exponent D. This concept is supported by the 
observation that more than one fractal dimension 
has been reported when Eq. ( 13) was fitted to 
mercury porosimetry data (Friesen and Laidlaw, 
1993; Pachepsky et al., 1995b). The D correspond- 
ing to each segment may have a different physical 
interpretation. Soil-water retained in small pores 
is likely to be a function of pore surface roughness 
(Bartoli et al., 1992; Jaroniec et al., 1993), whereas 
water retained in larger pores is probably a func- 
tion of both pore size and pore roughness. Holden 
( 1995) found that the surface fractal dimension of 
soil aggregates was highly correlated with soil- 
water retained at pressure potentials between - 0.5 
to - 10 kPa, with the highest correlation for water 
retained at - 10 kPa (coefficient of determination 
-0.9). Fractal dimensions of surface roughness 
and pore volume are expected to be similar only 
for small pores (Roberts, 1986). Therefore. scaling 
of soil-water retention at low pressure potentials 
could be a function of both pore size distribution 
and pore roughness, each characterized by its own 
value of fractal dimension. 

Bird et al. ( 1996) have shown that a soil-water 
retention curve with a non-power-law form can be 
obtained by generating a Cantor set with two 
scaling parameters (irregular fractals). Models 
derived from irregular fractals could be more 

flexible and provide a better fit to soil-water reten- 
tion curves than a simple power-law model. 

3.2. Hydraulic conductivity 

Formulations for dependencies of unsaturated 
conductivity on pressure potential, k($), or on 
water content, k(O), most often follow from a 
model of a soil-water retention characteristic (van 
Genuchten and Nielsen, 1985). Using the method 
of Mualem (1976), one can obtain the relative 
conductivity function for Eq. ( 15), with 3 -D as 
the exponent: 

/q@)=u2/(3-D)+2+3:, (26) 

where x is a pore-interaction parameter that 
accounts for pore connectivity and tortuosity of 
the flow path, with a suggested value of x=0.5 
(Mualem, 1976). van Genuchten et al. (1989), 
however, found values of i( between -10 and 10 
for different structured soils. The large range of 
variation of a suggest that D alone is not sufficient 
to characterize the properties of a porous medium 
important to flow. 

Toledo et al. (1990) modeled soil-water retention 
and unsaturated hydraulic conductivity using frac- 
tal geometry and thin-film physics. They showed 
that Eq. (21) is applicable to pendular structures 
occupying the corners of a Menger sponge. The 
unsaturated hydraulic conductivity at low water 
content is (Toledo et al., 1990): 

k(~~@3:“‘3-“s’, (27) 

where m ( 1 <rn _< 3) is a parameter that depends 
on the forces acting on the solid-liquid pair and 
D, is the fractal dimension of pore surface obtained 
from a water retention curve [Eq. (21)]. The key 
assumption in this model is that thin films control 
flow and therefore predictions should be restricted 
to low water contents. The model predicts that for 
a given 0 and m, the larger the D, the larger the 
k(8), corresponding to the general observation 
that clay soils have larger unsaturated k than 
coarser soils at low water contents. 

