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Abstract

A theory of late-stage crystallization in eutectic point of binary eutectic melts whose pure components have close melting
points is developed. A complete system of equations describing the evolution of an ensemble of nuclei has been obtained. An
asymptotic solution to this system of equations shows that there is a strong correlation between precipitates of a different
composition, which is related to specific features of the eutectic systems. The main characteristics of dispersed systems of
eutectic composition including the distribution function, the critical size and the time dependence of density of nuclei have been
found. The effect of heat removal from the system on these characteristics and on the structure of the final solid product has also
been studied. Our theoretical results have been confirmed by experimental data.q 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Crystallization of eutectic systems has been studied in
numerous publications summed up in monographs [1,2].
The interest in these systems stems primarily from the fact
that many materials employed widely in metallurgy,
microelectronics and superconductor technology are of the
eutectic type [1–4]. Fig. 1 presents a typical and the simplest
eutectic-phase diagram [2].

Previous studies on the crystallization of eutectic melts
indicate that depending on the actual kind of the phase
diagram, melts crystallize either in a mixture of finely
dispersed crystals of pure components A and B (see Fig.
1), or in the form of plates or rods, for example, of material
A in matrix B. In some cases, the eutectic melts can solidify
to a glassy state or form dendrite structures.

Many attempts for explaining the diversity of the struc-
tures obtained were developed [1–4]. No clear answer to
this problem appears to exist yet.

The melt crystallization processes are known to be typical
first-order phase transitions. Any phase transition runs

through several stages [5]. In the first stage, nuclei of the
new phase appear. In the second, these nuclei grow without
a change in their number. The final stage is the coalescence
or Ostwald ripening [5]. This work is aimed at describing
the process of Ostwald ripening occurring in crystallization
of the melts of eutectic composition.

A theory of late-stage crystallization (or of Ostwald ripen-
ing) of binary alloys and, in particular, of melts having state
diagram of the eutectic type, whose simplest view is repre-
sented in Fig. 1, was developed in Ref. [6]. The above
publication considered only, however, the process that
occurred either to the left of the eutectic point or to the
right of it. Only a qualitative analysis of the crystallization
of the eutectic melts was attempted in Ref. [6]. This work is
aimed at constructing a quantitative theory of late-stage
crystallization of the eutectic melts. We will start with the
consideration of conservative systems to be followed by
open ones.

2. Conservative systems: formulation of the problem and
physical essence of the process

Let us consider a binary melt consisting of components A
and B (which in a general case can be individual substances
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as well as chemical compositions not breaking down at the
temperatures under study), and having a phase diagram of
the eutectic type (Fig. 1).

Note that the crystallization of an eutectic melt can be
initiated in the following ways. One may either cool the
system from the left, i.e. from the direction of the compo-
nent A, until the system reaches the point corresponding to
the compositionje and the component B precipitates, or
approach the same point from the right, from the direction
of the component B (see Fig. 1). There is, however, another
possibility. We may cool a melt exactly of the eutectic
composition to a temperature below the eutectic point
where nuclei of the new phase are created. Obviously
enough, the structure of the eutectic should depend on the
way by which it has been formed. If we move to the eutectic
point from the left (or right), the melt will already contain
crystals of the components A or B. The closer the starting
composition of the melt is to that of the pure components,
the larger will be the fraction of the total volume occupied
by these crystals at the eutectic point compared to the
secondary nucleated crystals, i.e. to the crystals A if the
component B crystallized initially, or to the crystals B if
the component A was the first to crystallize.

These secondary crystals can form obviously by the
mechanism of heterogeneous nucleation on the surface of
the already existing and growing crystals. Thus, the struc-
ture of the forming eutectic depends essentially both on the
actual path of its formation and on the initial conditions, i.e.
on the composition of the melt from which it was produced
by cooling.

We will restrict our consideration here only to the crystal-
lization of melts of exactly the eutectic composition, using

as a case in point the so-called “normal” eutectics, by which
one understands the eutectic systems whose components, in
a pure form, have similar melting temperatures [2]. In the
case where the melting points of the pure components
making up the melt differ dramatically melt crystallization
results in an anomalous eutectic [2]. In the future, we intend
to investigate other crystallization paths for eutectic melts as
well as for anomalous eutectics.

