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Application of artificial neural networks as a non-linear modular
modeling technique to describe bacterial growth in chilled food
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Abstract

In many chilled, prepared food products, the effects of temperature, pH and %NaCl on microbial activity interact and this
should be taken into account. A grey box model for prediction of microbial growth is developed. The time dependence is
modeled by a Gompertz model-based, non-linear differential equation. The influence of temperature, pH and %NaCl
reflected in the model parameters is described by using low-complexity, black box artificial neural networks (ANN’s). The
use of this non-linear modeling technique makes it possible to describe more accurately interacting effects of environmental
factors when compared with classical predictive microbiology models. When experimental results on the influence of other
environmental factors become available, the ANN models can be extended simply by adding more neurons and/or layers.
 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction killing pathogenic vegetative cells by a pasteuriza-
tion process. The shelf life of this type of product is

The increased consumer and catering interest for determined by the evolution of surviving micro-
chilled, prepared food products and food components organisms which can spoil the product or possibly
can be explained by their essential characteristics: even cause pathogenic effects.
freshness, easy to use (convenience), gain of time, The field of predictive microbiology [reviewed by
easy to stock and choice [see, e.g., Martens (1996)]. Ross and McMeekin (1994) and Whiting et al.
In contrast with classical sterilization processes, a (1997)] aims at developing mathematical models for
trade-off between safety and quality is attained by these non-linear inactivation and growth processes.

The non-linearity is inherent to the living microbial
* population and limits strongly the use of classicalCorresponding author. Tel.: 132 16 321585; fax: 132 16

321960; e-mail: jan.vanimpe@agr.kuleuven.ac.be linear modeling techniques to describe the evolution
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of micro-organisms as a function of time (primary bial growth in time-varying environmental condi-
model). tions, which is important for chilled, prepared food

The main factors influencing the microbial stabili- products.
ty of chilled, prepared food products are temperature,

dn apH, and %NaCl. The temperature in particular may
] ]]5 c(n 2 n ) lnS D0dt n 2 nvary significantly throughout the complete product- 0

ion and distribution chain. Therefore, to predict m eD D D max
]]]with n 5 ln(N), a 5A 2 n , c 5 (2)0 0accurately the shelf life of this type of product, A 2 n0 0

dynamic mathematical models (i.e., involving dif-
ferential equations) are needed as primary model Throughout this paper, this existing dynamic model
[see, e.g., Van Impe et al. (1992) or Baranyi et al. will be used as primary growth model.
(1993)]. Prototype dynamic models to describe
growth and inactivation of a microbial population as 2.1.2. Incorporation of the influence of
a function of time and temperature have been environmental factors
presented in Van Impe et al. (1992), Van Impe et al. By modeling the growth parameters m , l andmax(1995) and Baranyi et al. (1996). A as a function of temperature T, pH and %NaCl0

(secondary models) a dynamic model as function of
time and environmental factors is obtained. In the

2. Material studied, methods, techniques literature four main model types can be found:
ˇ ´Belehradek type models, (Modified) Arrhenius type

2.1. Dynamic hybrid growth model models, Cardinal models and polynomial relation-
ships [see, e.g., Wijtzes et al. (1993); Davey (1994);

2.1.1. Dynamic model for microbial growth Rosso et al. (1995) and McClure et al. (1993),
The Modified Gompertz equation, proposed by respectively].

Zwietering et al. (1990) is commonly accepted It is important to clarify the difference between
(Garthright, 1991) as a possible static equation to purely additive models, in which it is assumed that
describe the growth of micro-organisms N [cfu /ml] the environmental factors act independently from
as a function of time t[h] (primary model). each other, and synergistic models, in which a

combined (interacting) effect is described. This point
m eN max is often discussed in the literature. The general] ]]ln 5 A exp 2 exp (l 2 t) 1 1F S DGS DN A0 statistical concept of studying additive / interactive

(1) effects (see, e.g., Neter et al. (1990), Chapter 7) is
illustrated in the paper of Davies (1993), concerning

This model owns its success to the physical rele- the design of experiments for predictive microbial
vance of its parameters and the limited correlation modeling.
between them. N [cfu /ml] is an approximation to0 An example of a simple hypothetical additive
the initial population. l[h] represents the lag time. model, describing the influence of temperature T and
The maximum growth rate is given by the parameter pH on the growth rate, could be
m [1 /h]. (However, this parameter does notmax

]]represent the maximum specific growth rate as m 5 a 1 b ? T 1 c pH (3)œ max
mentioned in the literature [see, e.g., Baranyi et al.

in which a, b and c are regression coefficients. The(1993)] when dealing with the slope of the exponen-
3-dimensional plot of this model is presented in Fig.tial growth phase.) A [-] represents the asymptotic
1 (left), which is similar to Fig. 1 in Davies (1993).growth which will be reached at t→` and is equal to
Indeed, according to Davies (1993), for factors thatthe difference between A [which equals ln(N )] and0 `

do not interact, all results lie on a flat but slopingln(N ).0

surface. More general (Neter et al., 1990), for non-A dynamic extension of this model is developed
interacting factors the curvature (not only a straightby Van Impe et al. (1992) and Van Impe et al. (1995)