Shepard ( 1993) used a Koch curve to model 
pore length (tortuosity). He assumed that the 
length of a straight segment in a Koch curve, ri 
[Fig. 1 (b)] was equal to pore diameter, d. 
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Tortuosity is a function of the quotient L/d, where 
L is the internal length of a capillary tube with 
diameter d representing all pores with that diame- 
ter. An average pore radius is defined as the 
arithmetic mean of two pressure potentials. con- 
verted to values of radius with the Young-Laplace 
equation. The change in water content associated 
with an average pore radius is obtained from the 
water retention curve from which the hydraulic 
conductivity function will be calculated. The 
internal pore length for an average pore radius is 
defined from the relationship: Li = (pore 
volume)/(pore area), where pore volume is equal 
to the change in water content and pore area is 
the cross-sectional area of a circular pore with an 
average radius. Total number of pores, PN, is 
obtained by dividing Li by path length, PL,, 
defined as PLi =(N/b)‘, where N is the number of 
segments in the generator [Fig. 1 (b)], b =3 and i 
is the generation number of the Koch curve. The 
generation number is determined from the unit 
length of the straight segments of a Koch curve 
as ri = lib’, where ri is calculated from the equality 
ri = di. Poiseuille’s equation is used to calculate the 
volume flux, qi, through a pore with radius 42 
and associated path length PL,. Total flux Qi is 
calculated as Qi = qiPNi and the hydraulic conduc- 
tivity is calculated as the summation of ei over 
the different pore classes considered. Note that 
PL, is related to the fractal dimension of the Koch 
curve, i.e. PL, =(b”-‘)‘. Assuming that b is equal 
to particle diameter, the expression to calculate 
path length in Shepard (1993) is identical to the 
one presented by Tyler and Wheatcraft ( 1989). 
Interestingly. using this approach the fractal 
dimensions of pore surface were almost constant, 
with an average of D, = 1.22. for soils with different 
textures. This suggests that the relationship 
between pore and particle diameters is similar 
throughout soils. Variability among soils is in the 
total length of pores in each class, which is related 
to the distribution of pore volume in each class. 

Fuentes et al. (1996) used D, obtained from a 
soil-water retention curve, to derive an expression 
for k(8). Characterizing the soil-water retention 
curve as Bcc1cIDe3, k(0) can be expressed as: 

k(B)jxQ 2:(3-D)+ZD/3 (28) 

Fuentes et al. (1996) relate D to total porosity 4 
as: 

( 1 - i#l)D/3 + f#YJD = 1) (29) 

where ( 1-d) o/3 is the area occupied by the solid 
and 4 2’3D is the minimum area available participat- 
ing in the flow. Fuentes (1992) showed that the 
expression for minimum area available can be 
derived from probabilistic considerations in 
agreement with the Millington and Quirk (1961) 
model. For the porosity values between 0.3 and 
0.6 often found in soils, Fuentes et al. (1996) 
concluded that D can only vary between 2 and 
2.2. A comparison between the theoretical range 
of values for D and those in Tables l&3 show, 
however, that the theoretical range is extremely 
narrow when compared with the measured ones. 
Consequently, the morphological interpretation of 
D in the Fuentes et al. (1996) model is not clear. 

Rieu and Sposito ( 1991a) also calculated an 
unsaturated hydraulic conductivity function based 
on the water retention curve and aggregate-size 
distribution. The model requires information on 
the similarity ratio b, a fractal dimension of the 
fragmented medium. D, and a fractal dimension 
of the incompletely fragmented soil, Dip Pressure 
potential and the scaling ratio b are related by 
bei =$i/$mi,,. Thus, a plot of lOg(~il~min) vs an 
arbitrary integer scale is a straight line with a slope 
of log 6. The fractal dimension D, is obtained from 
the aggregate size distribution and Di, from the 
water retention curve. Their expression is: 

n-1 

ki = CPr C (df)f Q, 
j=l 

(30) 

where C is a constant that depends on pore 
geometry and fluid properties, 8, and G are the 
two-dimensional analogs of r, and F, respectively 
and (dr)j is the vertically oriented fracture opening. 
The parameter ci accounts for a reduction in 
connectivity. The two-dimensional analogs G and 
/I, are obtained from the three-dimensional vari- 
ables by assuming an area:volume ratio of 2:3. For 
a Menger sponge, however, D, = D, and the area:- 
volume ratio is unity. In addition, the model 
assumes that F (or G) remains constant with 
aggregate size. A size-variant F will produce 
different values of D for different levels of applied 
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energy input (Perfect and Kay, 1995a). 
Nevertheless, the model predicted the unsaturated 
hydraulic conductivity function of a silty clay loam 
reasonably well (Rieu and Sposito, 1991b). 