Considering the cooling of a melt having the exact
eutectic composition below the equilibrium temperature
of crystallization of the eutectic, intense nucleation of
two groups of nuclei is expected to set in, namely, of
nuclei of the compositions A and B. As we have
already pointed out, solidification of eutectic melts
leads to the formation of a variety of structures [2].
We shall assume for the sake of simplicity that the nuclei
are either spheres of radiusR, or cylindrical rods of radiusR
and lengthl. Then, we isolate the system thermally. Like any
system undergoing a first-order transition, our system will
eventually reach the stage of Ostwald ripening [6]. This
process is accompanied by the creation of a diffusion-
controlled thermal field determined by the whole ensemble
of particles [6]. Nuclei with radii above the critical value,
R . Rc; will grow in this field, and those with radii below
this level,R , Rc; will dissolve.

The evolution of such nuclei on both the left- and the
right-hand sides of the diagram in Fig. 1 was discussed in
detail in Refs. [6,7]. This theory leads to the following
system of equations for spherically symmetric nuclei:

2fi�R; t�
2t

1
2

2R
� fi�R; t�VRi� � 0; fi ut�0�R; t� � f0i ; �1�

d �j i

dt
1 4p

Z∞

0
fi�R; t�JD;R;iR

2 dR� 0; �2�

d� �Tcpiri�
dt

2 4p
Z∞

0
fi�R; t�JT;R;iR

2 dR� 0; �3�

LiJD;i � JT;R;i ; �4�

TRi � wi�jRi�; �5�
where Eq. (1) is the equation of continuity for the size
distribution function of the new-phase nuclei,fi�R; t�;
normalized to the number of nuclei per unit melt volume,
Ni�t�

R∞
0 fi�R; t�R3 dR; Eqs. (2) and (3) describe, respec-

tively, the variation of the average component concentration
and temperature in the melt; Eq. (4) connects the heat and
matter flows on the boundary of a nucleus of radiusR(calcu-
lated in Ref. [7]); Eq. (5) relates the equilibrium temperature
at the boundary of a nucleus of radiusR to compositionjRi;

JD;R;i ; JT;R;i are, respectively, the flow of the dissolved
component to a new-phase nucleus and the heat flow
released in crystallization of a nucleus of radiusR; cpi and
rLi are the specific heat and density of the melt at constant
pressure; andwi�jRi� depends on the actual phase diagram of
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Fig. 1. Typical diagram of state for an eutectic system of compo-
nents A and B.TA andTB are the melting points of the pure compo-
nents,je is the composition corresponding to the eutectic point,Te is
the temperature of crystallization of a eutectic melt, and the arrows
show possible crystallization paths. The lines below the eutectic
point identify metastable states.



state and determines the dependence of the equilibrium
concentration at the boundary of a nucleus of radiusR on
temperature. The subscripti identifies the part of the
diagram in consideration and, accordingly, the composition
of the new-phase nuclei. If we are in the left-hand part of the
diagram, where nuclei of composition A form, we can set,
for e.g. i � 1; and if we are in its right-hand part, and the
nuclei have composition B, theni � 2: At the eutectic point,
the melt contains, simultaneously, nuclei of both compo-
nents A and B. Since at this point the derivative�2T0=2j0�
(whereT0 andj0 are, respectively, the equilibrium tempera-
ture and equilibrium concentration at the liquidus line)
reverses its sign, the growth of the nuclei, as shown qualita-
tively in Ref. [5], will occur in a correlated way1. Indeed, at
the eutectic point both types of nuclei of compositions A and
B will grow, and in the process change the melt concentra-
tion of the components they are made of, and, hence, that of
the others as well. For example, the growth of a nucleus of
composition A raises the concentration of component B,
thus accelerating the rate of its growth. At the same time
the increase in the growth rate of nucleus B reduces the
concentration of this component in the melt, which, in its
turn, accelerates the growth of nuclei A, making the growth
of particles of both phases correlated. Obviously enough, the
fluxes of the two components will be equal in magnitude but
opposite in direction,JD;R;1 � 2JD;R;2: Thus the average
concentration in the system will tend to the unified value,
namely, the eutectic concentrationje. Note, however, that
this is valid only for the case when the equilibrium concen-
tration lines approaching the region of metastable state (Fig.
1) are strictly symmetric about to the eutectic composition
line. If this is not the case, the compositional fluctuations
may set in the initial stage of nucleus ripening, and the
nuclei grow independently as their individual supersatura-
tion is removed in an uncorrelated way. In doing so, their
evolution should be considered similar to that of a multi-
phase system [7]. In the asymptotic region, however, i.e.
where supersaturationD i ! 0; (the condition determining
Ostwald ripening), in the immediate vicinity of the eutectic
point the metastable lines of equilibrium concentrations will
pass practically at an equal distance from the eutectic
concentration line [1–4].