]]line) of the dependent variable (e.g., m ) as aand makes it possible to describe accurately micro- œ max
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Fig. 1. (left) Representation of an hypothetical additive model. (right) Representation of a synergistic model.

function of 1 independent variable (e.g., T ), does not lower than the temperature at which growth is
depend on the value of another independent variable actually observed (McMeekin et al., 1993)]. Con-
(e.g., pH). ceptually, T could be identified on a data setmin

On the other hand, for factors that do interact, the describing m as a function of temperature atmax

curvature of the dependent variable as a function of 1 optimal pH, while pH could be identified on amin

independent variable, does depend on the value of data set describing m as a function of pH atmax

another independent variable. This can be simulated optimal temperature. However, this procedure does
ˇ ´using the following multiplicative Belehradek type not guarantee the validity of the obtained parameter

model proposed by Adams et al. (1991) values under more stringent conditions of tempera-
ture and pH. To obtain reliable parameter values for

]Œr 5 d ? (pH 2 pH ) ? (T 2 T ) 5 d ? (pH ? d, T , and pH , they have to be identifiedmin min min min min

simultaneously on a data set spanning a wide rangeT 2 pH ? T 2 T ? pH 1 pH ? T ) (4)min min min
of temperature and pH values. (Of course, the values
of T and pH obtained with the previouswith r the growth rate, d a regression coefficient and min min

conceptual procedure can serve as excellent startingpH and T the conceptual minimum pH andmin min

points for the simultaneous identification.) The un-temperature for growth, respectively. The model is
derlying reason for this is the possibility that whenpresented in Fig. 1 (right), which is similar to Fig. 2
the temperature is suboptimal, the pH range overin Davies (1993) describing interacting factors: the
which an organism can grow becomes more narrow.results do not lie on a flat surface.
In that case, the growth rate can be made zero byTherefore, it can be concluded that, contrary to
application of a specific combination of temperaturediscussions often found in the literature, all four
and pH, in which each of these factors separatelymodel types mentioned previously are capable of
would not be able to inactivate the growth. In otherdescribing interacting effects (synergism/antagon-
words, the reduction in growth rate is frequentlyism) of environmental factors, with the rare excep-
greater than would be expected if the differenttion of very simple polynomial models [see, e.g., Eq.
influencing factors were assessed separately (Mossel(3)].
et al., 1995, p. 70) and the effects are not in-Going beyond this, the adaptation in, e.g., the

ˇ ´ dependent /additive but interactive.Belehradek type model Eq. (4), to possible synergis-
The combined use of several preservation methodstic effects comes in at the important point of the

to halt microbial growth can be motivated by theconceptual nature of the cardinal values of tempera-
hurdle concept (Leistner and Rodel, 1976) and ature, pH. . . [Observe, e.g., that T is usually 2–38Cmin
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synergistic effect of the applied hurdles is likely 2.1.3. Artificial neural networks as a black box
(Leistner, 1996). This is extremely important when modeling technique
considering the increasing interest in chilled, pre- The development of artificial neural networks
pared food products, for which the consumer increas- (ANN’s) is inspired by the elementary principle of
ingly demands for lower levels of nitrite and/or the human nervous system: an interconnection be-
NaCl and a high nutritional value. Of course, in this tween neurons leading to a new nerve which causes a
case, the temperature is suboptimal and the influence weighted, non-linear response. As such, not all the
of all other factors is affected by this condition. As information is amplified in the same way.
such, producers are forced towards the borders of Each neuron performs the simple operation of
food additives and food preservation methods. adding a weighted sum (weights w ) of the incomingj

Therefore, the need for models capable of describing input signals p , to a bias term (or threshold) b andj r

interacting effects at, especially, low temperatures feeding the result to a nonlinear activation (or
becomes more and more urgent. transfer) function s(?) (e.g., sigmoidal unit or binary

The interacting curvature, capable to be described threshold unit) which results in the output value y ofi

ˇ ´by Belehradek type models, (Modified) Arrhenius the neuron.
type models, and CTMI models, depends merely on

mthe structural properties of the model and, if applic-
y 5 s O (w p 1 b )S Di j j rable, the realistic values of biologically meaningful

j51
parameters. However, there is no guarantee that these
structures are indeed capable of describing all kinds

Different neurons can be connected to a neuron layerof curvatures.
and different neuron layers can be placed behindA polynomial model, the fourth model type men-
each other forming a complete neural network.tioned above, is a first prototype model for which it
Interactions between different inputs p can bejis mathematically proven that the structure is flexible
modeled without specifying them in advance. Theenough to incorporate, e.g., even very strong interac-
choice for this black box modeling approach is basedtive effects at the growth/no growth interface,
on the following ANN properties.usually by including the cross products of different

environmental factors. However, a high number of
parameters is needed to describe accurately a specific • Based on the Universal Approximation Property
data set. This issue will be addressed further in the of ANN’s (Kolmogorov, 1957) it is stated that
next subsection. neural networks consisting of three layers-the first

