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Abstraet--A method is presented for the experimental study of dispersion in saturated porous 
media for two-dimensional spatially periodic systems. The use of stereophotolithography laser 
as the basis of the porous media fabrication process made this investigation feasible. The porous 
media consist of a set of circular cylinders accurately positioned in an ordered (in line) or in 
a disordered (random) unit cell periodically reproduced in the plane of the study. For two 
directions of the average fluid velocity in the in-line array and one direction of the velocity 
vector in the disordered array, dye is injected in the form of a pulse at the entrance to the 
medium. The tracer concentration variations with time are measured by a video camera and are 
averaged over a unit cell. The measured time distributions are compared with computations 
using the macroscopic convection-diffusion equation in order to estimate the longitudinal 
dispersion coefficient. The variations of this coefficient with particulate P6clet number in the 
three geometries investigated are compared with the available numerical results. All the results 
agree, showing a significant influence of the direction of the average fluid velocity for the 
ordered medium. Concerning the random medium, the results appear to indicate that, in spite 
of its periodic character, this type of medium is capable of describing the behaviour of 
disordered porous media. This original technique is highly promising for the explanation of 
dispersion mechanisms in porous media. © 1997 Elsevier Science Ltd. All rights reserved 

INTRODUCTION 
This paper investigates dispersion due to macro- 

scopic spreading of a neutrally buoyant solute intro- 
duced into a fluid flowing through a saturated spa- 
tially periodic porous medium. This spreading is the 
result of the combined effects of Brownian motion 
(molecular diffusion) and local variations of the inter- 
stitial velocity (due to the position of the solid bound- 
aries). 

In spatially periodic media, the determination of 
dispersion properties is reduced to a resolution in a 
single unit cell. This attractive characteristic was first 
pointed out by Brenner (1980), who used the method 
of spatial moments introduced by Aris (1956) and 
extended by Horn (1971) to obtain the asymptotic 
behaviour of long-time distribution of a solute injec- 
ted into a porous medium. The solute concentration 
then obeys the usual convection-diffusion equation at 
the macroscopic scale. Other authors have developed 
concurrent theories: Carbonell and Whitaker (1983) 
used the volume-averaging technique to obtain 
a complete expression for the dispersion tensor, 

including an antisymmetric part (which of course 
plays no role in the macroscopic convection-diffusion 
equation). The method of 'configurational' averaging 
over a set of media is used by Koch et  al. (1985). 
Another technique is the homogenization method as 
proposed by Rubinstein and Mauri (1986) and Mei 
(1992). 

All these theories agree in their conclusions: the 
long-time behaviour of a solute transported through 
a spatially periodic porous medium is described on 
the macroscopic scale by a convection-diffusion 
equation. The macroscopic dispersion coefficient can 
be calculated by solving a closure problem on the unit 
cell. This equation, as well as the flow equations, are 
generally solved numerically. The solution is obtained 
using the finite-element method by Eidsath et  al. 

(1983), and Edwards et  al. (1991), the finite-volume 
method, as used by Amaral Souto (1993), and the 
finite-difference method used by Salles et  al. (1993). In 
the latter work, the dispersion tensor is also evaluated 
by a random walk method. However, using a number 
of simplifying assumptions, Koch et al. (1989) 
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obtained analytical solutions for periodic beds of low 
solid fraction. They predicted a functional dependence 
of the diffusivity on the P6clet number, which is not in 
agreement with the previous numerical results. On the 
other hand, few experiments have been performed on 
periodic porous media. To our knowledge, only Gunn 
and Pryce (1969) have published results on regular 
arrangements of spherical particles. 

This paper helps to meet the need for more experi- 
mental data on periodic media. These data are needed 
to test the validity of the various approaches used and, 
more specifically, to help to clarify the conflicting 
results previously reported. The following section of- 
fers a brief theoretical analysis. Experimental proced- 
ures and results are examined in the two next sections, 
respectively. The experimental measurements are then 
compared with the numerical calculations of Amaral- 
Souto (1993), followed by a general discussion. 

