
Agricultural Water Management, 10 (1985) 283--291 283 
Elsevier Science Publishers B.V., Amsterdam --  Printed in The Netherlands 

USE OF THE HOOGHOUDT FORMULA FOR DRAIN SPACING 
CALCULATIONS IN HOMOGENEOUS-ANISOTROPIC SOILS 

L.K. SMEDEMA, A. POELMAN and W. DE HAAN 

Department of Civil Engineering, Delft University of Technology, P.O. Box 5048, 
2600 GA Delft (The Netherlands) 

(Accepted 20 June 1985) 

ABSTRACT 

Smedema, L.K., Poelman, A. and De Haan, W., 1985. Use of the Hooghoudt formula 
for drain spacing calculations in homogeneous-anisotropic soils. Agric. Water Manage., 
10: 283--291. 

Cases of groundwater flow in anisotropic soils can be transformed to equivalent 
isotropic cases, and then be solved with the Laplace equation. On the basis of this princi- 
ple, the Hooghoudt formula, developed for isotropic soils, has been used for calculating 
drain spacings in anisotropic soils. However, the Hooghoudt formula is only an approxi- 
mate solution of the Laplace equation so that extension to anisotropic soils may not a 
priori be justified under all conditions. Results obtained with the Hooghoudt formula 
were compared to those obtained by numerical solutions of the Laplace equation. On the 
basis of this comparison, it is concluded that the Hooghoudt formula may indeed be 
used with reasonable confidence for drain spacing calculation in homogeneous-anisotropic 
soils. 

INTRODUCTION 

Anisotropy is almost always a soil characteristic to be considered in the 
design of  groundwater drainage systems for salinity control  in alluvial plains. 
Here, wide drain spacings can generally be applied with much o f  the drainage 
flow moving through the deeper substrata below the rootzone.  Because of  
the way they were deposited, the particles making up these layers often have 
a common horizontal orientation of  their longest dimensions, referred to as 
micro-stratification, which makes the hydraulic conductivi ty o f  these strata 
in the horizontal direction {Kh) much higher than that  in the vertical direc- 
tion (Kv). Maasland {1957) showed that anisotropy due to micro-stratifica- 
tion may be treated as homogeneous-anisotropy {meaning that K h and Kv 
differ but  do not  vary within the considered flow region). It can be shown 
that by  a transformation of coordinates the Laplace equation o f  the isotropic 
softs can also be made valid for homogeneous-anisotropic soils {by this trans- 
formation of  coordinates,  the anisotropic case is said to be converted into an 
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equivalent isotropic case -- see Maasland, 1957). This means that solutions of  
the Laplace equation of  steady groundwater drainage problems to parallel 
drains in isotropic soils can also be applied, after transformation,  to the same 
type  of  problems in homogeneous-anisotropic soils. In principle, this holds 
true only for exact solutions of  the Laplace equation and therefore would 
not  a priori apply to the drainage formulae used in practice to calculate re- 
quired drain spacings since, as pointed out  by, amongst others, Lovell and 
Youngs {1984), these formulae are for most  real cases only approximate 
solutions based on a schematization or a particular conception of  the flow 
pattern involved. In this paper it has been investigated which errors are made 
when, after transformation, the Hooghoudt  drainage formula is used for 
drain spacing calculations in anisotropic soils (as proposed by Boumans, 
1979). Drain spacings obtained with the Hooghoudt  formula have been com- 
pared with those obtained by  numerical solutions o f  the Laplace equation 
for the same cases. 

FLOW EQUATIONS AND TRANSFORMATION RULES 

For homogeneous anisotropic soils characterized by  Kx ¢ Kz ,  where the 
directions x and z are respectively parallel with and normal to the stratifica- 
tion, the basic equation for groundwater  flow in two dimensions is: 

a2h a2h 
K x ~ x  2 + Kz az---- ~ = 0 (1) 

where h is the hydraulic head at (x, y). Making the substitutions xt = x C ~ / ~ x  
and z t = zC~'-~z  {where C is a constant  and the suffix t stands for transfor- 
mation), equation (1) becomes the Laplace equation,  the basic equation for 
groundwater flow in an isotropic soil: 

a2h a2h 
+ = 0  (2) 

Thus by shrinking or expanding the dimensions in the two principal direc- 
tions, cases of  groundwater  flow in an anisotropic soil can be transformed 
into equivalent cases in an isotropic soil. It can be proved (see e.g. Maasland, 
1957) that the hydraulic conductivi ty of  the equivalent isotropic case relates 
to the real anisotropic hydraulic conductivities as Kt = x/-KxKz, which is the 
geometric mean value of  Kx and Kz .  