Because of the lack of sufficient microbial /bio- with input variables, the second using sigmoidal
chemical knowledge concerning the growth of and the third using linear transfer functions-are
micro-organisms, it is not possible at this moment to capable of arbitrarily accurate approximation to
derive completely mechanistic models and a black an arbitrary function after identification of the
box modeling approach is the suitable way to model parameters (training of the neural network)
approach the problem. (Observe the fact that all [see, e.g., Hornik et al. (1989)]. Note the fact that
models mentioned above have black box (or empiri- this property is not proven for other model types
cal) characteristics because no mechanistic deduction available in the literature, e.g., Arrhenius type
of the proposed model structure is known.) models, except for the polynomial models. How-

In this paper, low complexity artificial neural ever, the number of parameters needed in polyno-
networks are investigated on their usefulness in the mial model fitting grows with the number of

Mfield of predictive microbiology. An overview of the inputs d as d (with M the order of the polyno-
methodology of artificial neural network modeling mial function), whereas the number of free pa-
can be found in Najjar et al. (1997) (Part I) and rameters grows only linearly (d) or eventually

2Hajmeer et al. (1997) (Part II). As such, only a short quadratically (d ) with d the dimension of the
introduction is included here, focusing on some input space, for a given number M of hidden units
theoretical aspects and the specific approach used in in a neural network model (Bishop, 1995).
this research. • Barron (1993) has studied the way in which the
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residual sum-of-squares error (SSE) decreases as damaged [see, e.g., Delignette-Muller et al. (1995)].
the number of parameters in a model is increased. In such a case, so-called overfitting is unavoidable
For neural networks, he showed that this error yielding a model with poor interpolative properties.
falls with order O(1 /M) where M is the number A specific ANN structure has to learn which
of hidden units in the network, irrespective of the output it has to produce for given inputs. The
number of input variables. By contrast, the error technique of supervised learning [see, e.g., Patterson

2 / donly decreases as O(1 /M) , where d is the (1996)] consists of presenting to the ANN a set of
dimensionality of input space and M the order of inputs with their associated outputs, the target-val-
the polynomials or any other series expansion in ues. The training of the network starts with an initial
which the coefficients of linear combinations of value for every parameter (weights and biases) and
fixed basis functions are adapted. This efficient calculates the output for every set of inputs. The
scaling with dimensionality implies the advantage produced output is compared with the target-values
of neural network models for cases where d$3. and some optimization algorithm is used to minimize

• Due to the black box characteristics, as mentioned the error between the produced output and the target-
above, no a priori knowledge about the mech- values by adjusting the parameter values. In the field
anistics of the processes or their interactions is of non-linear modeling techniques, this implies non-
needed. Rich, i.e., informative experimental data linear optimization of the parameters. Observe that
are needed to identify the model structure and the this procedure is not different from classical model-
parameters. ling identification, in spite of another terminology.

• Based on their modular properties, ANN’s are All optimization algorithms have to cope with the
very suited to tackle a problem in a structural problem of local minima. In such a case, the
way, e.g., by first modeling m as a function of algorithm finds a set of parameter values which formmax

temperature, and, later on, if necessary, by ex- a minimum (the gradient of the error function with
tending the neural network model structure by respect to all parameters is zero), but there exists
incorporating additional neurons and/or layers if another parameter set with a lower error (global
the influence of pH, %NaCl, . . . , also needs to be minimum). Observe that the problem of local minima
modeled. is inherent to all models which are non-linearly

parameterized, and is therefore not specific to ANN
This approach is different from the one in Najjar models.

et al. (1997) and Hajmeer et al. (1997). These In this research, the Quasi-Newton algorithm is
authors started from an extensive dataset: 66 training applied, known [see, e.g., Bishop (1995)] to be more
data sets describing the influence of T, pH, %NaCl, efficient compared to the Gradient Method used in
and %NaNO on M, the time corresponding to the Najjar et al. (1997) and Hajmeer et al. (1997).2

maximum growth rate and B, the relative growth rate Different starting values for the parameters are tested
at t5M. This means that 132 data points were used in order to avoid the selection of a local minimum.
to identify a large artificial neural network, using 120 A very important issue during mathematical
parameters. The data originated from Zaika et al. modeling of experimental data is the optimization of
(1994) using the Modified Gompertz equation to the trade off between (i) the model complexity, and
describe the growth of Shigella flexneri. (ii) the goodness of fit. More specifically, for the

However, in food microbiology, data are scarce. artificial neural networks under investigation, model
Therefore, this paper focusses on extracting as much complexity is determined by the number of layers,
information as possible out of data sets usually the number of neurons per layer, and the associated
(much) less extensive. In this case, low complexity number of interconnection weights and biases. The
artificial neural networks must be searched for. error criterion chosen for this study is the residual
(Observe that at least 120 data points are required sum of squares error criterion (SSE). To compare
when using 120 model parameters.) Moreover, good models with a different number of parameters, the
modelling practice prescribes that the number of data MSE (residual mean square error) can be used
points should be (much) higher than the number of (although this criterion is strictly speaking only valid
parameters. Otherwise, model robustness may be for linear models), defined as follows
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A 5 b (1 2 exp[c (T 2 T )]) (7)2 2 A,maxSSE
]]MSE 5 n 2 p