THEORY 

The long-time behaviour of solute transport 
through a spatially periodic porous medium is de- 
scribed on the macroscopic scale by a convection- 
diffusion equation. The macroscopic dispersion ten- 
sor can be calculated by solving a closure problem on 
the unit cell. A brief review of the theory is given 
below, following the volume-average method. As 
pointed out by Baveye and Sposito (1984), a link 
exists between the definition of the averaged quantit- 
ies and the experimental measuring device. Since the 
experimental technique uses image processing, the 
weighting function applied to the concentration 
measurement for the fluid volume, V I,  inside the 
measurement volume, V, is the fluid characteristic 
function (which is 1 in the fluid, 0 elsewhere). If c de- 
notes the solute volume concentration, the intrinsic 
average concentration ( c )  I is defined as 

(c)  f = ~ff cdV. (1) 

The equation governing convective and diffusive 
transport at the pore level is 

~C 
8~ + v" Vc = V'(~Vc) (2) 

where ~ is the molecular diffusion coefficient. The 
fluid is assumed to be incompressible. 

Since the solid is impervious to the solute, the 
boundary condition on the surface Ass between the 
solid (s) and fluid (f) phases is thus 

n-Vc = 0  (3) 

where n is the external normal to the fluid phase on 
the fluid-solid interface Ass. 

Assuming a quasi-steady closure of the problem, 
the average transport equation is given by (Carbonell 

and Whitaker, 1983) 

O(c) I 
8 ~  + (v)S" V(c )S  = D* : VV(c) s. (4) 

The dispersion tensor D* is the sum of three parts 

D *  = ~ ( I  + z) + D (5) 

where I is the unit tensor. The tortuosity tensor • is 
defined by 

z = nfdA (6) 
s 

whereas the hydrodynamic dispersion tensor D is 
written 

1 Svs~fd A (7) D = V j .  

where ~ = v - (v)  y is the spatial fluctuation of the 
velocity field. The vector f is the solution of the closure 
equation 

v "  V f  = ~ V Z f  - -  ~. (8) 

The boundary condition on the interface Af~ is 
expressed: 

- n-  V f  = n.  (9) 

For a spatially periodic porous medium, since the 
average on the volume of a unit cell is assumed to 
coincide with the average on a 'representative elemen- 
tary volume', the volume V is taken as a unit cell of 
the medium. On the external surface of the unit cell, 
Afe, periodicity boundary conditions are used for the 
function f: 

f (r  + li) = f(r) (10) 

n. Vf(r + Ii) = n. Vf(r) (11) 

where r is the spatial position of a point inside the unit 
cell, li (i = 1, 2) the lattice vectors of the unit cell, and 
n is the normal to the unit cell. 

The finite-volume method is the numerical method 
used to solve the closure equation. Special care was 
taken to avoid numerical dispersion, which is of 
course an undesirable effect and can, if not prevented, 
distort the results for the dispersion tensor. The de- 
tails are given elsewhere by Amaral Souto (1993), and 
Amaral Souto and Moyne (1996b). 

EXPERIMENTAL DESIGN AND PROCEDURE 

The main objective of this study is to describe the 
macroscopic spreading of a passive solute by observ- 
ing the phenomena at the microscopic pore level for 
a periodic medium. The experimental results are com- 
pared with the mathematical description of the pro- 
cess going from the local equation (2) to the average 
version (4). 

Experiments are much easier to conduct on two- 
dimensional systems. The transparency of the system 
makes possible to observe the concentration field 
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Fig. 1. Manufacture of porous media: experimental set-up. 

directly. On the other hand, numerical results are 
available in two dimensions but are scarce in three 
dimensions. 

Manufacturing the porous media 
In order to study dispersion through periodic me- 

dia, the first task is to build a spatially periodic 
medium with a good geometric definition. Laser 
stereophotolithography (SPL) seems to be an attrac- 
tive way of doing this. SPL is based on a liquid-solid 
transformation of a photosensitive substance (acrylate 
monomer) by laser action. Objects of complex struc- 
ture can be manufactured with a computer-controlled 
incident beam as reported by Andr6 and Corbel 
(1994), Karrer et al. (1992) and Corbel et al. (1994). 