Thus in the stage of Ostwald ripening of the new phase
nuclei the average concentration�j of components of the
eutectic composition remains constant for the system as a
whole, and Eq. (2) becomes identically equal to zero (which
is certainly not true for the initial stage).

Relation (5) determines therewith the degree of super-
cooling of the melt with respect to the eutectic temperature
Te. The supercooling of the melt becomes unitary for the
whole system.

3. Basic system of equations for the late-stage
crystallization of melts of the eutectic composition

The above reasoning permits us to recast Eqs. (2)–(5) to
the form

2fi�R; t�
2t

1
2

2R
� fi�R; t�VRi� � 0; fi ut�0�R; t� � f0i ; �6�

d� �Tcpere�
dt

2 4p
X2
i�1

Z∞

0
fi�R; t�JT;R;iR

2 dR� 0; �7�

X2
i�1

LiJD;i �
X2
i�1

JT;R;i ; �8�

In order for system (6)–(8) to be solvable, it should be
supplemented by the dependence of nucleus growth rate
on the radius,VRi: Far from the eutectic point, the growth
rate of nuclei is governed by heat conduction as well as
diffusion [6]:

VRi � 2sSLiDLev
2
i N0T0iKLejRi

�jRiDLeN0L 2
i 1 KLeT2

0ik�R2

R
Rci

2 1
� �

; �9�

whereDLe is the coefficient of interdiffusion of components
in a eutectic melt, N0 is the total number of molecules per
unit melt volume, k is the Boltzmann constant,sSLi is the
energy of the liquid–solid interface,KLe is the coefficient of
heat conductivity of a eutectic melt,cpe; andre are, respec-
tively, the specific heat and density of the eutectic melt,vi is
the volume per atom (molecule) of componenti, Li is the
latent heat of crystallization per atom of componenti andT0i

the equilibrium temperature.
In cases when the composition of a system is far from

eutectic, the equilibrium concentrationjR is found from the
asymptotic solution of Eqs. (6)–(8) and presents a real ther-
modynamic quantity, at which the Ostwald ripening comes
to an end and the new phase equilibrates with the melt. Let
us consider now the behavior of the growth rateVRi at the
eutectic point. Let us apply the approach developed in Ref.
[6] for a thermodynamically stable region to the domain of
metastable states. The growth of nuclei of each phase is still
described by Eq. (9). In this casejRi is the metastable equi-
librium concentration [1–4]. It is the difference between the
average concentration (which is equal to the eutectic
concentration in the stage of Ostwald ripening) and the
metastable equilibrium concentration that drives the growth
of nuclei of the new phase. Just as in Ref. [6], the true
equilibrium concentrations are determined from the asymp-
totic solution of Eqs. (1)–(5). This solution shows that the
metastable equilibrium concentrations of each phase should
be equal to one another,jR1 � jR2; and to the actually
observed equilibrium concentrationje, i.e. to the eutectic
concentration, and that the equilibrium temperatures are
equal to the eutectic temperature,T01 � T02 � Te: One
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1 It should be pointed out that we are dealing here only with
“normal” eutectics.



can therefore recast Eq. (9) for our case in the form:

VRi � 2sSLiDLev
2
i N0TeKLeje

�jeDLeN0L 2
i 1 KLeT2

ek�R2

R
Rci

2 1
� �

�10�

Thus, although the process of interest is driven by both
thermal and diffusion processes, and the growth of nuclei
can be rate-limited by diffusion, the supercooling reached in
eutectic melts is the same for the entire system; it is this
supercooling that is observable and measurable in a physical
experiment.