Because of the constant level of inoculum used in
this study, A can be modelled by adding a term0with n2p the number of degrees of freedom of the
ln(N ) to Eq. (7). The three models are simulated by0model under consideration (n is the number of data
using specific parameter values for Lactobacilluspoints, p is the number of parameters). Observe the
plantarum. As such, three suitable training sets arefact that a model using too many parameters com-
obtained, one for each growth parameter. The use ofpared to the number of data points will be rejected
simulation data makes it possible to create anwhen using this criterion.
extensive data set. However, it is important to keepThe complete grey box hybrid model, which will
in mind that these data are not real experimentalbe developed in this paper, is schematically pre-
data.sented in Fig. 2. This model is called grey box

because of the combination of black box neural
networks and the grey box (mechanistically inspired) 2.2.2. Validation: dynamic growth data
dynamic Gompertz equation. (The use of neural The hybrid grey box model, obtained by combina-
networks as primary growth model is theoretically tion of Eq. (2) and the ANN models to describe the
possible, but not investigated in this research.) temperature dependence of the growth parameters,

The description of the identification and validation will be validated on dynamic growth data of Lact.
1data, used to identify appropriate ANN model struc- plantarum. The predictions will be compared with

tures, can be found in the next subsections. those of the model of Van Impe et al. (1992), Van
Impe et al. (1995), combining the same primary
growth model [Eq. (2)] with Eq. (5) to Eq. (7).2.2. Modeling the influence of temperature

2.2.1. Identification data 2.2.3. Validation: experimental results of other
Zwietering et al. (1991) compared different micro-organisms

models available in the literature, capable of describ- To evaluate the modeling capability of the selected
ing the temperature dependence of the growth pa- neural network models, the neural network model
rameters and selected the following models. describing the temperature dependence of m willmax

be validated on a whole set of experimental data (not2 2
m 5 b (T 2 T ) (1 2 exp[c (T 2 T )]) (5)max 1 min 1 max

1These data are obtained from Dr. M. Zwietering, Wageningen
Agricultural University, The Netherlands.ln(l) 5 p /(T 2 q) (6)

Fig. 2. Grey box hybrid model.



A.H. Geeraerd et al. / International Journal of Food Microbiology 44 (1998) 49 –68 55

specific for chilled, prepared food products), ob- the temperature, pH and %NaCl content dependence
2tained in the framework of an EU-project. of the growth parameters for Brochothrix thermos-

As such, the structural possibilities of the pro- phacta [by combination with the Modified Gompertz
posed artificial neural network models can be investi- Eq. (1) or the dynamic growth model of Baranyi et
gated for a large range of micro-organisms including al. (1993)]. The polynomial relationships are pre-
non-pathogenic ones. The data sets investigated sented in Eq. (10).
comprise: Acinetobacter sp. 2.55, Acinetobacter sp.

T
4.41, Bacillus stearothermophilus 238, and Bacillus p p p pHln( g) 5 p 1 f g2 3 41 F Gsubtilis (Ratkowsky et al., 1983); Clostridium

NaCl
botulinum type A and type B (Ohye and Scott,

T pH NaCl1 f g1953); Escherichia coli (Barber, 1908);
p p p TPsychrophilic Pseudomonas 21-3c (Ingraham, 1958); 8 5 6

Pseudomonas syringae and Xanthomonas pruni p p p pH (10)5 9 73 43 4(Young et al., 1977). p p p NaCl6 7 10
The MSE obtained with the artificial neural net-

with g one of the growth parameters (m , A or l)work model will be compared with the MSE of the max 0

and p . . . , p the 10 parameters for the model. Asfollowing three modeling approaches (each having 1 10

such, these three models need 30 parameters in total.four parameters): (i) Eq. (5), used previously to
By keeping the %NaCl content at a specific,identify an appropriate artificial neural network

constant value [namely, 0.5% (w/v)], these polyno-model structure, (ii) the model of Ratkowsky et al.
mials can be used to generate a large amount of(1983).
simulation data as functions of temperature and pH2 2 2

m 5 b (T 2 T ) (1 2 exp[c(T 2 T )]) (8)max min max forming the basis of this first identification step.

and (iii) the CTMI model (Cardinal Temperature
2.3.2. Complete identification: experimental data ofModel with Inflection point) of Rosso et al. (1995)
B. thermosphacta

m 5 m t(T ) (9)max opt An important remark on the previous identification
step is that models, derived out of simulation data,

t(T ) 5 may describe more these data than real experimental
T , T , 0 data. Moreover, the polynomial relationships used inmin

2 the previous step are developed to incorporate three(T 2 T )(T 2 T )max min
]]]]]]]]T , T , T ,min max environmental factors. It is possible that a polyno-(T 2 T )[(T 2 T )(T 2 T )opt min opt min opt

mial model, specifically developed to describe the2 (T 2 T )(T 1 T 2 2T )]51 2opt max opt min
influence of temperature and pH alone, would beT . T , 0max more adapted to the experimental data points. There-
fore, it will be evaluated how the selected artificial2.3. Modeling the combined influence of
neural network structures perform when used on thetemperature and pH
experimental data of B. thermosphacta. If these data
reveal an interacting effect between temperature and2.3.1. Data for structural identification
pH, not included in the polynomial description, theFor the structural identification of neural network
artificial neural network model will adapt its parame-models, capable of describing the combined and
ters to this situation. The data are obtained in theeventually interactive influence of temperature and