The porous media consist of any repetitive array of 
cylinders fixed between two glass plates. The cylinders 
here are circular, with a diameter of about 5 x 10 -4 m 
and a height of about 5 x 10-3 m. The experimental 
set-up is shown in Fig. 1. The array geometry is stored 
in a microcomputer which drives the programmable 
controller which performs two functions. The first is 
to drive the photochemical reactor with two step-by- 
step motors in a plane perpendicular to the laser 
beam, with an accuracy of 10 p.m. The second is to 
activate the UV laser shutter. To obtain a shape as 
perfect as possible, the various parameters of the SPL 
process (chemical composition of the mixture, light 
power, exposure time) are optimized. A beam expan- 
der associated with a diaphragm evens out the laser's 
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Gaussian energy distribution into a near-uniform 
distribution. At the end of the process, the excess 
monomer is drained off, which is a difficult operation 
because of the monomer's high viscosity. A typical 
medium comprises about 4000 cylinders (140 in the 
direction of mean flow and 30 in the direction perpen- 
dicular to it). Three arrangements of particles in the 
unit cell were investigated: in-line cylinders, with an 
axis of symmetry parallel to the average flow direc- 
tion [Fig. 2(a)]; the same geometry rotated 26 ° 
[Fig. 2(b)]; and a third medium [Fig. 2(c)] of a ran- 
domly distributed unit cell reproduced periodically in 
the plane of study. The cylinder location in the unit 
cell is given by a random number generator. 

S. Didierjean et al. 

Concen t ra t ion  m e a s u r e m e n t s  

Among various tracers, methylene blue dye in 
water (for which no adsorption with the solid phase 
was observed) was selected for this study. Since image 
processing is used, a precise relationship is needed 
between the grey level measured by the camera and 
the volume concentration of methylene blue dye. Ac- 
cording to Beer-Lambert, the transmission coefficient 
for a monochromatic beam of wavelength 2 through 
an absorbent material of thickness x is given by 

z~ = e x p ( -  ~ax) (12) 

where ct~ is the absorption coefficient of the material 
for the wavelength 2. If the material is a dye of low 

Unit-cell 

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

L Ox axis 
Mean flow direction 

0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  

(a) ~ Test column walls j ' c f  
Oy axis 

N Y  u v i ~  

Unit-cell 

k o I  

r 

Oy axis 
test column wails - 

Fig. 2. (a) In-line cylinders. Mean flow at 0 °. (b) In-line cylinders. Mean flow at 26 °. (c) Random distrib- 
uted medium. Mean flow at 0 °. 
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Fig. 3. Comparison between absorbances measured with a spectrophotometer and by video camera. 

concentration c dissolved in a non-absorbent  mater- 
ial, then 

0~a = eac (13) 

where ~a is the molecular extinction coefficient, a func- 
tion of 2. The wavelength for maximum dye absorp- 
tion was determined by using a spectrophotometer  at 
2max = 664 nm. A band passfilter (650-660 nm) was 
therefore used. The light source was a white light 
source. The detector was a C C D  video camera 
generating a signal proport ional  to the light intensity. 
The analogic signal given by the camera was con- 
verted by A / D  converter  and analysed by a computer  

using the Visilog image processor. This made it pos- 
sible to access the value of the grey level on the image 
coded on 8 bits giving 256 grey levels. The absorbance 
(e.~cx) of the solution vs the concentration c measured 
with the spectrophotometer  is plotted in Fig. 3 for 
2 = )-max. Since the camera signal is proport ional  to 
the light intensity, it seems reasonable to try to use the 
same type of equation as eq. (12) for the grey levels: 

N = N o e x p ( -  ecx) (14) 

where No is the grey level measured with no solute. 
Clearly, the relation ln(No/N) vs c shown in Fig. 3 
demonstrates the validity of the above assumptions 



1866 S. Didierjean et al. 
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Fig. 4. Experimental system for concentration measurements. 

with a correlation coefficient of 0.98. To conclude this 
section, for concentrations of less than 0.01 g/l, the 
relation In(No~N) vs c is linear. 

through a random distributed array. The images are 
processed in order to measure the dye concentration 
as a function of space and time. 