We can see that Eqs. (6)–(8) and (10) describe the
kinetics of crystallization of eutectic melts. It is known
that Rci � 2sSLiT0ivi =Li DiT; where T0i is the equilibrium
temperature andDiT is the melt supercooling. Since the
supercooling in the melt is the same for the two components,
we haveRci � 2sSLiTevi =Li DT; and the critical radii of
nuclei of different composition become similar, i.e.Rc1 �
gRc2; whereg � sSL1v1L2=L1sSL2v2:

Thus, in the course of crystallization of a melt of eutectic
composition the critical radii of nuclei of different kinds
become similitude related. This implies that they vary in
time by the same law.

Eqs. (6)–(9) are similar to the system describing Ostwald
ripening in single-component melts [5], which is driven by a
reduction of supercooling and the formation in the system of
a generalized thermal field.

Thus Eqs. (6)–(9) relate to the late-stage evolution of an
ensemble of new-phase nuclei of the compositions A and B.
This system can be solved fort ! ∞ just as was done in Ref.
[5].

For the distribution function of nuclei of each kind the
solution gives:

fi�R; t� �
Ni�t�Pp�u�

Rci
�11�

wherep� 2; 3 depends on the actual mechanism of heat and
mass transport [6] involved, andPp�u� is the density of
probability for a particle to have a dimension betweenu
and u 1 Du: We shall present the form of the distribution
function Pp�u� when discussing the evolution in open
systems. The number of nuclei per unit volume varies in
time as

Ni�t� � Ni�0�
Apit

Rp
c0i

 !23=p

; �12�

whereNi�0� is the number of nuclei speciesi at the onset of
the Ostwald ripening process.

The evolution of the nucleus-critical radii in time fort !
∞ obey the law:

Rp
ci , Apit; �13�

where Api are the transport coefficients whose values are
available for all possible mechanisms of heat and mass
transport [6]. In our case of conservative systems, the
average, �Ri ; and critical, Rci ; dimensions coincide. In

particular, for the mechanism of heat and mass transport
specifiedp� 3; so that:

A3i � 8DLesSLiN0v
2
i TejeKL

9�DLeL 2
i N0ije 1 KLkT 2

e �
: �14�

SinceRc1�t� � gRc2�t�; the nuclei of the compositions A and
B have the same distribution functionPp�u�; and, accord-
ingly, the functionsf1�R; t� andf2�R; t� are mutually similar
(see Eq. (11)). As follows from Eq. (13) fort ! ∞ :

sSLiviTe

Li DT
� �Apit� 1=p: �15�

The ratio of the critical radii of nuclei of different species

sSL1v1L2

sSL2v2L1
� Ap1

Ap2

 ! 1=p

�16�

yields a significant relation between some coefficients.
Indeed, in the case ofp� 3 and

DLeL2
i N0je p KLkT 2

e

we obtain from Eq. (16)

L2

L1
� s 2

SL2v2

s 2
SL1v1

 !1=3

; �17�

while for DLeL2
i N0je q KLkT 2

e

L2

L1
� s 2

SL2

s 2
SL1

v2

v1
�18�

If p� 2; i.e. if nucleus growth is rate-limited by the process
of incorporation of atoms into the lattice, and the relation
[5,6]

N0jeviLi p kTe;

holds, then

L2

L1
� sSL2

sSL1

v1

v2

� � 1=2

; �19�

while in the opposite case

L2

L1
� sSL2

sSL1

� � 1=2

�20�

The expressions obtained above relate the latent heats of
crystallization and surface tensions to volume per atom of
the phases precipitating in eutectic melts. They allow us to
predict the type of island growth mechanism which is char-
acteristic of the system being studied. It enables to use these
relations in order to refine the values of physical and chemi-
cal constants of the substances, e.g. surface tension. This
suggests that the correlation between the nucleus radii
brings about a kind of symmetry between the nucleus distri-
butions in the late stages of crystallization. It is this process
that is observed in the crystallization of normal eutectic,
which reveals the onset of an orientation relation [2]. The
experimental data shows, in particular, that at the onset of
crystallization of Al–CuAl2 alloys the components in the
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new phase appear to grow independently, whereas at the end
of the process their growth is clearly interrelated. Note that
the general nature of the above process extends also to
nuclei of the new phase shaped as rods or cylinders,
provided their radiusR and lengthl vary in a correlated
way. In this case we have to recast Eqs. (6)–(9) with due
account of the change in the shape coefficient as was done in
Ref. [7]. Solving the equation system we obtain the distribu-
tion functions of cylinders in size, similar to Eqs. (22) and
(23), and expressions for cylinder lengthl and radiusR,
similar to Eq. (13). The approach suggested above can be
employed for studies of melt crystallization in the eutectic
point when a layer-by-layer mechanism proceeds. Then
results of Refs. [8,9] and method developed here should
be used. The character of the process is not changed drama-
tically but the relations (17)–(20) adopt a somewhat differ-
ent form.