3framework of an EU-Project and form the basis forpH on growth parameters, simulation data are used
the model in McClure et al. (1993). As such, theas explained above. In McClure et al. (1993) polyno-

mial relationships are presented which can describe

2 3FAIR CT97-3129: PREMIUM: Predictive microbiology of struc- AFRF-CT91-0047: Development of computer-aided process de-
tured foods: development of a unifying modelling framework and sign procedures to improve the quality and safety of products with
application to microbial interactions. a limited shelf-life.
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derived artificial neural network models will be data Y at each combination j of independenti, j

based on the same data as the polynomial relation- factors. The pure error sum of squares is defined as
ships Eq. (10).

2¯SSPE 5O O (Y 2 Y )i j i, j j

2.3.3. Validation data: experimental data of other
Observe the fact that combinations of independentmicro-organisms
factors where no duplicate is available make noThe value of the obtained artificial neural network
contribution to SSPE. The lack of fit sum of squaresmodels will be highlighted on experimental data of
is defined asother micro-organisms, namely Escherichia coli

0157:H7 and Aeromonas hydrophila K144. The SSLF 5 SSE 2 SSPE
network structure will be retained but the parameters,

The test statistic istypical for each micro-organism and its environment,
reidentified. SSLF SSPE

]] ]]F 5 YThe data from E. coli are obtained in the frame- c 2 p n 2 c
4work of an EU-project . This data set consists of 34

with n the total number of data points, p the numberdata points, from which one is not used because of
of parameters in the artificial neural network or thean unrealistic high value of one of its components.
polynomial model and c the number of differentThe data originated from Buchanan and Klawitter
levels of combinations of independent factors. F* is(1992) who developed a polynomial model describ-
tested against F(12a, c2p, n2c).ing the influence of temperature, pH and %NaCl.

A polynomial relationship for A. hydrophila is
2.4.2. Application of the grey box modeldeveloped by Palumbo et al. (1991), incorporating

Upon completion of the previous step, the greythe influences of temperature, pH, %NaCl and
box model depicted in Fig. 2 is established. Its%NaNO . Only the data with the lowest, constant2
predictive value will be evaluated by application tolevels of %NaCl and %NaNO are retained, yielding2
the experimental growth curves of B. thermosphacta.a data set with 17 points.

Note the fact that in the literature often the
application of the secondary model (after combina-2.4. Modeling the combined influence of
tion with an appropriate primary model) on thetemperature, pH and %NaCl
original experimental data is not shown. Considering
practical applications, it is important to evaluate the2.4.1. Identification data
time prediction of the combined primary /secondaryAs the data set for B. thermosphacta, mentioned
model.above, contains 41 growth curves influenced by

temperature, pH and %NaCl, these experimental data
can be used as such to identify appropriate ANN
model structures and associated parameters. The new 3. Results
models will be compared with the original polyno-
mial relationships of McClure et al. (1993) presented 3.1. Modeling the influence of temperature
in Eq. (10). More specifically, an F-test will be
conducted (although strictly speaking this is only 3.1.1. Identification data
valid for linear models) making use of the 3 dupli- After an extensive study of different ANN models
cates available in the data set. The duplicates give an taking into account the tradeoff between the number
idea of the experimental error by construction of a of parameters and SSE, the ANN model, presented in
general model [see, e.g., Zwietering et al. (1991)]. Fig. 3, is identified to describe the temperature

¯This model uses the sample mean Y of the measured dependence of m . For the temperature dependencej max

of the other two growth parameters, namely, l and
4 A , other ANN model structures are selected. An0FAIR CT97-3129: PREMIUM: Predictive microbiology of struc-

overview can be found in Table 1. Observe thetured foods: development of a unifying modelling framework and
application to microbial interactions. different transfer functions of the individual neurons.
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3.1.2. Validation: dynamic growth data
Combination of the ANN models, obtained in the

previous step, with the dynamic version of the
Modified Gompertz equation [Eq. (2)] makes a
prediction of the growth of the microbial population
possible as a function of time. Some results can be
found in Fig. 4. The predictions are compared with
those of the model of Van Impe et al. (1992), Van
Impe et al. (1995), consisting of Eq. (2) combined
with the classical Eq. (5) to Eq. (7).