Experimental method 
The experimental set-up is shown in Fig. 4. The 

porous medium manufactured by SPL is placed be- 
tween two pipes having the same rectangular cross- 
section. Water is driven through the medium by a 
syringe pump designed to obtain a constant flow rate 
in the range 4 x 10 -9 to 4 x 10 -a ma/s. Although the 
dye concentration is small, the column is placed 
vertically and the flow is straight upward to minimize 
natural convection. A small volume of dye solution 
(about 20 p.1) is injected into the stopped flow at the 
medium entrance by a small needle located at the 
centre of the flow. To control the amount of dye 
injected, the needle is connected to another syringe 
pump. At t = 0 the dye is injected for a short period of 
time, forming a pulse both in time and in space. The 
camera is in-line with a video tape recorder whose 
recording frequency is 25 Hz. For good resolution, 
a macroscopic lens is placed on the video camera. 
Figure 5 shows an image of the dispersing dye 

Intrinsic mean concentration 
For this study, it was decided to determine the 

intrinsic average dye concentration over a unit cell of 
the periodic medium according to eq. (1), where V s is 
the fluid volume in a unit cell of the medium. A thre- 
shold is established on the basis of an image of the 
empty medium, in order to construct a binary image 
of the medium in which 0 stands for solid-phase pixels 
and 1 for fluid-phase pixels. A histogram of this binary 
image provides a simple measure of the medium po- 
rosity. To obtain the intrinsic mean concentration, the 
grey-level image of the process is multiplied by the 
binary image of the medium, and only then are the 
non-zero grey levels of the unit cell taken into ac- 
count. At each point, the concentration is determined 
by the Beer-Lambert law (14). This value is then 
averaged over the unit cell and assigned to the centre 
point of the unit cell, denoted (C)¢el 1. For example, 
Figs 6-9 show the average dye concentration 
over a unit cell for various experiments. Due to the 
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Fig. 5. Image of the dispersion process in a random distributed medium. 

averaging process, the measurement noise appears to 
be rather low. 

Longitudinal dispersion coefficient measurement 
For dispersion in two-dimensional porous media, 

the change in mean concentration with time and space 
is assumed to be described by the convection-diffu- 
sion equation 

(~(C>ceI1 t- ( / )> f  ~(C>¢ell 
Ot t?x 

72(c>oo,1 ~2<c).,1 
= Dxx dx.-----~ + Dry --Oy 2 F Qf(x) f (y)6( t )  

(15) 

where (c)cen is the average concentration at point 
(x, y) at time t, ( v ) I  the interstitial velocity of the flow 
in the x direction, Q the source intensity, and Dxx 
and Dry the longitudinal and lateral dispersion coeffi- 
cients. 

This equation is true if and only if the principal 
dispersion tensor direction coincides with the flow 
direction. According to Amaral-Souto (1993) this con- 
dition is satisfied as soon as Pep > 200 in regular 
geometries, and Pep > 100 in random arrangements, 
where Pep is the particulate P6clet number introduced 
by Carbonell and Whitaker (1983), defined by 

(v)Sdt, e 
Pep ~ 1 - e (16) 

and dp is the equivalent particle diameter defined by 
the equation dp = 6/Ao, where Av is the specific area 
of the medium; e is the porous medium porosity. 

For  an instantaneous source located at the origin in 
a porous medium assumed to be of infinite extent, the 

solution of eq. (15) is given by 

O 
(c )  cell(X, Y, t) -- 4 n t ~  

[ (x-<v/t)2 y~ 1 
x exp 4Dxxt 4D--~t (17) 

where the concentration at infinite distance from the 
injection point is equal to zero at all times. Here, Q is 
the source intensity, namely the mass quantity injec- 
ted at t = 0 per unit length. 

