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Abstract. A method was developed to evaluate the cumulative effect of wetland mosaics in the
landscape on stream water quality and quantity in the nine-county region surrounding Min-
neapolis-St. Paul, Minnesota. A Geographic Information System (GIS) was used to record and
measure 33 watershed variables derived from historical aerial photos. These watershed variables
were then reduced to eight principal components which explained 86% of the variance. Relation-
ships between stream water quality variables and the three wetland-related principal components
were explored through stepwise multiple regression analysis. The proximity of wetlands to the
sampling station was related to principal component two, which was associated with decreased
annual concentrations of inorganic suspended solids, fecal coliform, nitrates, specific conductivity,
flow-weighted NH,, flow-weighted total P, and a decreased proportion of phosphorus in dissolved
form (p < 0.05). Wetland extent was related to decreased specific conductivity, chloride, and lead
concentrations. The wetland-related principal components were also associated with the seasonal
export of organic matter, organic nitrogen, and orthophosphate. Relationships between water
quality and wetlands components were different for time-weighted averages as compared to flow-
weighted averages. This suggests that wetlands were more effective in removing suspended solids,
total phosphorus, and ammonia during high flow periods but were more effective in removing
nitrates during low flow periods.

Introduction

‘Cumulative impact,” the incremental effect of an impact added to other past,
present and reasonably foreseeable future impacts, has been an area of increasing
concern to regulatory agencies because the piece-meal loss of wetlands over time
has seriously depleted wetland resources (Williamson et al. 1986; Preston &
Bedford 1988). The legal mandate for cumulative impact assessment has existed
for a decade (Council on Environmental Quality 1978), but the empirical data
and assessment methodologies needed to make regulatory judgments about
cumulative impacts to wetlands have been lacking until recently (Gosselink &
Lee 1987).

To assess the cumulative impact of wetland loss at the watershed scale,
techniques are needed to assess the cumulative effect of multiple wetlands on
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watershed functions. This is important because the cumulative function of all
wetlands in a watershed may be different than the additive function of the
individual wetlands themselves. If a non-linear relationship exists between
wetland abundance and cumulative wetland function, the ecological ramifica-
tions of identical impacts would be different at different points along a cumula-
tive disturbance gradient. Also, wetland effects which are locally significant may
not be significant at a sampling point far downstream (Ogawa & Male 1986).
Therefore, an approach must be used which evaluates the cumulative effects of
wetlands in a landscape context.

This paper describes a method we have developed and used to examine the
relationship between watershed mosaics and the water quality and flow output
from those watersheds, focusing on the role of wetlands as a watershed com-
ponent. A premise of this study is that the collective function of a watershed
mosaic can be predicted by attributes of that mosaic (Preston & Bedford 1988),
provided that the attributes and functions of the mosaic are measured at a
suitable spatial and temporal scale (Allen et al. 1984). At the landscape scale
used in this study, aerial photography and a Geographic Information System
(GIS) were used for measuring watershed attributes, while seasonal and annual
downstream water quality and flow averages were used as indicators of water-
shed function. Multivariate statistical techniques, which can evaluate many
variables simultaneously, provided the means for relating the watershed attri-
butes (independent variables) to watershed functions (dependent variables).

Most of the watershed attributes used in this study involved area measure-
ments. This is important to the understanding of cumulative impact, because
loss of wetland area by drainage or filling has been the most pervasive impact
to wetlands in the United States (Tiner 1984). Although other types of impacts
affect wetland functions, wetland loss is the most damaging type of impact
which can occur because it eliminates all functions of a wetland. The importance
of the cumulative impact of wetland loss has already been recognized in regulat-
ory actions: EPA used cumulative loss of wetland acreage as a justification in
at least two 404(c) vetoes (Hirsch 1988).

The purpose of this paper is to present the method developed, and to illustrate
its use. Specific goals are:

— To empirically relate watershed attributes to downstream water quality and
flow, focusing on wetlands as a watershed component, and

— To use those relationships to identify wetland classes most important to
water quality maintenance and flow reduction.

Methods
Study Site selection

The Minneapolis-St. Paul metropolitan area, a 8075 km? region, was chosen for
study (Fig. 1). The area lies primarily in the North Central Hardwood Forests
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INSET: BASSETT CREEK
WATERSHEDS

Fig. 1. Watersheds studied in the Minneapolis St. Paul Metropolitan Area ( = major water
boundary, — — — = watershed boundary within a major watershed, —» = sample site at watershed
outlet, indicating flow direction). Watershed codes and dates sampled are listed in Table 1.

ecoregion, with portions extending into the Western Corn Belt Plains (Omernik
1986). Wetlands in this region have been subjected to many developmental
pressures from agriculture and urban expansion, so that by 1969 only about half
of the pre-settlement wetland area remained (Anderson & Craig 1984). Wet-
lands now constitute about 7.6% of the region (Owens & Meyer 1978). Al-
though the majority are herbaceous (Werth et al. 1977, Owens & Meyer 1978),
a variety of wetland classes occur within the region.

Fifteen major watersheds covering 2073 km* were selected as study sites (Fig. 1).
Because the primary objective was to relate watershed attributes to downstream
water quality and flow, watersheds were selected for which there were both:

— stream monitoring data collected at least monthly, and
— concurrent aerial photographs of the monitored area (Table 1).
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Most of the major watersheds had a single sampling site (Fig. 1). For those
seven major watersheds in which there were multiple sample sites, all stream
monitoring data were spatially and/or temporally distinct (Fig. 1, Table 1), so
that water sampled at a given site was never resampled further downstream.
When multiple sample years existed for the same watershed or portion thereof,
we used data sets separated in time by at least four years to minimize potential
autocorrelation. To ensure that the watershed analysis included only those lands
which could have affected surface water draining to a particular sampling site,
watersheds were delineated for each unique sampling location. In this way,
watershed conditions were both spatially and temporally paired with water
quality and flow.