3.1.3. Validation: experimental results of other
micro-organisms

The description of experimental data, different
from Lact. plantarum, is performed by reidentifying

Fig. 3. ANN description (full line) for the simulation data (‘‘o’’) the seven ANN model parameters for m tomaxof Eq. (5) to describe the temperature dependence of m .max incorporate the characteristics of the micro-organism

Table 1
Overview of the selected ANN models, describing the temperature dependence of m , l and Amax 0

Growth parameter Model Neuron description [ parameters
2

m ANN 1 N 5exp[2(W ?T 1C ) ] 7max 1 1 1
2N 5exp[2(W ?T 1C ) ]2 2 2

m 5W ?N 1W ?N 1Cmax 3 i 4 2 3

l ANN 2 N 5exp(W ?T ) 41 1

N 5exp(W ?T )2 2

ln(l)5W ?N 1W ?N3 1 4 2

A ANN 3 A 5tanh(W ?T1B ) 20 0 1 1

Fig. 4. Growth curves of Lactobacillus plantarum, predicted by combination of the Modified Gompertz Equation for growth and the ANN
models (full line) or the more classical models (dashed line) for a temperature step.
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and its experimental environment (besides tempera- trated in Table 3 for the selected ANN model 4a
ture). A comparison of the MSE of the ANN and describing the temperature and pH dependence of
three model approaches, namely Eq. (5), Eq. (8) and m ? The network structure is the same as formax

Eq. (9) is provided in Table 2. Fig. 5 illustrates the temperature alone, upon adding an extra input pH.
ANN description. For m , three ANN models are selected: ANNmax

model 4a, 4b and 4c.
3.2. Modeling the combined influence of
temperature and pH 3.2.2. Complete identification: experimental data of

B. thermosphacta
3.2.1. Data for structural identification The structures of the ANN models are used in this

Again, an extensive study reveals the structural second step on the real experimental data. The
properties of several ANN models. The ANN performance of ANN model 4b to describe the
models, derived in the previous section, form a temperature and pH dependence of m is illustratedmax

guideline for the development of new ANN models in Fig. 6, together with the residuals (defined as the
because of their modular properties. This is illus- difference between the data points and the model

Table 2
Comparison between the ANN model description and three more classical models for the temperature dependence of mmax

Micro-organism MSE MSE MSE MSE
ANN model Eq. (5) Eq. (8) Eq. (9)

Acinetobacter sp. 2.55 1.988e2008* 2.769e2008 2.256e2008 3.277e2008
Acinetobacter sp. 4.41 8.182e2009 7.659e2009* 8.032e2009 1.219e2008
Bacillus stearothermophilus 238 1.293e2007* 1.694e2007 2.909e2007 1.375e2007
Bacillus subtilis 0.00114* 0.00182 0.00228 0.00182
Clostridium botulinum type A 0.00024 0.00011* 0.00017 0.00020
Clostridium botulinum type B 0.00027* 0.00148 0.00056 0.00185
Escherichia coli 0.02284 0.03518 0.02588 0.02239*
Psychrophilic Pseudomonas 2123c 0.00073* 0.00186 0.00078 0.00109
Pseudomonas syringae 0.00038 0.00060 0.00035* 0.00075
Xanthomonas pruni 0.00093 0.00072 0.00061* 0.00087

*lowest MSE.

Fig. 5. (left) ANN description (full line) for the temperature dependence of m for Clostridum botulinum type B. (right): idem formax

Pseudomonas 2123c.
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Table 3
Overview of the selected ANN models, describing the temperature and pH dependence of m , l and Amax 0

Growth parameter Model Neuron description [ parameters
2

m ANN 4a N 5exp[2(W ?T 1W ?pH1C ) ] 9max 1 1 2 1
2N 5exp[2(W ?T 1W ?pH1C ) ]2 3 4 2

m 5W ?N 1W ?N 1Cmax 5 1 6 2 3
2ANN 4b N 5exp[2(W ?T 1W ?pH1C ) ] 91 1 2 1

N 50.5?[tanh(W ?T 1W ?pH1C )11]2 3 4 2

m 5W ?N 1W ?N 1Cmax 5 1 6 2 3

ANN 4c N 50.5?[tanh(W ?T 1W ?pH)11] 61 1 2

N 50.5?[tanh(W ?T 1W ?pH)11]2 3 4

m 5W ?N 1W ?Nmax 5 1 6 2

l ANN 5 N 5exp(W ?pH) 51 1

N 50.5?[tanh(W ?T 1W ?pH)11]2 2 3

l5W ?N 1W ?N4 1 5 2

A ANN 6 N 5exp(W ?T 1W ?pH) 60 1 1 2

N 50.5?[tanh(W ?T 1W ?pH)11]2 2 3

A 5W ?N 1W ?N0 4 1 5 2

Fig. 6. Description of ANN model 4b (plane) for m , and the associated residual values.max

description). This residual plot (as others in sub- 3.2.3. Validation data: experimental data of other
sequent figures) visualizes more clearly the 3-dimen- micro-organisms
sional plot with regard to the distance between the The performance of ANN model 4a and 4b is not
data points (‘‘o’’) and the ANN model description in completely satisfactory on the experimental data set
Fig. 6, left. The mean value of the residuals is of E. coli: some overfitting at combinations of high
indicated with a straight line and is very close to 0. temperature and low pH is observed, although the
The residuals should fall within a symmetric overall description is good. However, when fitting
horizontal band around 0, displaying no systematic the data set of A. hydrophila a serious overfitting
tendencies to be positive or negative. Figs. 7 and 8 occurred at the combination of high temperatures and
present the description of ANN model 5 and 6 for low pH where only a few data points are available
the temperature and pH dependence of l and A , (results not shown). Therefore, a simpler ANN model0

respectively. is selected for these data sets, making use of an ANN
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Fig. 7. Description of ANN model 5 for A, and the associated residual values.