For  phreatic flow, where head and vertical dimensions are interrelated, it 
is convenient to take the constant  C = Kz .  In that  case xt  = X ~ x  and 
zt = z, so that changing the dimensions in horizontal (x) direction only is 
enough to achieve the desired transformation. The corresponding form of  
the Laplace equation is: 

a2h a2h 
~ +  =0 (3) 
ax~ az 2 
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To maintain equivalence in the case of  a linearly distributed groundwater re- 
charge (q), the latter must also be transformed such that q x  = q t x t  or qt = 

H O O G H O U D T  F O R M U L A  F O R  G R O U N D W A T E R  D R A I N A G E  

The case of  steady groundwater  drainage flow to equidistant parallel 
drains has been much analysed and has resulted in a number of  drainage 
formulae. Of these, the Hooghoudt  drainage formula is widely used in pipe 
drainage design practice, generally with good results. This formula is here 
writ ten as: 

8 K d h  4 K h  2 
q - + - -  (4) 

L 2 L 2 

where q is discharge rate; h watertable height at mid-spacing; d equivalent 
depth  of  the impermeable base below the drainage base, d = f(D, L, u); D 
real depth of  the impermeable base below the drainage base; u wet  perimeter 
of  the drain; K hydraulic conductivity;  and L drain spacing. The Hooghoudt  
formula is based on separate analyses of  horizontal and radial flow, each con- 
ceived to be confined to a certain part o f  the flow region and each solved 
after some schematization of  the conceived flow pattern. Hooghoudt  even- 
tually incorporated his findings in the so-called elliptic drainage formula. 
This formula equals equation (4) except  that  d = D and may be derived by 
assuming the drainage flow to the drains to be strictly horizontal Dupuit- 
Forchheimer flow. Extra resistances due to radial flow in the real case are 
taken into account  in the Hooghoudt  formula by  using d instead of  D, where 
always d < D. Clearly, while founded on the basic laws of  groundwater flow, 
the Hooghoudt  formula is far from an exact  solution of  the Laplace equation. 
Lovell and Youngs (1984) even maintain that by  the introduction of  the 
equivalent depth concept,  relationships in the formula have become so un- 
specific that  it should be regarded as an empirical formula. To what extent  
the structure and underlying approximations of  the Hooghoudt  formula 
interact with the transformation used in applying it to anisotropic soils is 
difficult to predict. 

NUMERICAL SOLUTION 

Finite element solutions of  the Laplace equation, enforcing boundary  con- 
ditions as in Fig. 1, were obtained for each considered case by applying 
methods described by Zienkiewics and Cheung (1970). In this approach 
the flow region is divided into a mesh of  small triangular elements. The value 
of the head h at each mesh point,  wri t ten as h = A + B x  + C z ,  is found by  
determining the minimum of  the function:  

E= 2 J dxdz (s) 
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Fig. 1. Flow region of two-dimensional groundwater drainage to parallel drains. 

The function E is minimized by  subsequently differentiating it with respect 
to h for all mesh points and setting the resulting equations equal to zero 
(except for those points in which there is inflow or outf low where they  are 
set equal to the flow rate). 

In the case of  groundwater drainage design, the drain spacing must be such 
that  the watertable height at mid-spacing attains a pre-determined value for a 
pre-determined steady recharge of  the groundwater.  This condition was met 
by  varying the drain spacing until the calculated height matched the required 
value. First estimates of  the drain spacing and watertable position were ob- 
tained by  solving the Hooghoudt  flow model  for  this purpose,  although it is 
realised that this model  does not  pretend to give accurate watertable posi- 
tions. 