Crawford (1994) developed expressions for the 
k($) that incorporated a mass fractal dimension, 
D,, and a spectral dimension, 2, of the solid 
random fractal matrix to represent soil structural 
heterogeneity and pore wall shape, respectively. 
Using &I++-~ as an expression for a soil-water 
retention, a k(Q) function can be written as: 

k(H)xtl [l!(D,-3)1(5-1)[3+2(D,!d)-n,l (31) 

where [ is an undetermined function of soil struc- 
ture with values < 1. Since L?= 0,/D,,,, and for this 
system D, = D,, Eq. (3 1) reduces to: 

~(~)~~t':(D~-3)1(;-1)13+2~s-~ml, (32) 

which shows that k(a) is a function of the irregular- 
ities of a pore-solid interface and of the distribution 
of mass. The dependence of r on 0, D, and 2 
needs to be investigated. 

In general, predictions of k(8) are sensitive to 
the value of D, which in all cases is derived from 
a soil-water retention curve, B($). For instance, 
fitting an equation of the form k(H)xcBM to the 
data in Rieu and Sposito ( 1991 b) gives: 
k(H)c~ti”.~~. Using D, = 2.90. obtained by Rieu 
and Sposito (1991b) by applying Eq. (17) to the 
soil-water retention of their soil and assuming t = 
0.5, the exponent in Eq. (32) yields an estimate of 
D, = 2.87, which is theoretically possible. If, on the 
other hand, a soil-water retention model of the 
form assumed by Crawford ( 1994) [Eq. ( 15)] is 
fitted to the data, a D, value of 2.71 is obtained 
(Perrier et al., 1996), which now gives a physically 
meaningless estimate of D, = 8.34 when 5 =0.5. 
This example shows that an understanding of the 
effect of the geometry of porous media on the flow 
process is essential to a correct determination of 
any parameter of soil structure. 

Another important hydraulic property is the 
saturated hydraulic conductivity, k,,,. Despite sim- 
ilarities between the k(O)-0 and k,,,-porosity func- 
tions, formulations for k,,, were typically 
developed independently of any fl(fi) and/or k(O) 
model. Models of k,,, are derived from the 
Kozeny-Carman and Marshall (1958) models. 

The Kozeny-Carman equation (Gimtnez et al., 
1997b) is: 

(33) 

where C, is a constant that depends on pore shape, 
$I is porosity and T is a tortuosity factor often 
defined as (L,/L)2, where L, and L are the apparent 
and actual flow path lengths, respectively (Epstein, 
1989) and S, is the specific surface area expressed 
per unit pore volume. 

Adler and Thovert ( 1992) reported extensive 
numerical experiments on flow in deterministic 
fractal structures. Navier-Stokes equations were 
solved for one-, two- and three-dimensional geom- 
etries. Using a Sierpinski carpet as a model, they 
reported that for the one-dimensional case, results 
were consistent with a generalized Kozeny- 
Carman equation (Jacquin and Adler, 1987): 

(34) 

where p is a function of the fractal dimension D. 
The relationship between D and p is a function of 
the model used (Table 4). Jacquin and Adler 
(1987) derived p for a Sierpinski carpet, whereas 
Muller and McCauley (1992) derived p from a 
simplified “fractal tree”. The main difference is 
that in the model of Jacquin and Adler (1987) 
flow is dominated by the larger pores, whereas in 
the model of Muller and McCauley ( 1992), smaller 
pores are controlling the flow. Probably, a real 
porous medium is somewhere in between these 
two extremes. Korvin (1992b) derived a different 
form of the exponent p by expressing the surface 
area and tortuosity in the KozenyyCarman model 
in a fractal form. 

Table 4 
Forms of the exponent p of Eq. (34) determined from fractal 
models 

N Reference 

(4-0)/(2-D) Jacquin and Adler ( 1987) 
(4 - D,);D, Muller and McCauley (1992) 
(D-1)/‘(3-D)” Korvin ( 1992a) 
2[(2-D,)/(3-D,)]+3+r Gimknez et al. (3997b) 

“Sierpinski carpet; Fig. I(c). with biack area representing 
pore space. 
%alues of D, and II, assumed equal. 
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The connectivity of the pore system and the 
type of porosity also influence the k,,,& relation- 
ship. Hansen and Muller (1992) used mean field 
theory to calculate an effective k,,, for a porous 
medium with uniform fractal scaling of pore space. 
They showed that a highly connected pore system 
is less sensitive to a decrease in 0 than a poorly 
connected one. Ahuja et al. ( 1984) used an effective 
porosity in Eq. (34) to predict ksat. Effective poros- 
ity was defined as the porosity between saturation 
and a pressure potential of -33 kPa. This definition 
seems somewhat arbitrary; but, in general, better 
predictions are obtained with Eq. (34) in the form 
ksatac&,, where (b, is a porosity corresponding to 
the larger pores (macroporosity). 