4. Evolution of an ensemble of nuclei taking into account
a heat sink

Consider that the heat will be removed from the system
where nuclei undergo Ostwald ripening in a melt of the
eutectic composition. We shall assume the heat sinks to be
of the volume type; in other words, the effect of nonunifor-
mities associated with heat removal from the boundaries of
the system will be neglected. At the stage of coalescence,
the heat sinks can be described by the expressiongTntn21

;

wheregT is the heat power andn is a damping index, which
can be any number, not necessarily an integer [5]. Forn ,
0 , 3=p; the sinks are damped, while forn $ 3=p they are
not damped [5]. In this study we are going to consider only
damped heat sinks. Let us generalize Eqs. (6) and (7) to the
case of evolution of an ensemble of nuclei at the eutectic
point for an open system. The equation of continuity (6) will
remain unchanged, whereas the equation of balance (7)
should be supplemented by a heat sink. When considering
the processes occurring att ! ∞; we may drop the term
�d �Tcpere=dt� since it is small compared to the heat sink.
Thus, Eq. (7) should be put as follows:

gTntn21 2 4p
X2
i�1

Z∞

0
fi�R; t�JT;R;iR

2 dR� 0;

The system (6)–(8) can be solved by the method described

in detail in Ref. [5]. We finally obtain, for the asymptotic
size distribution function of nuclei of each species, the
following expression:

fi�R; t� �
Ni�t�Pp�U�

Rci
�21�

where

P2�U� �
�2e�322n�3 2 2n�U exp 2

3 2 2n
1 2 U=2

� �
�2 2 U�212��3=2�n� ; U , 2

0; U $ 2

8>>><>>>:
�22�

P3�U� �

33e

25=3

 !12n

3�1 2 n�U2 exp 2
�1 2 n�
�1 2 2U=3�

� �
�U 1 3�11�4=3�12n�� 3

2
2 U

� �21�5=3�12n�� ; U , 3=2

0; U $ 3=2

8>>>>>><>>>>>>:
�23�

whereU � �R=Rci�: To return to closed systems, we should
setn� 0 in Eqs. (22) and (23).

The density of nuclei varies as:

Ni�t� � Ni�0�

�3=p 2 n� Api

Rp
c0i

t

 !�3=p2n� �24�

The critical and average radii follow the relation

Rp
ci , Apit �Ri , RciCpn �25�

whereCpn is the coefficient defined in Ref. [5].
Thus we can see that Eqs. (21)–(25) coincide with the

corresponding expressions of Ref. [5] within a constant thus
implying that the basic features of Ostwald ripening also
persist at the eutectic point.

5. Discussion of results

We have thus established that an evolution of the
ensemble of new phase nuclei growing from the melt of
the eutectic composition in the late ripening stage follows

S.A. Kukushkin, D.A. Grigoriev / Journal of Physics and Chemistry of Solids 61 (2000) 1337–1343 1341

Table 1
Compliance the reference data with the relations (17)–(20) (error in %)

System Error (%)

Relation (17) (%) Relation (18) (%) Relation (19) (%) Relation (20) (%)