All data were summarized as ‘site-years,” which represent watershed con-
ditions in time. For watershed attribute variables (Table 2), a site-year value is
a spatial summary statistic for the watershed, derived from aerial photos taken
during the year in question (e.g. wetlands as a percentage of watershed area in
1980). For water quality and flow variables (Table 3) a site-year value is an
average of the data from flow measurements or water quality samples taken at
the mouth of the watershed during the year in question (e.g. average chloride
concentration for all water samples collected in 1980). There were 38 site-years
for each watershed attribute variable (Table 2), but fewer site-years for water
quality variables because the different collecting agencies did not analyze for all
the same parameters (Table 3). Each site-year was used as a separate case in the
statistical analyses. Site-years are indicated in the text by an alpha-numeric
code, the last two digits of which indicate the year of sampling (e.g. BAOBSO0).

Wetland and land use data

Existing aerial photography was used to document the location and extent of
wetlands (defined as per Cowardin et al. 1979) for the years of water quality and
flow record (Table 1). Photo enlargements were used whenever possible. Ste-
reoscopic magnification (3 x) was required to interpret the 1957 air photos,
which were only available as 9 x 9 contact prints. National Wetlands Inven-
tory maps were used for 1980.

Because water quality and runoff is potentially affected by all the land within
a watershed, both wetland and upland cover types were mapped for each date
of photography. Mapping was done by U.S. Public Land Survey quarter—quar-
ter sections, each covering a 40 acre (400 x 400m) land area. Each cell was
classified by the land use which constituted the majority of its area: agriculture,
forest, urban/residential, lake, or wetland. Therefore, the minimum possible
area detected by the mapping resolution was 14-20 acres (a third to a half of a
quarter—quarter section). If the major cover type was wetland, it was further
classified into one of nine wetland categories based on U.S. Fish and Wildlife
Service criteria (Cowardin et al. 1979). The value for each quarter—quarter
section was recorded on 1:24 000 USGS topographic maps, which were used for
computer digitizing.
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Two raster format Geographic Information System (GIS) programs run on
a IBM PC/AT were used to enter and measure the landscape variables (John-
ston et al. 1988). Digital data files of soil and topographic variables were
obtained for the region from the Minnesota State Planning Agency. Land use,
watershed boundaries, and streams were digitized from USGS topographic
maps. Streams were classified by stream order (Morisawa 1968), and measured
as line vectors directly from the X and Y coordinates in the digitized file. Where
agricultural ditching had altered the drainage pattern between two site-years,
the different stream configurations were digitized separately. The ERDAS GIS
was used to extract individual watersheds from the regional data files, and to
compute average soil and topographic variables (Table 2) for each site-year
(Johnston et al. 1988).

Previous workers have demonstrated that wetland/upland (Whigham & Chit-
terling 1988; Johnston et al. 1984) and stream/riparian zone (Peterjohn &
Correll 1984; Schnabel 1986) edges have an important effect on the flux of water
and materials in the landscape, an effect which diminishes with increasing
distance from the edge (Osborne & Wiley 1988). Therefore, the GIS was used
to extract land use data from 175 m fringe zones on either side of streams, and
400 m upland fringe zones surrounding wetlands (Table 2). The fringe zones
were also used to determine the proportion of the stream corridor in different
stream order classes. ‘

Wetlands in the headwaters of a watershed may have less of an influence
downstream than do wetlands closer to the sampling site (Ogawa & Male 1986).
Therefore, an index of average wetland stream order position relative to that of
the sampling station (RELWTPOS) was developed as a simple means of esti-
mating wetland distance upstream:

Y (- i
R M
Ai

g

1

i

where j = stream order of sampie point
Ai = area of ith order wetlands.

Two indices of watershed shape, elongation ratio and compactness ratio
(USGS 1978), were used. A sequential comparison index (Cairns et al. 1968)
was used to quantify the diversity of land use adjacent to streams by dividing
the number of runs (i.e. a string of adjacent cells with identical classification) by
the number of cells bisected by the stream.

Water quality data
Water quality data were obtained primarily from the STORET computerized

database (U.S. Environmental Protection Agency, Office of Water and Hazar-
dous Materials), supplemented with data collected by consulting firms for local
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watershed management organizations (Table 1). Sampling intensities ranged
from routine monthly sampling (MPCA) to continuous or event-based sampling
(Oberts 1981).

Seasonal and biennial or annual averages were calculated for all water quality
parameters using non-weighted and time-weighted data. Where instantaneous
flow measurements were made at the time of sample collection, flow-weighted
averages were also computed. The USGS water year (October 1 through Sep-
tember 30) was used as the annual time unit. Where possible, we combined water
quality data for the year of aerial photo coverage with the previous year’s data
to lessen the influence of year-to-year climatic variation on water quality.

On the basis of rankit plots and the Wilks-Shapiro statistic (STATISTIX
1987) for raw and transformed water quality variables, we transformed several
variables using logarithmic (log,,[X + 1]) or square root calculations to achieve
a normal distribution of the variables (Table 3).

Water flow data

The potential effect of wetland loss on flood magnitude was estimated by
applying empirical equations developed for southern Minnesota (Jacques &
Lorenz 1988) to each site-year. These equations were based on empirical rela-
tionships between calculated flood magnitudes for given recurrence intervals (2,
5, 10, 25, 50, and 100-year) and selected watershed variables (drainage area,
main channel slope, percent storage in lakes and wetlands, percent lake area,
and mean annual runoff). The equations were derived from flow data collected
at 149 southern Minnesota stream-gauging stations having 10 or more years of
record. Equations derived for this region have the form:

0, = mA(St + 1YS*R Q)

where Q, = estimated peak flow (cfs) for n-year recurrence interval,
A = drainage area in square miles,
St = percentage of drainage area as lakes, ponds, and wetlands,
S = main channel slope in feet per mile,
R = mean annual runoff, and
m, i, j, k, p = empirically determined coefficients.