Hansen and Skjeltorp ( 1988) derived a fractal 
form for the Kozeny-Carman equation using a 
volume filling procedure by which particles of 
increasingly smaller size are packed in a given 
initial volume. They considered a reduction in pore 
volume and an increase in surface area from the 
addition of particles of subsequently smaller size. 
They further assumed that the resulting pore 
volume and pore surface were fractal and used 
these results to calculate a specific surface area, 
S,, as: 

S, Cc (P,,, /emin)‘Ds - ” + ‘3 - Dv’ ) (35) 

where t,,, and /,, are the upper and lower limits 
of fractal scaling. Introducing Eq. (35) in a 
Kozeny-Carman model results in: 

ksatOc~(P,,,/d,i,)2’(2~D,)+‘Dv-3)’, (36) 

This model implicitly incorporates tortuosity into 
the fractal dimensions D, and D,. Note that at a 
fixed porosity and quotient emax!eminr Eq. (36) 
predicts lower k,,, values for higher values of D, 
and lower values of D,. This seems to be a problem 
since fine textured soils tend to have higher D, 
values (Brakensiek and Rawls, 1992; Rieu and 
Sposito, 199 1 b) and lower k,,, values (Rawls et al., 
1982). Gimenez et al. (1997b) modified Eq. (36) 
by considering the scaling of S, in a system com- 
posed by an originally solid block in which pores 
of increasingly smaller sizes are opened between 
limits Ymin < / I fmax. Their expression is: 

(371 

which now predicts a decrease in k,,, with higher 
D, and higher D, values. This expression was 
tested with data on &,, and ksat reported in Logsdon 
et al. (1990) and supplemented with maximum 
pore radius, r1 and D, data reported by Rawls 
et al. ( 1993) and Brakensiek et al. (1992), respec- 
tively (Table 5). It was assumed that the character- 
istic size / [Eqs. (3a) and (3b)] was proportional 
to pore radius. The minimum pore radius mea- 
sured by Logsdon et al. ( 1990) was r,in = 0.04 cm 
and assumed constant during calculations. An 
estimate of D, with Eq. (37) is 2.49 -t 0.08 for the 
two soils in Table 5 (Fig. 4). The same data fitted 
to Eq. (36) resulted in D, values not statistically 
different from 2 (Gimenez, 1995) and lower than 
expected based on measured data (Kampichler 
and Hauser, 1993; Anderson et al., 1996; Gimenez 
et al., 1997a). 

Gimenez et al. (1997b) modified Eq. (37) to 
express k,,, as a function of 4,: 

Kat dm 
2[(2 - I),)/(3 - D,)] + 3 + z (38) 

where c( is an exponent that represents tortuosity 
and connectivity. Comparing Eqs. (34) and (38), 
one can write p=2[(2-D,)/(3-D,)]+3+a. 
Fractal dimensions D, and D, and porosity $,,, 
were measured from images of impregnated soil, 
with k,,, measured either in the same soil volume 
or on samples taken from an adjacent site. 
Gimenez et al. ( 1997b) fitted pairs of k,,,-$m values 
to Eq. (34) to obtain p and used the fitted p values 
together with measured D, and D, to calculate 
values of (x in Eq. (38). The values of E were 
between 1.98 and -1.20 and were related to pore 
structure, expressed by the quotient MWHR,/ 
MWHR(, where MWHR is a mean-weighted 
hydraulic radius (pore area/pore perimeter) 
obtained from the lower one-half (MWHR,) and 
upper one-half (MWHR,) of a probability distri- 
bution of hydraulic radii, weighted according to 
the number of pores on each portion of the distri- 
bution (Fig. 5). Gimenez et al. (1997b) conjec- 
tured that better prediction of the exponent p can 
be achieved by measuring scaling pore properties 
on only active pores. 