In the experiments, lateral spreading is not signifi- 
cant and does not reach the lateral walls of the me- 
dium. The medium can therefore be considered as 
infinite in the Oy direction. By monitoring the time 
variation of the tracer concentration up to steady 
state, the longitudinal dispersion coefficient can be 
estimated. It is evaluated by comparing the time pro- 
files of mean concentration measured at y = 0 with 
the solution (17) of eq. (15): 

A I (x°--(v)It)2] (18) 
(C)eell(Xo,y = 0, t) = T exp 4Dxxt ] 

where x0 is the axial position of the observation point, 
which is assumed to be accurately known. 

This method serves to identify three parameters: 

- longitudinal dispersion coefficient Dxx 
- velocity (v)  y, i.e. the interstitial velocity. It is 

derived from the syringe-pump delivery rate. The pro- 
cedure can be validated by comparing the experi- 
mental determination with the experimental value by 
curve fitting. 

Q 
- A  

4n D x ,  x/-D-~xD~r 
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Fig. 6. Concentration vs time for various transverse positions. 

The simplex method is used to fit the experimental 
curves with eq. (18) using the least-squares distance. 
Wakao (1982) discussed the parameter estimation 
techniques. He demonstrated that, of all the analytical 
techniques (moment method, transfer function fitting, 
Fourier analysis, and others) curve fitting in the time 
domain is the most reliable. 

Determination of point (Xo, 0) 
As shown by eq. (17), identification of the longitudi- 

nal dispersion coefficient is much simpler at the points 
(Xo, 0), i.e. on the streamline flowing through the injec- 
tion point. The experimental procedure involves mov- 
ing the averaging volume (taken as unit cell) continu- 
ously perpendicular to the flow. The concentration is 
plotted vs time in Fig. 6 for various transverse posi- 
tions. Point y = 0 corresponds to the position with 
the maximum concentration. 

E X P E R I M E N T A L  R E S U L T S  

Model validity 
The validity of eq. (18) was checked for the porous 

media investigated. Figures 7 and 8 show the two 
typical situations. The first case (Fig. 7) is obtained for 
a measurement point close to the injection point, 
corresponding to (x/dp)/Pep = 0.045. The solid line 
corresponds to the model [-eq. (18)] with an inter- 
stitial velocity calculated to coincide with the time at 
which the maximum concentration is reached. This 

curve does not fit the experimental results (dots). The 
head of the curve is slightly steeper, and a long time 
tail is observed. This behaviour is characteristic of 
transient dispersion: diffusion time at pore scale d2/~ 
is longer than convection time x / ( v )  I. By contrast 
(Fig. 8 corresponding to (x/dp)/Pep =0.13), good 
agreement is obtained between the experimental data 
and the best fit of the model. The difference between 
the identified and experimentally measured velocities 
is less than a few per cent. All the results presented in 
this study use measurements taken far enough from 
the injection point to satisfy the foregoing constraint. 

In-line cylinders: mean flow at 0 ° 
This medium is analysed for two directions of the 

mean flow: 0 and 26 °. The mean flow direction is 
located with respect to the test column wall. The 
medium [Fig. 2(a)] comprises 29 unit cells in width 
and 140 lengthwise. Each cell is 0.8 mm square. The 
mean cylinder diameter is 0.51 mm, and the porosity is 
0.68. To determine the longitudinal dispersion coeffi- 
cient, the variation in concentration with time is ana- 
lysed at y = 0. The maximum concentration occurs at 
time tmax ---- X/(V) I. Figure 9 shows a plot of the mean 
concentrations for five different values of x. The mean 
flow velocity given by the syringe pump is 3.34 x 
10 -4 m/s. The velocity determined from the relation 
tmax vs x in Fig. 10 is 3.28 x 10-4m/s, in good agree- 
ment with theory. The curves in Fig. 9 are then fit by 
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600 

the function (18). The particulate P6clet number is 
842. The longitudinal dispersion coefficient is 2.11 x 
10- 7 m2/s ___ 3% for the five different curves. The same 
experiments were carried out for various velocities. The 
ratio D~x/~ versus Pep between 200 and 1200 is 
plotted in Fig. 11. The molecular diffusion coefficient 

is 4 x 10 - lo  m2/s for methylene blue in water. 