Statistical analyses

We performed a principal components analysis without rotation (Norusis 1988)
to reduce the 33 initial watershed variables (Table 2) to a smaller number of
principal components. To relate these watershed variables with water quality
parameters, we performed stepwise multiple regression analyses using the prin-
cipal components derived from the watershed variables as independent varia-
bles, and water quality variables as dependent variables (Norusis 1988). Prin-
cipal components are ideal variables to use in multiple regression because they
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are mathematically uncorrelated and, hence, problems of multicollinearity of
independent variables are reduced (Tatsuoka 1971). Independent variables were
included in regression equations based on the magnitude of partial correlations
with the dependent variable. Selected variables were then included or rejected on
the basis of F-tests with criteria of p < 0.05orp < 0.10, respectively (p. B-227,
Norusis 1988). To reduce the probability that regression results would reflect
spurious correlations, we restricted the number of independent variables includ-
ed in equations so that the case-to-variable ratio was > 5:1.

Partial correlations analysis was used to explore relationships between water
quality and selected watershed variables while holding constant other watershed
variables that were highly correlated with principal components used in the
original multiple regressions. In this way, the importance of individual water-
shed variables, which may have been obscured by the dominating explanatory
variables, could be examined. In general, the statistical analyses were used in an
exploratory manner to identify possible casual relationships between landscape
and water quality variables.

Details of the methods used are in Johnston et al. (1988, 1989).

Results
Characteristics of the wetland mosaic

Wetlands constituted between 5 and 37% of the landscape in the 15 major
watersheds studied (Fig. 2a). The majority of the wetlands were herbaceous, but
shrub and forested wetlands constituted about a third of the wetland area in
watersheds of the Anoka glacial outwash plain (i.e. COON, RICE, HRDW,
CLRW). The percentage of each watershed in semipermanently to permanently
flooded wetlands was relatively uniform among watersheds, averaging about
6% (Fig. 2b). However, the percentage of each watershed in seasonally flooded
wetlands ranged from 4 to 27%. Temporarily flooded wetlands were uncom-
mon. Agriculture was the most abundant land use bordering the wetlands
studied, as well as the most abundant land use in the watersheds as a whole (Fig.
2¢).

Of the five watersheds having sequential data (ELMC, NMO7, RILY,
CLRW, and HRDW: Table 1), all but RILY experienced wetland losses over
time. Watersheds with the largest short-term losses were CLRW, HRDW, and
NMO?7, which lost 1.0 to 1.3% of their wetland area per year. Wetland gains in
the RILY watershed were small (+ 6.0 ha between 1968 and 1975).

Principal components analyses
All principal components with eigenvalues greater than 1.0 were retained in

subsequent analyses. Thus, the 33 original watershed variables were reduced to
eight principal components that still explained 86.5% of the variance (Table 4).
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Table 4. Variance of watershed variables explained by first eight principal components.

Rank  General interpretation Eigenvalue Variance  Cumulative
of principal component explained  variance

(") (%)

1 Wetland extent 9.8 29.7 29.7

2 Wetland proximity, watershed area 4.5 13.6 433

3 Agricultural/urban land use 4.1 12.6 55.9

4 3rd order streams, watershed diversity, soil pH 3.1 9.4 65.3

5 Forested stream fringe 2.5 7.7 73.0

6 Elongated headwater watersheds 2.1 6.3 79.3

7 Soil erodibility, forest 1.3 4.1 83.4

8 Herbaceous marsh extent 1.0 3.1 86.5

The communality, or fractional variance of the original variables explained by
linear combinations of the eight factors was greater than 0.7 for all variables
except for watershed area (0.64), so the watershed variables were well represent-
ed by principal components. If the communality had been low for some water-
shed variables, their effects would not have been represented by relationships
between principal components and water-quality variables.

Interpretations of the principal components were based on the correlation
coeflicients (p < 0.05) between watershed variables and principal components
(Table 5). Three of the principal components, PC1, PC2, and PC8, were asso-
ciated with wetland variables. The first principal component (PC1), an indicator
of wetland extent, was positively correlated with the relative area of wetlands,
the dominant wetland types (e.g. herbaceous and woody wetlands), and stream
fringe, and negatively correlated with watershed slope variables. Hence, water-
sheds with relatively high positive values for PC1 are relatively flat and have the
highest proportion of wetlands per unit area. The unexpectedly high values for
stream fringe were due to drainage ditches associated with flat watersheds
having a high proportion of wetlands (e.g. Coon Creek watersheds).

The second principal component (PC2) was negatively correlated with rela-
tive wetland position (RELWTPOS), watershed area (AREA), average water-
shed elevation difference (AVDIF), and percent third order stream fringe
(STR3FR), and positively correlated with landscape diversity (SCI) and soil
phosphorus (SOILP; Table 5). Watersheds with low PC2 values had wetlands
predominantly in the headwaters and far removed from the watershed outlet
(e.g. BEVN, RAVN). These watersheds were generally large, included more
third- and fourth-order streams, had relatively low soil P values, and had lower
land use diversity (predominantly agricultural) than watersheds with high values
for PC2. Because maximum stream order tended to be higher for larger water-
sheds, there was a tendency for large watersheds (> 15000 ha) to have high

Fig. 2. Wetland characteristics of major watersheds. 1980 site-year data used if available for entire
watershed; most recent data used for other major watersheds. (4) Proportion of wetland in
watershed, by vegetation type. (B) Proportion of wetland in watershed, by hydrologic type. (C)
Proportion of wetland/upland fringe in watershed, by upland land use.
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Table 5. Significant (P < 0.05) correlation coefficients between principal components and water-
shed variables.