Rawls et al. (1993) derived an equation for 
predicting k,,, based on the Marshall ( 1958) equa- 
tion coupled with fractal properties of a Sierpinski 
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Table 5 
Measurements of saturated hydraulic conductivity, k,,,, maximum macropore radius, r,, and macroporosity, $,,,, for two soils in the 
data set of Logsdon et al. (1990) 

Soil Treatment” k,,, (cmhm’) rl WmP 4, (x10-2) hd 4’ 

Clay loam NT 3.45 0.20 0.16 2.84 

NT 10.87 0.17 0.14 2.82 

MB 20.41 0.18 0.20 2.82 

CH 7.34 0.30 0.22 2.89 

RT 12.67 0.49 0.70 2.84 
2.49kO.08 

Silt loam NT 2.15 0.12 0.14 2.76 

NT 19.44 0.19 0.63 2.84 

MB 56.88 0.40 1.66 2.78 

A 25.38 0.39 1.05 2.75 
A 54.00 0.15 1.04 2.81 
0 31.43 0.40 0.80 2.82 

“NT, no-till; MB, moldboard plow; CH, chisel plow: RT, ridge-till; A, alfalfa, 0, oatbMaximum pore radius from Rawls et al. 
(1993); minimum pore radius assumed constant with a value r,,,,” =0.04 cm.‘Macroporosity obtained by size-count of pores with radii 
>0.04 cm.“Fractal dimension of pore volume according to Brakensiek et al. ( 1992).‘Fractal dimension of pore surface obtained by 
fitting Eq. (37) to data from both soils. 

0 Eq. [37] 
0 Eq. [40] with Eq. [41] 
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Fig. 4. Measured macropore saturated hydraulic conductivity, 
k,,,, versus predicted k,,, with Eq. (37), and Eqs. (40) and (41). 

Fig. 5. Parameter a from Eq. (38) plotted as a function 
(MWHR,/MWHRti)*-‘v. For explanation see text. 

carpet (Tyler and Wheatcraft, 1990). The Marshall 
(1958) model divides a pore size distribution into 
n classes, but considers that Y<n classes contrib- 
ute effectively to saturated flow. The ith pore size 
class is characterized by its pore radius, ri. A 
saturated hydraulic conductivity is calculated by 
summing the contribution of Y classes of pore 
radius ri as: 

k,,, =C(#x,h2) % (2i- l)~;, (39) 
i=l 

where x is a pore interaction factor defined by 
Millington and Quirk ( 1961) and C is a constant 
that depends on pore geometry and fluid proper- 
ties (C=4.41 x IO’ for water at 20°C). Rawls et al. 
(1993) showed that Ciy_, (2i- 1 )rf=rt, where rf 
is the largest equivalent pore radius of the 
Sierpinski carpet (Tyler and Wheatcraft, 1990). 
Their final equation requires information on rl, 
porosity 4, x and n: 

k,,, =4.41 x 107t#-*(r~/n2). (40) 
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Note that the pore interaction parameter x would 
depend on the limits of fractal behavior and on 
the fractal dimensions of the fractal model (Adler, 
1992). Fuentes et al. ( 1996) expressed x as x = 
2/3D [see Eq. (29)]. By defining the limits of D 
between 2.0 < 0~2.2 in Eq. (29), x can only vary 
between 413 and 4.413. As noted before, however, 
the limits of D may be too restrictive and more 
work is needed to establish the link between x and 
fractal parameters of soil structure. 