In-line cylinders: mean flow at 26 ° 
The unit cell is positioned in the test column so that 

the mean flow direction is at 26 ° with respect to the 
unit cell axis. The medium [Fig. 2(b)] comprises 14 
cylinders in width and 300 lengthwise corresponding 

approximately to 112 unit cells. The mean cylinder 
diameter is 0.508 mm and the void fraction 0.68. The 
identification procedure for the longitudinal disper- 
sion coefficient is identical to the one described above. 
The results are given in Fig. 11. 

Random distributed medium 
This experimental medium is the same as the one 

used by Amaral-Souto (1993) to compute the disper- 
sion tensor [Fig. 2(c)]. The unit cell contains 36 cylin- 
ders 0.5 mm in diameter. Each cell is a 5 mm square. 
The medium comprises 5 unit cells widthwise and 22 
lengthwise. The void fraction is 0.578. Figure 12 
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shows the variation of Dxx/~ vs Pep. In the range 
of particulate P6clet numbers from 400 to 1900, 
the value of Dxx/~ is two to three times higher for 
disordered cells, in accordance with intuitive know- 
l edge .  

C O M P A R I S O N  B E T W E E N  T H E O R Y  A N D  E X P E R I M E N T  

In- l ine cyl inders (0 = 0 °) 
T h e  f i r s t  c o n f i g u r a t i o n  a n a l y s e d  c o n c e r n e d  i n - l i ne  

c i r c u l a r  c y l i n d e r s  w i t h  a n  a v e r a g e  f l u id  v e l o c i t y  p a r a l l e l  

t o  t h e  l i n e  l i n k i n g  t h e  c e n t r e s  o f  t h e  c y l i n d e r s  (0 = 0°). 
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with numerical results from Amaral Souto for 0 = 23, 33 and 45 °. 

M u c h  numerica l  da ta  can be found in the l i terature 
for compar i son  with the exper imental  results, includ- 
ing Eidsa th  et al. (1983) (in-line circular and  square  
cylinders, 0 = 0 °, e = 0.37); Edwards  et al. (1991) (in- 
line circular cylinders, 0 = 0 °, e = 0.60); Salles et al. 
(1993) (in-line circular  cylinders, 0 = 0 °, e = 0.59); 
Amara l  Souto (1993) (in-line square  cylinders, with 
0 = 0 ° and  staggered square  cylinders with 0 = 45 °, 
e = 0.64, i.e. an  in-line array of square  cylinders ro- 
ta ted 45°). Figure 13 compares  between these numer-  
ical results and  the exper imental  results ob ta ined  for 
the longi tudinal  dispersion coefficient Dxx/~  vs par-  
ticulate P6clet n u m b e r  Pep. 

A n u m b e r  of differences are apparent ,  bo th  a m o n g  
the numerica l  values themselves and  between the nu- 
merical and  exper imental  results. The numerica l  da ta  
for the in-line array of circular cylinders or  square  
cylinders are very close for all authors .  Nevertheless,  
the exper imental  points  do not  fit these curves but ,  
surprisingly, are very close to the numerical  results for 
in-line array of square  cylinders ro ta ted  45 ° . Fo r  the 
h igh par t iculate  P6clet numbers  invest igated (Pep > 
100), the points  lie nearly in a s t raight  line on  
a log - log  plot, wi th  an  a lmost  identical slope but  with 
different ordinates  at  the origin. This  behav iour  is 
commonly  described by analysing the relat ion of 
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Fig. 13. Variations of Dxx/c~ vs Pep. In-line cylinders. Mean flow at 0 °. Comparison between various 
numerical results and experimental results. 