Fig. 8. Description of ANN model 6 for A , and the associated residual values.0

model structure tested previously but not retained for of the results is presented in Table 5. Figs. 11–13
the data of B. thermosphacta. This ANN model 4c is present the ANN models. In these figures, the
already described in Table 3 and compared with description of the data points (‘‘o’’) using the ANN
other model types in Table 4. Identification results
are presented in Figs. 9 and 10. Table 4

Comparison of three ANN models and two other models available
in the literature on experimental data of E. coli3.3. Modeling the combined influence of

temperature, pH and %NaCl Model [ parameters SSE MSE

ANN Model 4a 9 0.233 0.0093
3.3.1. Identification data ANN Model 4b 9 0.246 0.0098

ANN Model 4c 6 0.532 0.0197In this step, no simulation data are used. Instead,
Zwietering et al., 1991 9 0.664 0.0266the selection of appropriate ANN models is based on
Rosso et al., 1995 7 0.653 0.024241 growth curves of B. thermosphacta. An overview
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Fig. 9. Performance of ANN model 4c on E. coli, and the associated residual values.

Fig. 10. Performance of ANN model 4c on A. hydrophila, and the associated residual values.

Table 5
Overview of the selected ANN models, describing the temperature, pH and %NaCl dependence of m , l and Amax 0

Growth parameter Model Neuron description [ parameters
2

m ANN 7 N 5exp[2(W ?T 1W ?pH1W ?NaCl1C ) ] 11max 1 1 2 3 1
2N 5exp[2(W ?T 1W ?pH1W ?NaCl1C ) ]2 4 5 6 2

m 5W ?N 1W ?N 1Cmax 7 1 8 2 3

l ANN 8 N 5exp(W ?T 1W ?pH1W ?NaCl) 81 1 2 3

N 50.5?[tanh(W ?T 1W ?pH1W ?NaCl)11]2 4 5 6

ln(l)5W ?N 1W ?N7 1 8 2

A ANN 9 N 5exp(W ?T 1W ?pH1W ?NaCl) 80 1 1 2 3

N 50.5?[tanh(W ?T 1W ?pH1W ?NaCl)11]2 4 5 6

A 5W ?N 1W ?N0 7 1 8 2
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Fig. 11. ANN model 7 (plane) describing m (‘‘o’’5data points) as a function of temperature, pH and a . *5polynomial description. Themax w

associated residual values are also shown.

models is compared with the polynomial description describe the experimental results when compared
(‘‘*’’). Because of the fact that three environmental with the experimental error.
factors need to be described, one factor is held
constant to visualize the results. Concerning the
residual plots, the difference between the data points 3.3.2. Application of the grey box model
and the ANN model description (‘‘o’’) is shown, The combination of the selected ANN models and
together with the difference between the data points the Modified Gompertz equation, as depicted in Fig.
and the polynomial description (‘‘*’’). 2, makes it possible to visualize the identification

The ANN models are compared with the polyno- results on the experimental data. In Fig. 14, 9 growth
mial models in Table 6. The total number of curves are shown, namely, those obtained at NaCl
parameters is 27, whereas the polynomial relation- equal to 4.125% (w/v). The combination of the
ships need 30 parameters. The F-testing values (not Modified Gompertz equation with the polynomial
shown), indicate that all 6 models (3 polynomial relationships (McClure et al., 1993) is shown in
models and 3 ANN models) are appropriate to dashed lines.
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Fig. 12. ANN model 8 (plane) describing l (‘‘o’’5data points) as a function of temperature, pH and a . *5polynomial description. Thew

associated residual values are also shown.

4. Discussion 4.1.2. Validation: dynamic growth data
The combination of ANN models and the dynamic

4.1. Modeling the influence of temperature version of the Modified Gompertz equation (Fig. 4,
full line) is compared with the combination of the

4.1.1. Identification data classical models [Eq. (5) to Eq. (7)] and the same
The ANN model, presented in Fig. 3, provides a primary model (dashed line). As can be seen, the

very accurate description of m as a function of accuracy of the ANN models is good.max

temperature. In comparison with more classical These results have been presented in Geeraerd et
models [Eq. (5) to Eq. (7)] used to derive the ANN al. (1997).
structures presented in Table 1, the total number of
parameters is increased by four (a total of 9 parame- 4.1.3. Validation: experimental results of other
ters for Eq. (5) to Eq. (7), and a total of 13 micro-organisms
parameters for the ANN model descriptions). This The results in Table 2 indicate the modeling
illustrates the capabilities of ANN models to be of capabilities of the selected ANN model for m . Themax

rather low complexity when only simple models are use of MSE incorporates the fact that 7 parameters
needed. are needed, whereas the other model structures [Eq.
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Fig. 13. ANN model 9 (plane) describing A (‘‘o’’5data points) as a function of temperature, pH and a . *5polynomial description. The0 w

associated residual values are also shown.