Rawls et al. (1993) used Eq. (40) to predict 
k,,, for soils with and without large connected 
pores (macropores). The latter situation depends 
on the properties of the soil matrix (matrix-k,,,), 
whereas the former is a function of the distribution 
and properties of macropores (macropore-k,,,). 
Macropores are particularly important in agricul- 
tural soils subjected to no-till practices. Since 
k,,, xr2, macropore k,,, can be several orders of 
magnitude larger than the matrix-k,,,. Rawls et al. 
( 1993) predicted matrix-k,,, for different textures 
using data presented in Rawls et al. (1982). 
Bubbling pressure, timin, was used to calculate 
rl [yl -0.15/$,,,, (cm)] and x was assumed con- 
stant and equal to 413 (Millington and Quirk, 
1961). In addition, they defined n as: 

where Y is 12 (Marshall, 1958) and 8, is etfective 
porosity defined as the porosity between saturation 
and pressure potential of -33 kPa (Ahuja et al., 
1984). They also related n to the fractal dimension 
D calculated as D =2-i, where i is defined in 
Eq. (16). Eq. (40) produced excellent results in 
predicting matrix-k,,, across textures. To test their 
formulation for the prediction of macropore-k,,,. 
Rawls et al. (1993) fitted Eq. (34) to the k,,,-4, 
data reported by Logsdon et al. ( 1990) to obtain 
~=4,/3. Eq. (40), with x=p=4/3 and n as the only 
unknown, resulted in a good prediction of 
macropore-k,,, (Fig. 4). The estimated ns were 
linearly related to y1 according to the following 
equation: 

n= -5.7+77.0 rl, r=0.93, (41) 

Independent tests showed that use of Eqs. (40) 

and (41) resulted in reasonable predicted values 
for macropore-k,,,. Rawls et al. (1996) extended 
the application of Eq. (40) for no-till soils by 
generating schemes to calculate macropore 
size/count, area1 porosity and macropore conduc- 
tivity based on different levels of data availability. 

4. Conclusions 

Experimental evidence suggests that the mor- 
phology of soil structure is fractal within some 
scale limits, but there is no clear understanding of 
the relationship among fractal dimensions of soil 
structure. Consequently, fractal models with con- 
trasting assumptions are used to predict soil 
hydraulic properties. 

Although important, applications of fractals 
have been limited to fitting fractal models of soil 
hydraulic properties to data and to discussing the 
physical/theoretical value of the fitted fractal 
dimensions. Most often, fractal models are tested 
with data sets collected for other purposes and 
are. therefore, limited in their possibilities. As a 
result, the morphological interpretation of the 
fitted fractal dimensions has not been fully 
explored. Further research is needed on evaluating 
the predictive capabilities of fractal dimensions 
determined independently. Concurrent measure- 
ments of fractal dimensions characterizing the 
geometry and connectivity of soil structure 
together with the soil-water retention and conduc- 
tivity functions are needed to test fractal models. 
This approach would shed light on the fractal 
nature of soil structure and likely improve model- 
ing efforts. Furthermore, an understanding of the 
morphological significance of the fractal dimen- 
sion(s) determining a soil property (or process) is 
basic for creating a general framework to model 
soils with a set of parameters describing scaling of 
the basic components of soil structure. 

A complete representation of a soil-water reten- 
tion from saturation to dryness requires probably 
more than one fractal dimension to characterize 
different scaling regions. Fractal dimensions char- 
acterizing separate scaling domains do not neces- 
sarily have the same geometrical interpretation; 
e.g. under dry conditions, hydraulic properties 
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could be mainly determined by surface area, 
whereas close to saturation, pore volume could be 
more important. Currently, O(rj) functions are 
derived from models that are mass, volume or 
surface fractals without consideration of connec- 
tivity or other parameters of soil structure such as 
lacunarity. No attempt has been made to model a 
(I($) as a result of several fractal properties. Most 
fractal models of hydraulic conductivity, on the 
other hand, have recognized the importance of 
those parameters and present formulations often 
combine more than one fractal dimension and/or 
intrinsic dimensions (e.g. spectral and connectivity 
dimensions). Models of saturated and unsaturated 
hydraulic conductivity have evolved separately. 
There is a need to unify both approaches and link 
it to the modeling of soil-water retention 
properties. 

This review has identified several different fractal 
models for the soil-water retention curve and the 
hydraulic conductivity-water content function. 
Detailed studies are needed to compare the perfor- 
mance of these different models over a range of 
soil types and structural conditions with data 
collected for that specific purpose. 
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