PCl PC2 PC3 PC4 PCS PC6 PC7 PC8

PC1 WTLD 0.9
STWTLDFR 0.89
HERB 0.85
HERBSF 0.80 0.34
WDYSF 0.80
AVSLP —0.76
STRFRG 0.72 -0.34
MAXSLP -0.71 -0.39
MAXDIF —0.64 —0.46 0.50
CHNLSL —0.62 —0.38 —-0.41
*HERBSP 0.61 0.54
*WFRG 0.56 0.47 045 042
PC2 RELWTPOS 047 —0.68
AREA —0.64 0.35
AVDIF -0.57 -0.61 0.44
*SCI 0.59 0.51
SOILP —0.59 0.56
*STR3FR —0.54 0.56
PC3 STURBPFR —0.57 —0.68
WAGRFR 0.60 0.66
STAGRPFR —042 064 —043
WURBFR —0.50 —0.59 0.40
LAKE 0.58
WLKEFR 0.49 0.56 0.38
*CMPCT 0.42 0.36 -0.38 0.36
PC4 SLPH —0.50 036 —0.56
*STR3FR —0.54 0.56
*SClI 0.59 0.51
*WFRG 0.56 0.47 0.45 0.42
*CMPCT 0.42 0.36 —0.38 0.36
PC5 *STFORPFR —0.66 0.43
*STR2FR 0.55 —0.60
*STRIFR —0.52
PC6 ELNG 0.38 0.64
*STRIFR -0.34 —0.52 0.57
*STR2FR 0.55 —0.60
*CMPCT 0.42 0.36 -0.38 0.36
PC7 KFCTR —0.53 0.51 —0.50
*STFORPFR 0.43
SRFPRM 0.57 —0.44 0.41
*CMPCT 0.42 0.36 —0.38 0.36
PC8 *HERBSP 0.61 0.54
LKFRG —0.38 0.46 039 -0.36 0.38

* Listed in more than one principal component grouping.
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RELWTPOS values (1.93 to 2.59) and for small watersheds (< 5000ha) to
have low RELWTPOS values (< 1.0). However, those watersheds within the
intermediate size range of 5000-15000ha represented a wide range of
RELWTPOS values (0.43 to 2.32).

Only PC8 was associated with a single wetland type, the proportion of
herbaceous marsh in the watershed (HERBSP; Table 5). This component was
also associated with percent lake fringe (LKFRG), but not with percent lake
area (LAKE). Site-years with high PC8 values (e.g. CO0180, BANB75) often
had semi-permanent herbaceous wetlands associated with shallow lakes
having irregular perimeters, and thus relatively large areas of lake fringe.
Site-years 18 and 19 (HRDW80, HRDWS87) had the lowest PC8 values,
reflecting the relative lack of semi-permanently flooded wetlands in the
HRDW watershed (Fig. 2b).

The other principal components were related primarily to upland watershed
attributes. Relationships between these principal components and downstream
water quality are discussed in another manuscript (Detenbeck et al., in
preparation), so they are only briefly described here. Three principal com-
ponents, PC3, PC35, and PC7, were highly correlated with land use variables.
PC3 was positively correlated with the proportion of agriculture (WAGRFR,
STAGRPFR) and negatively correlated with the proportion of urban land
(WURBFR, STURBPFR) in the watershed. PC5 and PC7 represented the
association of forested stream fringe area with headwater reaches and with
certain soil types (Table 5). PC5 was positively associated with second-order
stream fringe (STR2FR) and negatively associated with first-order (STR1FR)
and forested (STFORPFR) stream fringe area. High values of PC7 represent-
ed watersheds with a high percentage of forested stream fringe (STFORPFR),
high soil permeability (SRFPRM), and low soil erodibility (KFCTR).

The remaining two principal components, PC4 and PC6, were related to
watershed morphometry. PC4 was positively correlated with percent third-
order stream fringe, landscape diversity (SCI), and soil pH. PC6 represented
a combination of watershed elongation and the predominance of headwater
streams (STR1FR).

Plotting the first two principal component values for each site-year
illustrated the differences among watersheds (Fig. 3). Site-years 10 (COONG66),
11 (CO0180), and 12 (CO0280) had the highest PC1 values, reflecting the large
proportion of wetland in the Coon Creek major watershed (Fig. 2a). Site-years
with the highest PC2 values (24-26) were located in the MNLL watershed,
in which wetlands tended to be concentrated near the sample site (i.e. low
RELWTPOS). The wetlands in the elongated Bevens Creek watershed,
however, (site-year 06: BEVNR0), tended to be located far from the sample
site (i.e. high RELWTPOS). Although PC2 was also related to watershed area
(Table 5), the site-year with the largest watershed area (20: MNHAG60) had
an intermediate PC2 value, comparable to those of watersheds with much
smaller areas (01: BAST66, 14: CREDS0).
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Fig. 3. Scores for principal component 1 vs. principal component 2, by site-year. Site-year codes are
listed in Table 1. Principal components were computed for each site-year based on the 33 watershed
variables listed in Table 3.

Effect of averaging technique on assessment of water quality function

Water quality samples gathered monthly represent different time intervals than
event-based samples, which are collected more during high flow than low flow
periods. Therefore, non-weighted averages of routine monthly sampling can
differ from those of event-based samples. Since our water quality data included
both event-based and routinely sampled site-years, we used time-weighting to
make the data more comparable.

Time-weighting had little effect on some variables, such as specific conductiv-
ity (Table 6, Fig. 4a). However, non-weighted averages would have overestimat-
ed suspended solids (Fig. 4b, c) because event-based sampling was concentrated
around high-flow events associated with high loadings of suspended solids. The
effect of time-weighting on average ammonium concentrations varied by water-
shed: non-weighted averages from event-based samples underestimated am-
monium for the Coon Creek watersheds, in which ammonium values were
highest for the infrequently sampled low-flow periods (Fig. 4d).