Use was made of  the computer  program AFEP (a finite element package) 
developed by  the Department  of  Mathematics, Technical University, Delft. 
This program includes a subroutine for covering the flow region with a suit- 
able mesh. The mesh arrangement and density can be varied for different  
parts o f  the flow region in order to adapt to convergent or divergent stream- 
line patterns. In the testing stage, different mesh arrangements and densities 
were compared before deciding on the standard mesh, depicted in Fig. 2, 
used in all presented results. Drain spacings calculated with this standard 
mesh were in some cases compared with those obtained with a 3-times 
denser mesh (in the latter case there are 20 points on the wet  entry perimeter 
o f  the drain instead of  the 10 points  used in the  standard mesh). Differ- 
ences were always < 0.5% (see Table 1). 

For  testing purposes, drain spacings were also calculated both  by  the 
numerical and the Hooghoudt  method  for the  following isotropic case: 
Kh ( = Kx)  = Kv (= Kz) = 1.5 m/day,  D = 5.0 m, h = 1.0 m, q = 0.002 m/day  
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pipe 
drain 

m 

Fig. 2. Mesh used for the numerical solution of  the Laplace equation for groundwater 
drainage to parallel drains. 

TABLE 1 

Drain spacings calculated by numerical solution and by the Hooghoudt method 

Cases Input parameters a Hooghoudt b Numerical c 
(m) (m) 

D h q u K h K v 
(m) (m) (m/day) (m) (m/day) (m/day) 

I 2.5 1 0.092 0.31 1.5 0.06 108 107.3 
II 2.5 1 0.002 0.31 1.5 0.12 113 114.2 
III 5 1 0.002 0.31 1.5 0.06 118 121.8 (121.2) 
IV 5 1 0.002 0.31 1.5 0.12 130 135.8 (135.4) 
V 10 1 0.002 0.31 1.5 0.06 125 128.0 
VI 10 1 0.002 0.31 1.5 0.12 145 151.4 

aFor explanation of  symbols see explanation of symbols in equation (4) in the text. 
bin all cases the Boumans nomographs were used to solve the Hooghoudt formula. 
CResults apply to the standard mesh with, between brackets, results for 3-times denser 
mesh. 

a n d  u = n r o  = 0.31 m, where r0 = 0.10 m, the drain radius. The calculated 
drain spacings were nearly equal: numerical method  L = 169 m and Hoog- 
houd t  method  L = 168 m (in the latter case use was made of  the Boumans 
nomographs,  see Wesseling, 1973). This result shows that  al though the Hoog- 
houd t  formula is not  an exact  Laplace solution, it adequately accounts in 
this case for  the relevant flow characteristics as far as the required drain 
spacing is concerned.  Of course, as Fig. 3 shows, this case conforms closely 
to the Hooghoudt  flow model  which assumes the flow to be horizontal  in 
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the region from mid-spacing up to a distance %D~/~ from the drain while the 
flow is assumed to be radial in the region within distance VdgV~ from the 
drain. 

ANISOTROPIC CASES 

Comparison of  drain spacings calculated numerically with the finite ele- 
ment  method and with the Hooghoudt  formula has been made for the six 
anisotropic cases detailed in Table 1. The Hooghoudt  formula was applied 
after the transformation xt = xVrKv/Kh and zt = z, which means that  all 
horizontal dimensions were shrunk by a factor V ~ v / K h .  This applied to the 
dimensions: 

Lt = L Kv~-~v]Kh 

1 (1 + KV~v/Kh) (half-circle becoming half-ellipse) u t = 7rr0 

Further: 

g t-- K ~ v  and qt =q/K~g~v/Kh 

The results are presented in Table 1 while examples of  streamline patterns, 
also calculated with the AFEP program, are shown in Fig. 3. 

Cases III and IV of Table 1 are comparable to the previously discussed 
test case, except for the anisotropy. It shows an anisotropy ratio Kh/Kv = 
1.5/0.006 = 25 reduces the spacing by some 50 m (L = 168--169 m for the 
isotropic case vs. L = 118--121 for the anisotropic case) and by some 35--40 
m for when the anisotropy ratio is 1.5/0.12 = 12.5. Comparison of  the 
streamline patterns (Fig. 3) show that  in the anisotropic cases the bulk of  the 
flow occurs at a shallower depth than in the isotropic case, the more so the 
higher the anisotropy ratio. In the isotropic case, a better use is made of  the 
full soil depth available for the flow to the drain, resulting in a wider drain 
spacing. As to be expected, the influence of  the anisotropy on the required 
drain spacing is smaller when the impermeable base occurs at a rather shal- 
low depth (for the cases I and II in Table 1, both w i t h D  = 2.5 m, L = 129 m 
when Kh = Kv = 1.5 m/day,  only some 15--20 m wider than for the aniso- 
tropic cases) as compared to the case where the impermeable base occurs at 
greater depth (as e.g. in the cases V. and VI where D = 10 m and L = 214 m 
when Kh = Kv = 1.5 m/day,  which is some 60--90 m wider than for the com- 
parable anisotropic cases). 