D ~ , x / ~  vs Pep (for high enough Pep) in the form 

Oxx 
- A Per~. (19) c~ 

In Fig. 11, the solid line corresponds to the linear 
adjustment for m in log log coordinates• This adjust- 
ment was obtained with a correlation coefficient in 
the range 0.97 0.99. The values of the exponent m 
are given in Table 1. These lie in the range 1.67 < 
m < 1.83. Note, however, that these values are signifi- 
cantly less than 2, which is the standard value ob- 
served for Taylor dispersion through a tube. 

Several factors may explain this discrepancy be- 
tween theoretical and experimental results. First, since 
the values for m are far from 2, the uncertainty in the 
molecular diffusion coefficient ~ may modify the ex- 
perimental curves. The theory is also valid for a two- 
dimensional situation. In fact, the experiment is neces- 
sarily three-dimensional, owing to the two plates 
where the needles are fixed. Moreover,  while the peri- 
odicity of the medium may be quite satisfactory, small 
defects are unavoidable in the form of the cylinders 
I-Salles et  al. (1993) discussed the significant effects of 
small defects in the array]. Finally, some uncertainties 
can be expected due to the solute injection process 
(regarded as a Dirac distribution both in time and 
space). 

Table 1. Values of m for in-line cylinders: numerical data 
from Salles et al. (1993), Amaral Souto (1993) and Edwards 

et al. (1991) 

0 m 

0 o 

0" 
0 o 

45 ° 
0-' 

30  
22.5 ° 
2& 

Edwards et al. (~ = 0.6) 1.79 
Salles et al. (~ = 0.59) 1.78 

Amaral Souto (~ = 0.64) 1.83 
Amaral Souto (e = 0.64) staggered 1.71 

Experimental results (~ = 0.68) 1.67 
Salles et al. (e = 0.59) 1.43 

Amaral Souto (e = 0.64) 1.31 
Experimental results (~ = 0.68) 1.24 

However, owing to the discrepancies between nu- 
merical results for the same geometry, agreement be- 
tween experimental and theoretical results concerning 
the exponent m can be regarded as satisfactory• 

In - l ine  cy l i nder s  (0 = 26 °) 
Varying the angle 0 between the average fluid flow 

and the line linking the centres of the cylinders entails 
fabricating a new medium each time. Only one case 
was tested: 0 = 26 °. Few results are available in the 
literature for such a case. To the best of our knowledge, 
only Salles et  al. (1993) (for circular cylinders) and 
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Amaral Souto (1993) (for square cylinders) have 
computed the dispersion tensor by varying the angle 
0. 

In accordance with the foregoing comments for the 
case 0 = 0 °, the comparison between the theoretical 
and the experimental results is restricted to the values 
of the exponent m defined by eq. (19). The values of 
m are given in Table 1. All the results agree, showing 
a very significant influence of the direction of the 
average fluid velocity. The values of m lie in the range 
1.2 < m < 1.4, which is considerably less than 2. Both 
the numerical and experimental values of m, and the 
effective values of Dxx/~,  are significantly less than 
those measured at 0 = 0 ° in the same range of P6clet 
numbers. 

Random periodic medium 
The results are shown in Figure 12 for 0 = 0 °, and 

are compared with the numerical results of Amaral 
Souto (1993), who used the same arrangement, but for 
square cyliders and for 0 = 23, 33 and 45 °. For ran- 
dom periodic porous media, the influence of the value 
of the angle 0 has been investigated elsewhere (Amaral 
Souto, 1993). Generally, the value of the angle 0 has 
a weak influence on the dispersion tensor. In the case 
of the medium studied, the numerical values of the 
longitudinal dispersion tensor are given in Fig. 12 for 
0 = 23, 33 and 45 °. The experimental values are 
slightly lower, but in good agreement. The exponent 
value is m = 1.2 for the experimental values, and 
m = 1.38 for the numerical results, for 0 = 23 °. It is 
worth noting that the experimental value m- -1 .2  
corresponds to the value commonly assumed by vari- 
ous experimenters (Pfannkuch, 1963; Ebach and 
White, 1958; Carberry and Bretton, 1958; Edwards 
and Richardson, 1968; Blackwell, 1959; Rifai et al., 
1956; Han et al., 1985) for 'real', in fact random, 
porous media. 