Where instantaneous flow measurements were made at the time of sampling,
flow-weighted averages were computed to express the mean rate of export from
watersheds. Flow rates affect the concentrations of some water quality varia-
bles, such as inorganic suspended solids, due to the relationship between water
velocity and material transport (Morisawa 1968). Although most time-weighted
and flow-weighted averages were highly correlated, flow-weighting produced
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Table 6. Correlations between non-weighted (NW), time-weighted (TW), and flow-weighted (FW)
averages of water quality parameters.

Variable Pearson correlation coefficient
NW VS. TW NW VS. FW TW VS. FW

CL 0.77 0.67 0.61
COD 0.89 0.67 0.65
LOGCD 0.91

DN 0.96 0.86 0.76
LOGDN 0.90

DP 0.99 0.99 0.99
SPCOND 0.91 0.65 0.54
LGSPCND 0.89

FCOL 0.99 0.97 0.79
LOGFCOL 0.98

FRDN 0.92 0.83 0.69
FRDON 0.69 0.90 0.60
FRDP 0.99 0.86 0.95
FRNH4 0.46 0.26 0.25
FRNOX 0.93 0.76 0.55
SQFRNOX 0.94

FRON 0.93 0.92 0.92
FRSRP 0.89 0.98 0.94
TKN 0.77 0.84 0.64
UNH4 0.95 0.97 0.85
NH4 0.75 0.81 0.57
SQRTNH4 0.76

NO3 0.99 0.89 0.87
SQRTNO3 0.99

NOX 0.91 0.89 0.65
SQRTNOX 0.92

PBTOT 0.96 0.97 0.99
LOGPB 0.90

PH 0.94 0.96 0.73
OPO4 0.98 0.91 0.95
SQROPO4 0.98

SSTOT 0.93 0.71 0.52
LLOGTSS 0,95

TSIS 0.89 0.64 0.39
LOGTSIS 0.85

™ 0.95 0.95 0.90
LOGTN 0.98

TOC 0.82 0.24 —0.48
TON 0.96 0.95 0.97
TP 0.96 0.91 0.81
SQRTTP 0.95

SSVOL 0.63 0.70 0.10
LOGVSS 0.84

SQRTNO2 0.77
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Fig. 4. Time-weighted vs. non-weighted annual averages for selected water quality parameters. Each
circle represents a different site-year. The diagonal line plotted on each graph indicates where x = y
(i.e. non-weighted values equal time-weighted values). (4) Log specific conductivity (LGSPCND).
(B) Volatile suspended solids (SSVOL). (C) Total inorganic suspended solids (TSIS). (D) Ratio of
NH, to total N (FRNH4).

different average values than time-weighting for the following water quality
variables: FRDON, FRNH4, FRNOX, NH4, TOC, SSTOT, TSIS, and SSYOL
(Table 6).

Relationships between watershed and water quality variables

Stepwise multiple regressions were run separately for all annual and seasonal
time-weighted or flow-weighted average water quality variables with n > 5.
Although the principal components representing agricultural/urban land use
(PC3) and forested stream fringe (PC5) were significantly related to some water
quality variables (Detenbeck et al. in preparation), only those regressions which
included PC1, PC2, or PC8 are shown in Tables 7 and 8.

Most time-weighted annual averages of water quality were significantly relat-
ed (p < 0.05) to one or more of the wetland-related principal components
(PC1, PC2, and PC8: Table 7). The wetland principal components were not
significantly related to annual averages for FRDON, FRNH4, FRSRP,
SQRTNH4, LOGVSS, and SQRTNO2, but they did explain a significant
amount of variation in seasonal averages. Explanatory variables retained in
regressions often varied among seasons.

The sign of regression coefficients (Tables 7 and 8) indicates whether the
principal component was associated with an increased or decreased value for the
water quality parameter. In general, a negative coefficient indicates improved
water quality (e.g. decreased nutrients or suspended solids concentrations),
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while a positive coefficient indicates reduced water quality. For some paramet-
ers, however, an increased or decreased value may have a fairly neutral effect on
water quality (e.g. specific conductivity).

With the exception of dissolved phosphorus, the regressions using flow-
weighted averages had higher adjusted R” values than those using time-weighted
averages (Tables 7 and 8). This probably represents both the greater effect of
wetlands during periods of high flow, and the higher quality of data for water-
sheds with available flow data. Six of the water quality variables exhibited
significant relationships whether expressed as time- or flow-weighted averages
(LGSPCND, CL, TKN, DON, FRDP, and LOGFCOL).

Wetland extent (PC1) was associated with lower average values for the
following time-weighted variables (Table 7): LGSPCND, CL, LOGPB, spring
and summer SQRTNO03, and autumn FRSRP. In contrast, PC1 was associated
with higher time-weighted averages of LOGTSS, spring TON, fall DON, sum-
mer FRDON, and summer and fall SQOP04. For flow-weighted averages, PC1
was also associated with lower annual PH, lower spring TOC, and higher annual
FRDN and FRNOX (Table 8).
~ PC2 was associated with lower annual DON, LGSPCND, TSIS, LOGFCOL,
TKN, SQRTNO3 and FRDP, lower spring LOGTSS and SQRTNOX, lower
spring and winter LOGTN, lower fall CL, and lower summer FLOW. In
contrast, PC2 was associated with higher spring and summer SSVOL, and
higher spring FROPR. For flow-weighted averages, PC2 was also associated
with lower annual TN, NH4, NOX, TON, and TP, lower summer CL, lower
spring DN, and higher spring FRDON.

The marsh component (PC8) was positively associated with time-weighted
annual TOC, annual LOGCOD, spring and summer TON, and summer
LOGDN, and negatively associated with flow-weighted summer NOX, fall
OP04, and fall FRSRP.