Au–Ge 75 18 75 74
Pb–Sn 23 17 25 18
Bi–Sn 39 33 38 40



the mechanism of “thermal” Ostwald ripening; i.e. it is
driven by a reduction of the supercooling,DT, alone. The
supercooling of the melt is the same for both phases and is
reckoned from the temperature of the eutectic and the criti-
cal nucleus dimensions in both phases being connected by a
similitude relationship. The ensembles of nuclei of different
species follow a correlated evolution. In the stage of nuclea-
tion, the influence of each phase on the evolution of the
other should be very weak. This conclusion is also supported
by the experimental studies that show that the process of
precipitation is usually started by one of the phases, called
“leading”. The mutual influence of the phases on their
evolution becomes dominant in the later stage. Of particular
interest are the relations (17)–(20) that stem from the corre-
lation between the size distribution function of each phase.
We should mention that these relations suggest that the
nuclei of a new phase are spherical symmetric. Their valid-
ity can be demonstrated on the example of such eutectic
systems as Au–Ge, Pb–Sn and Bi–Sn using reference
data [10–12]. Substituting the reference data [10–12]
into Eqs. (17)–(20) we calculated the discrepancy
between the left and right hands which is tabulated
(in %) in Table 1. The following values of constants
were used in our calculationsLBi � 1:827× 10220 J=at;
LPb� 7:794× 10221 J=at; LSn� 1:196× 10220 J=at; LAu �

2:09× 10220 J=at; LGe� 6:235× 10220 J=at; vBi � 3:55×
10230 m3

=at; vPb� 3:025× 10229 m3
=at; vSn� 3:365×

10229 m3
=at; vAu � 1:691× 10229 m3

=at; vGe� 2:262×
10229 m3

=at;sBi � 6:02× 1024 J=m2
; sPb� 4:6 × 1024 J=

m2
; sSn� 5:9 × 1024 J=m2

; sAu � 1:32× 1024 J=m2
;

sGe� 1:81× 1024 J=m2
:

It should be noted that the exact constants needed for
application of the relations (17)–(20) are usually unknown.
It particularly refers to surface tensionsSL. Its values given
in Refs. [11,12] refer, as a rule, to “Solid/intrinsic melt” or
“Solid A/Melt B” interphase energy while the relations we
obtained require substitution of data for “solid/eutectic
melt” interphase energy. As it is known such systems are
difficult to measure, however, we can suggest that when
intrinsic melt is replaced by the eutectic onesSLi changes
to practically the same extent for both components. Then
considering that we examine the ratio between constants we
can use the values of “solid/intrinsic melt” interphase
energy [11,12]. On the other hand, the relations (17)–(20)
can be used for a more precise definition of the interphase
energy values when the mechanism of heat mass transmis-
sion is determined. It may be done by the method given in
Ref. [7].

We see that for the system Ge–Au Eq. (18) is the most
satisfactory (error is 18%) and the limited stage is most
likely the heat mass transfer. For Pb–Sn relations (18) and
(20) fit to approximately equal accuracy but the condition
N0jeviLi q kTe is not met; so the evolution is also deter-
mined by heat mass transfer. For this calculation we used the
following constants [2,11,12]:N0 � 3:17× 1028 at=m3

;

je � 0:261; Te � 456 K: There is probably no primary
heat mass transmission mechanism for the Bi–Sn system
because neither relation fits to adequate accuracy. We
have shown that the ensemble of nuclei undergoing Ostwald
ripening at the eutectic point is characterized by a nucleus
distribution in size that does not depend on the initial distri-
bution function. Note that the distribution functionsPp�u� of
the two species of nuclei coincide in from if constructed in
dimensionless variablesu� R=Rci ; and are similar if written
in dimensional ones (see Fig. 2). Most of the papers dealing
with experimental investigation of eutectic melts either
disregard the size distribution of nuclei altogether by
restricting themselves to calculation of the average radius,
or perform data treatment in dimensional variables [1–4].
As evident from this study, as well as from other works
devoted to the theory of Ostwald ripening, a comprehensive
interpretation of the processes involved (determination of
the rate-limiting stage of nucleus growth, of the effect of
heat sinks and of other parameters of the process on the final
characteristics of a sample) requires the conversion of
experimental data to dimensionless coordinatesu� R=Rci

and the processing of the results obtained by the technique
described in Ref. [7].

The aforementioned discussion proves that the struc-
ture of samples of eutectic composition (in the sense of
the particle size distribution) should be affected to a
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Fig. 2. The form of nuclei distribution function: (a) the size distri-
bution function in dimension variables (Eq. (21)). The curve 1 is
phase A, the curve 2 is phase B; and (b) the size distribution func-
tion in dimensionless variablesR=Rci Eq. (22). The distribution
function is common for both phases.



considerable extent by the amount of heat removal from the
system.
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