COMPARISON WITH ANALYSIS OF KOCH ET AL. 

Koch et al. (1989) questioned the relevance of peri- 
odic porous media for investigating the dispersion of 
'real' or random porous media. Based on an approx- 
imate solution of the theory for low solid volume 
fractions, they concluded that if the unit cell is sym- 
metrical with respect to its two orthogonal axes (as for c 
in-line cylinders), for high P6clet numbers, then the (c )  s 
longitudinal (or transverse) dispersion coefficient ex- (c)¢en 
hibits two different behaviours: If the average velocity @ 
is not perpendicular to an axis of the lattice (i.e. if tan 0 dp 
is not rational), the dispersion coefficients become Dxx 
independent of Pep and proportional to the molecular Dyy 
diffusion coefficient 9 .  In the opposite case, (i.e. if m 
tan 0 is rational), the quantity D / ~  must vary as Pe 2 
for both the longitudinal and transverse dispersion Pep 
coefficients. Intuitively, the particular character of dis- Q 
persion through periodic porous media is linked to t 
the correlation of the flow field, which occurs due to v 
the spatial frequency of the medium. In fact, the ques- (v)  I 
tion is: Is the molecular diffusion sufficient to intro- x, y 
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duce a random character comparable with the behav- 
iour of 'real' porous media? 

Contrary to Koch et al. (1989), simultaneously for 
the experimental and numerical values, for the in-line 
case with 0 = 0 °, the value of the exponent m is close 
to but significantly less than 2. When 0 = 26 °, neither 
the numerical nor the experimental results are in 
agreement with the theory of Koch et al. Their argu- 
ments appear to be oversimplified, and their con- 
clusions concerning the relevance of periodic porous 
media therefore have to be reconsidered. 

CONCLUSION 

The experimental system appears to be highly 
promising. The technique yields reproducible results 
with good accuracy. Agreement between experimental 
and numerical results is very satisfactory. 

For  in-line cylinders, the experimental results 
clearly demonstrated the effect of the flow direction 
on the dispersion coefficients. By comparison with 
numerical results, it is possible to appreciate the influ- 
ence of the particle shape in regular arrangements. 
Considering the influence of these two geometric 
characteristics of the media, periodic porous media 
formed with a regular unit cell do not serve as good 
model for describing dispersion in real porous media. 

A single experimental report is not enough to con- 
dude concerning the random periodic medium, but is 
rather encouraging. Considering the numerical results 
obtained by Amaral Souto (1993) for 20 arrangements 
of square cylinders in the unit cell, the average value of 
m is equal to 1.59 + 0.20 with no significant variation 
with the mean flow direction. Experimental and nu- 
merical results appear to indicate that, in despite of its 
periodic character, this type of medium can describe 
the behaviour of homogeneous porous media if the 
unit cell is sufficiently large to represent the porous 
media structure. 

The numerical method is suitable only for periodic 
porous media. The experimental method can now be 
used to study dispersion in random two-dimensional 
porous media, and can probably be extended to three- 
dimensional porous media. 

NOTATION 

local solute concentration 
intrinsic average concentration 
average concentration over a unit cell 
molecular diffusion coefficient 
equivalent particle diameter 
longitudinal dispersion coefficient 
transversal dispersion coefficient 
exponent of P6clet number defined in 
eq. (19) 
particulate P6clet number 
source intensity 
time from start of injection tracer 
local velocity of the fluid 
intrinsic average velocity 
space variables in the plane of study 
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Greek letters 
6(t) Dirac delta function for time variable 
6(x) Dirac delta function for space variable 

porous medium porosity 
0 direction of the mean flow 
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