Potential effect of wetland loss on flood magnitude

Regional USGS flow equations (Jacques & Lorenz 1988) were applied to
watersheds across the metropolitan region to estimate the contribution of flow
per unit area of watershed to the 100-year flood (Fig. 5). Watershed storage (i.e.
proportion of watershed area in lakes and wetlands) ranged from 1.6 to 52.3%,
with approximately half of the site-years having a total storage within the range
of 10 to 20% of total watershed area. The overall range in percent storage was
sufficient to account for an increase in flood peak of over two orders of
magnitude. Most of the site-years considered, however, occurred within a region
of the graph (> 10% storage) in which decreased storage caused only small
increases in flood magnitude. Site-years with <10% storage (i.e. BASLg4,
BANB75, RAVNS80, and BEVN80) occurred within a region of the curve where
the estimated flood magnitude increased rapidly with loss of storage.
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Fig. 5. Estimated contribution to 100-yr recurrence interval flood discharge (Q100) per unit water-
shed area, as a function of percent storage (lakes + wetlands). Site-years with the lowest percent
storage are labeled.

Discussion
Effect of the wetland mosaic on water quality

The three wetland-related principal components, PC1, PC2, and PCS8, were
retained in a majority of the stepwise multiple regressions. Given the number of
regression analyses performed, it is possible that some of these results are
spurious. However, our results are generally consistent with wetland processes
known to affect water quality in individual wetlands. The numerous significant
relationships between water quality variables and these principal components
are impressive in view of the myriad of ways in which surface water may interact
with its watershed.

The second principal component (PC2) was most frequently selected in the
stepwise multiple regressions, particularly those with flow-weighted water qual-
ity variables. The predominantly negative coefficients for PC2 (Tables 7 and 8)
indicate that watersheds with the highest PC2 values (i.e. lowest RELWTPOS,
smallest AREA) had the best water quality (i.e. the lowest concentrations of
nutrients). Relating this principal component to watershed variables was com-
plicated, however, because PC2 was related to both wetland (e.g. RELWTPOS)
and non-wetland variables (e.g. AREA). The partial correlation analyses helped
to distinguish some of these effects. Partial correlation indicated that time-
weighted TKN (annual and spring), DON, and FRDP (fall) were primarily a
function of watershed size, whereas time-weighted LGSPCND (annual and
spring) was primarily a function of relative wetland position (RELWTPOS).
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Partial correlation analysis did not reveal any significant (p < 0.05) indepen-
dent relationship of either AREA or RELWTPOS with any other of the 45
water quality parameters explained by PC2 in the stepwise multiple regressions
(Tables 7 and 8).

Particulates

The effect of wetlands on particulates differed with the principal component,
time of year, and type of suspended solid. PC2 was related to lower annual
concentrations of inorganic solids (TSIS), and lower spring LOGTSS. These
effects may be due to sediment deposition, especially in seasonally flooded
wetlands (Boto & Patrick 1979; Johnston et al. 1984).

In contrast to the trapping of inorganic suspended solids, PC2 was related to
higher concentrations of volatile suspended solids (SSVOL) in the spring and
summer. The marsh component (PC8) was also related to higher annual TOC
and LOGCOD concentrations. Both of these findings imply that wetlands
export organic matter. Studies of salt marshes have shown them to preferentially
retain the more dense inorganic suspended solids, while exporting organic
suspended solids on an annual basis (Settlemyre & Gardner 1977; DeLaune et
al. 1979).

Although wetland extent (PC1) appeared to be related to higher annual levels
of suspended solids, this effect was no longer significant when Coon Creek
watersheds (CO01, CO02, CO04) were removed from the regression. Coon
Creek watersheds have a high density of drainage ditches, which can increase
loadings of suspended solids from streambank erosion (Brown 1988). Thus, the
drainage of wetlands, rather than their presence per se, appears to be related to
higher concentrations of suspended solids.

Fecal coliform

PC2 was significantly related to lower annual fecal coliform concentrations
(LOGFCOL), similar to findings that wetlands receiving wastewater discharge
decrease fecal coliform concentrations (Tilton & Kadlec 1979; Godfrey et al.
1985). Given that bacteria are usually associated with particulates (Stumm &
Morgan 1981), this may be the result of sedimentation in wetlands. Since many
of the microorganisms in fecal matter are not able to survive for long periods
of time outside of their host organisms, the long particulate retention time in
wetlands should promote natural bacterial die-off (Tilton & Kadlec 1979,
Hemond & Benoit 1988).

Nitrogen

There were numerous significant relationships between wetland-related com-
ponents and nitrate concentrations: wetland extent (PC1) was associated with
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lower time-weighted spring and summer SQRTNO3, and PC2 was associated
with lower annual time-weighted SQRTNO3 and flow-weighted NO3 and
NOX. Possible mechanisms for this effect include plant uptake or denitrification
(Nixon & Lee 1985).

While the net effect of wetlands was to reduce nitrate concentrations, the
finding that wetland extent (PC1) was related to an increase in annual propor-
tion of flow-weighted soluble nitrogen (FRNOX, FRDN) and summer flow-
weighted NOX indicates that nitrate may be flushed from wetlands during
periods of high flow. This is consistent with Brown’s (1985) observations that
the efficiency of wetlands in removing nitrates is related to retention time.
Individual wetlands with limited retention times were ineffective at removing
nitrates or suspended solids during high flow events, and occasionally increased
nitrate concentrations during spring storms. Wetlands could act as a source of
dissolved nitrogen during flow events if dissolved organic N produced through
decomposition and nitrates produced through nitrification of NH4 inputs were
flushed out faster than mineralization or denitrification could proceed.

PC2 was related to lower annual flow-weighted ammonium averages (NH4).
This is consistent with the work of Peterjohn & Correll (1984), who found that
89% of the N discharged from an agricultural field over one year was retained
by a downslope riparian forest, most of it within 19 m of the cropland-forest
border. Brinson. and coworkers (1984) found ammonium retention during
seasonal flooding of wetland forests, primarily due to interactions between the
floodwaters and the forest floor. The sorption of ammonium by wetland soils
would occur relatively quickly in comparison to the rate of denitrification,
which is diffusion limited (Reddy et al. 1976).