Table 6
Comparison of ANN models and polynomial models

Growth parameter Model [ parameters SSE MSE

m Polynomial model 10 0.416 0.013max

ANN model 7 11 0.150 0.005
A Polynomial model 10 35.6 1.1480

ANN model 8 8 13.4 0.406
ln(l) Polynomial model 10 5.59 0.180

ANN model 9 8 5.71 0.173

(5), Eq. (8) and Eq. (9)] use only 4 parameters. in Fig. 5 show that the description is satisfactory
However, the ANN model description has in five out without any overfitting.
of the ten cases the lowest MSE. In 2 other cases, the It can be concluded that ANN models are good
ANN model comes at the second place. The results alternatives for more classical models, even in the
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Fig. 14. Growth curves of B. thermosphacta at NaCl equal to 4.125% (w/v). Full line: ANN model, dashed line: polynomial model of
McClure et al. (1993).

case where the number of inputs d is only one, is more or less the same). The total number of
namely, temperature. parameters for the 3 ANN model descriptions is 20,

whereas the polynomial relationships need 18 param-
4.2. Modeling the combined influence of eters. In this case the number of inputs d equals 2. It
temperature and pH can be observed that the difference in the number of

parameters needed in the ANN model description
4.2.1. Data for structural identification relative to the number of parameters in the polyno-

For the data of B. thermosphacta, two ANN mial description is less than in the previous section
models are selected: ANN model 4a and 4b (Table where only temperature was modeled (20218 is less
3). The modular property of artificial neural network than 1329). This illustrates the efficient scaling with
is highlighted by ANN model 4a. Both models dimensionality, a property which becomes clearer as
perform equally well (the SSE on the simulation data the number of inputs increases.
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4.2.2. Complete identification: experimental data of 4.3.2. Application of the grey box model
B. thermosphacta In Fig. 14, the nine growth curves shown illustrate

Figs. 6–8 illustrate the satisfactory descriptions of the satisfactory time prediction when the selected
the ANN models following the general trend in the ANN models (full line) are combined with the
data. This smooth behavior is necessary for the Modified Gompertz equation as depicted in Fig. 2.
generalization and interpolation properties of the
derived model structures.

5. Conclusion

4.2.3. Validation data: experimental data of other
The main conclusions of this research can be

micro-organisms
stated as follows.

The performance of ANN model 4c when the
parameters are identified on the data set of E. coli • Artificial neural networks reveal themselves to be
and A. hydrophila is illustrated in Figs. 9 and 10,

a low complexity non-linear modeling technique,
together with the residual values. The MSE of this

capable of describing accurately experimental
model, ANN models 4a and 4b and two more

data in the field of secondary models in predictive
classical models can be found in Table 4. For the

microbiology, even when the number of indepen-
ANN models, it is not the one with the lowest MSE

dent variables is less than 3. This justifies the use
that reveals itself to be the best general descriptor.

of this non-linear modeling technique in the
Although the MSE incorporates the number of

common situation of scarce experimental data
parameters, it is still possible that a model, selected

when compared with the very complex artificial
on the basis of this criterion only, overfits the

neural network introduced in predictive micro-
experimental data. Therefore, the selection of the

biology by Hajmeer et al. (1997).
model must also be based on its visual performance, • The complexity of the artificial neural network
taking into account that the factors limiting bacterial

model needed in a specific application can be
growth act in a continuous and slowly retarding way.

adapted taking into account the general trend and
In this case, the simpler ANN model 4c, using only

the number of data points. Modeling expertise,
six parameters, is the best one generalizing the

built up to gather these research results, aids
overall trend in these experimental data. Concerning

qualitatively to postulate appropriate artificial
B. thermosphacta, ANN models 4a and 4b will be

neural network model structures.
investigated further. • The artificial neural network model describing the

growth parameters as a function of temperature,
4.3. Modeling the combined influence of pH and %NaCl is far more accurate than the
temperature, pH and %NaCl polynomial relationship available in the literature.

This can be explained by the flexible basis
4.3.1. Identification data functions used in artificial neural network model-

Figs. 11–13 reveal that the ANN model descrip- ing compared to the fixed basis functions of a
tions are excellent, and illustrate the capability of the polynomial or any other linear modeling tech-
ANN models to describe the data points (‘‘o’’) as nique. As such, an accurate description of ex-
compared with the polynomial model Eq. (10) perimental data points in the region where the
(‘‘*’’), especially for m and A . This is further growth/no growth interface appears (which oc-max 0

shown in Table 6 with the (much) lower MSE of the curs when the boundaries of temperature, pH
artificial neural network models, and, consequently, and/or %NaCl are reached) is theoretically
the higher F-test values (not shown). In this case the founded and, as shown in this paper, practically
number of inputs d equals 3, and the artificial neural feasible.
network model description needs less parameters
than the polynomial relationships. This could be In future, product validation of the derived artifi-
expected from a theoretical point of view, as ex- cial neural network models is required to complete
plained higher. the modeling cycle (Van Impe et al., 1998). As such,
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