The streamline patterns of  Fig. 3 are of  course not  relevant to the drain 
spacing calculations with the Hooghoudt  formula as this formula was not 
applied to the real case but to the transformed case obtained by horizontal 
shrinkage of  the flow region by a factor 1/Vrgv/Kh while simultaneously 
condensing the recharge by the same factor (these shrinkage/condensing 
factors are, respectively, 5.00 and 3.57 for anisotropy ratios 25 and 12.5). 
The applicability of  the Hooghoudt  formula should be based on the stream- 
line pattern of  the transformed case. The example presented in Fig. 4, apply- 
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ing to case III of  Table 1, shows that the transformed (equivalent isotropic) 
flow adheres closely to the classical flow pattern on which the Hooghoudt  
formula is based and for which situations this formula is known to give 
reliable drain spacing results. This is confirmed by  the closeness of  the Hoog- 
houdt  results to the numerical results in all the considered cases of  Table 1. 
The latter results may be taken as references {'exact' results) as they are 
based on the solution of  the basic flow equation (eq. 1) o f  each case. The 
accuracy of  the numerical solution, moreover,  was checked by  also numer- 
ically solving the basic flow equation for  the transformed case; in all cases it 
was found that the relationship L t = L x / K - v / K h  held exactly. 

o~ 7o 6o 5o ~5 ~0 3s 3o 25 2o ~ ~0 5 0 

C3 

,~ 7 Lt= 12 2 m 

Fig. 4. Streamline pattern for the isotropic equivalent of case III of Table 1 (horizontal 
and vertical scales are equal). 

DISCUSSION 

The above results confirm in the first place the validity of  the transforma- 
tion theory:  cases of  groundwater flow in anisotropic soil may be solved by  
solving the Laplace equation for the transformed (equivalent isotropic) 
case. Best results are to be expected when for the latter case the Laplace 
equation can be solved exactly. For most  cases this can readily be done 
numerically (see above examples) but,  as mentioned earlier, few exact 
analytical solutions are available. Applying drainage formulae like that  of  
Hooghoudt ,  which are all only approximate solutions of  the Laplace equa- 
tion, to the transformed case can lead to erroneous results as some of  the 
schematizations and simplications underlying these formulae may adversely 
interact with the applied transformations.  The possibility of  this occurring 
depends on the type  of  schematizations, simplifications and transformations. 
As stated earlier, for drain spacing calculation problems, transformation in 
the horizontal direction are most  convenient. For  a typical case of  drainage 
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in an alluvial plain with a substratum having an anisotropy ratio Kh/Kv = 
25--30 (Boumans, 1979), horizontal dimensions in the transformed case are 
shrunk by a factor of 5--5% as compared to the vertical dimensions which 
remain unchanged. This may put the transformed case in the range of flow 
geometries with intermediate LID values which are less amenable to the 
Hooghoudt  flow schematization. At these intermediate LID values (the case 
of  Fig. 4 with L/D ~ 5 being an example) streamlines are rather curved, 
meaning that  there is considerable vertical flow (neglected in the Hooghoudt 
formula) while no distinct horizontal and radial flow zones occur. LoveU and 
Youngs (1984) showed that  none of the available drainage formulae are very 
satisfactory under these conditions. Whether the transformed case ends up in 
this less favourable L/D range depends on the anisotropy ratio (which deter- 
mines the shrinkage factor) and on the LID value of the real case. Given the 
prevailing conditions in many alluvial plains, most transformed cases may in- 
deed have flow patterns for which the Hooghoudt  formula is not at its best. 
However, even under these less favourable conditions, the Hooghoudt 
formula is known to give reasonable results for isotropic soils and this would 
equally apply to the transformed anisotropic cases. The final conclusion 
therefore is that  the Hooghoudt formula can be used with confidence for 
drain spacing calculation for homogeneous-anisotropic soils. 
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