Positive relationships between wetland-related principal components and
some of the nitrogen forms were probably due to the solubilization of organic
compounds during litter decomposition: PC1 with spring TON, summer
FRDON and autumn DON; PC8 with spring and summer TON and summer
LOGDN. Increased spring TON concentrations related to PC1 and PC8 were
probably due to the flushing of plant litter broken down over winter. The
positive relationship between PC8 and TON continued through the summer,
possibly a result of slow Typha decomposition rates (Davis & van der Valk
1978).

High PC2 values were related to low concentrations of time-weighted DON
and TKN, and flow-weighted TON and TN. This relationship was probably due
to watershed area, however, rather than relative wetland position. AREA had
significant partial correlations (p < 0.05) with annual time-weighted TKN
(r = 0.78) and DON (r = 0.75), and spring time-weighted TKN (r = 0.60;
PC3 and PCS held constant). This implies that the larger a watershed, the more
organic nitrogen it is likely to export. However, it is possible that proximal
wetlands contributed to this relationship: long-term studies using soil dating
techniques have found high rates of N accumulation in streamside wetlands,
primarily in the form of organic N (DeLaune et al. 1978; Johnston et al. 1984).
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Phosphorus

The ability of wetlands to retain phosphorus has been reported by a number of
authors (summaries by Kadlec & Kadlec 1979; Whigham & Bayley 1979; Nixon
& Lee 1985), and is a benefit of some wetlands used for wastewater treatment
(Nichols 1983; Godfrey et al. 1985). Our results, however, showed both positive
and negative relationships between phosphorus concentrations and wetland-
related principal components. The marsh component (PC8) was related to lower
flow-weighted soluble phosphorus concentrations (OPO4 and FRSRP) in the
fall (Table 8), but wetland extent (PC1) was related to higher time-weighted
summer and fall orthosphosphate concentrations (SQOP04) (Table 7). Al-
though PC2 was related to a lower proportion of phosphorus in dissolved form
(FRDP), this was probably due to the effects of watershed area, which had a
significant partial correlation (p < 0.05) with fall time-weighted FRDP
(r = 0.76) independent of RELWTPOS effects. However, proximal wetlands
may have contributed to the relationship between PC2 and decreased TP
(annual and spring flow-weighted) in connection with their sediment trapping
properties. The bulk of TP is in particulate form, sorbed to fine silts and clays
which are not efficiently trapped in upland riparian areas (Cooper et al. 1986),
but which are trapped in floodplain wetlands (Mitsch et al. 1979; Johnston et
al. 1984; Brinson et al. 1984; Yarbro et al. 1984; Whigham et al. 1986).

The higher summer and fall orthophosphate concentrations (SQOP04) asso-
ciated with wetland extent may be due to the leaching of P from senescent
wetland vegetation (Richardson et al. 1978; Davis & van der Valk 1978). While
this process would not be expected to occur in early summer, Prentki et al.
(1978) reported substantial P leaching from wetland vegetation in September,
which was included in our ‘summer’ period.

Other water quality variables

Both PC1 and PC2 were related to lower annual and seasonal specific conduc-
tance, an indicator of the total concentration of ionized substances dissolved in
water (American Public Health Association 1985). The mechanisms for these
effects are not known, but because wetland extent reduced specific conductance
throughout the ice-free period, a physical rather than biological mechanism is
implied.

PC1 and PC2 were also related to lower chloride concentrations. Bayley et al.
(1987) recently reported retention of chloride by wetland ecosystems in Ontario,
even though chloride has generally been considered to be so ecologically conser-
vative that it is commonly used as a tracer in mass balance studies. Alternatively,
the decrease in chloride concentration could be a dilution effect if the wetlands
are discharging groundwater low in chloride to the surface.

PC1 was related to lower annual lead concentrations and flow-weighted pH.
Although the retentive capacity of wetlands varies for different metals and
wetland types, wetlands are generally considered to be ‘sinks’ for metals (Oberts
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1981; Giblin 1985). Retention mechanisms include precipitation of insoluble
metal salts, sorption of metal ions, and uptake by wetland vegetation (Hemond
& Benoit 1988). The relationship between wetland extent and pH was probably
due to the production of humic acids by the wetlands (McKnight et al. 1985).

Effect of the wetland mosaic on flood storage

A number of authors have related the storage capacity of wetlands and lakes in
the drainage basin to flood peak reduction (Novitzki 1979; Carter et al. 1979),
and those principles have been applied in models for estimating flood magnitude
(Ogawa & Male 1986). The relationship between basin storage (as percentage of
basin area in wetlands and lakes) and relative flood flow is non-linear in the
empirical models developed by Jacques & Lorenz (1988), so that our data
yielded a critical threshold at about 10%. Small wetland losses in watersheds
with < 10% wetlands could have a major effect on flood flows. A similar
threshold was found for wetlands in Wisconsin watersheds by Novitzki (1979).

Methodological limitations

While the methods used proved fruitful in exploring relationships between
wetland mosaics and water quality function, the large size of the area studied
(> 2073 km?) prevented detailed landscape measurements. The grid resolution
and mapping conventions used made it impossible to detect wetlands smaller
than about 8 ha. This relatively coarse resolution could bias the results against
the effects of small wetlands, which are more likely to be affected by develop-
ment. However, when our wetland area data were compared with those of
Oberts (1981) for the same watersheds, our results did not appear to un-
derestimate total wetland area. Differences in the definition of wetland used in
the two studies probably accounts for most of the discrepancies between the
data sets.

While the use of water quality data from different sampling agencies and from
different years could have biased our results, these biases probably were either
negligible or reduced our chances of detecting significant effects of wetlands on
water quality. The analysis of unfiltered water samples for dissolved inorganic
nutrients probably overestimated the true concentration of ions in solution.
However, it was not possible to correct for this source of error without having
access to comparable data from both filtered and unfiltered samples. If any-
thing, this source of bias would have caused us to underestimate the role of
wetlands in improving water quality, because a greater proportion of the early
data was derived from unfiltered water samples. Although some of the early
water quality analyses may not have been corrected for color (not mentioned in
most data reports), the lack of correction would have overestimated dissolved
ions measured spectrophotometrically, therefore reducing the probability of
detecting a water quality improvement function for wetlands. Differences in
detection limits among different sampling agencies also could have biased our
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results, but because average water quality values were well above standard
detection limits, these biases would have been small relative to the variation in
water quality among watersheds.

While the use of principal components complicated interpretation of the
results somewhat (e.g. for PC2), principal components analysis is a valuable
exploratory tool for evaluating empirical relationships between watersheds and
water quality. Principal components analysis reduced numerous possible water-
shed descriptors, many of which were correlated, to a few independent variables
which could be related to water quality and flow. Partial correlation analysis
was also useful in examining the contribution of individual variables represented
by complex principal components. Principal components analysis is a well-
known multivariate statistical technique that can be used to reduce the dimen-
sionality of a complex problem and to explore the relationships among a large
number of potential explanatory variables (e.g. Tatsuoka 1971; Ludwig &
Reynolds 1988). We have effectively applied principal components analysis to
a wide variety of scientific problems including bird-habitat relationships (Niemi
& Hanowski 1984), animal morphology (Niemi 1985), and environmental che-
mistry (Niemi et al. 1987).

Conclusions

Cumulative impact assessment differs substantially from the approach used by
existing wetland evaluation systems (Reppert et al. 1979; U.S. Army Corps of
Engineers 1980; USFWS 1980; Adamus 1983) because it evaluates the collective
function of a ‘group of wetlands, rather than the contribution of an individual
wetland. This landscape-scale, long-term approach has only recently been made
possible by developments in ecological theory (Allen et al. 1984; Harris 1984;
Forman & Godron 1986), methodology (i.e. multivariate statistical analysis),
and equipment (i.e. Geographic Information Systems).

Our results indicate the importance of considering wetland position in the
landscape when evaluating cumulative function. All wetlands in a watershed do
not behave alike with regard to water quality function, which may explain why
previous attempts to relate percent wetland to drainage basin water quality have
generally been unsuccessful (Whigham & Chitterling 1988). Wetland extent
(PC1) was related to decreased concentrations of only three of the time-weighted
variables on an annual basis, none of which were nutrients: chloride, lead, and
specific conductance. PC2, which was related to wetland proximity, helped to
explain decreased concentrations of five annual time-weighted variables
(LGSPCND, LOGFCOL, FRDP, SQRTNO3, and TSIS) and three additional
flow-weighted variables (NH4, NOX, and TP). Therefore, the position of wet-
lands in the watershed appears to have a substantial effect on water quality,
particularly with regard to sediment and nutrients.

There are several possible explanations for the importance of proximal wet-
lands to water quality. First, nutrients and sediments which have entered a
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stream system can only be affected by wetlands downstream of the source, so
watersheds with wetlands concentrated upstream (i.e. high RELWTPOS value,
low PC2 value) would have less effect on downstream pollution. Second, down-
stream wetlands may have different characteristics than headwater wetlands
which would affect their nutrient retention capacity (e.g. mineral soils which
have a greater P sorption capacity, longer duration of flooding which wouid
increase sedimentation potential). Third, the effects of wetlands on water quality
may only be detectable if they are close to the sampling station.

These findings do not necessarily mean that wetlands farther upstream from
a sampling station are less important to water quality than proximal wetlands;
just that their effects on nutrients are not detectable very far downstream, or are
offset by downstream inputs. Further work is needed to determine distance
relationships between wetlands and downstream water quality.

Wetland type was not distinguished by the principal components analysis,
with the exception of the marsh component (PC8). All wetland classes were
significantly correlated with PC1 (Table 5), and neither wetland vegetation nor
water regime entered into PC2. The marsh component (PC8) explained varia-
tion in several water quality variables not explained by the other PCs, implying
that differences in vegetation and/or water regime are functionally important.
These relationships could be distinguished better by including watersheds with
more diverse wetland properties in the analysis (e.g. watersheds with primarily
forested wetlands, watersheds with primarily semi-permanently flooded wet-
lands).

One benefit of this approach is that it allows us to evaluate the cumulative
effect of wetlands over an entire year, rather than just the growing season. The
few studies which have monitored wetlands in temperate latitudes over all four
seasons have shown that biotic nutrient uptake during the growing season is
sometimes reversed by releases of nutrients during the dormant season, resulting
in no net annual effect (Lee et al. 1975). Our use of annual or biennial averages
made it possible to identify these net effects.

This landscape approach to the assessment of cumulative function will be
facilitated in the future by the increasing availability of Geographic Information
Systems and digitized maps. Wetland scientists and managers can use digital
wetland maps from the National Wetlands Inventory, digital soil maps from the
Soil Conservation Service, and digital topographic, land use, and stream maps
from USGS to characterize watersheds, then statistically relate those watershed
parameters to water quality and flow data summarized from the nationwide
STORET database. By comparing data from many watersheds representing
different degrees of impact, the incremental effect of additional impacts can be
determined.

Those wetland managers without a GIS can still benefit from the relationships
developed from this analysis, because the variables best correlated with the
principal components may provide simple measures for analyzing cumulative
impact. For example, our results suggest that watersheds with high PC2 values
have a greater influence on nutrients and inorganic suspended solids. Relative
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wetland position (RELWTPOS) was highly correlated with PC2, and can be
easily calculated (Eq. 1) without a GIS. Similarly, the proportion of wetland in
a watershed, which may be determined from National Wetland Inventory data,
may be a suitable substitute for wetland extent (PC1). While further work is
needed to verify the applicability of these relationships to other regions, and to
distinguish the effects of individual watershed variables, this type of analysis can
provide the tools needed for accurate cumulative impact assessment.
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