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A b s t r a c t  

The pressure drop prediction requires the generalization of the Reynolds number for laminar flow of 
pseudoplastic fluids in cylindrical ducts. This generalized Reynolds number is now well established for 
very simple cross-sections, such as circular tubes or infinite parallel plane plates. To our knowledge, 
there is no generalization available for other cross-sections due to the complexity of the velocity profiles. 

The aim of this paper is to propose a generalized Reynolds number for cylindrical ducts of arbitrary 
cross-section. This new Reynolds number involves only one geometrical parameter, which can be easily 
determined theoretically or experimentally. This Reynolds number was successfully compared with definitions 
found in the literature. Moreover, this generalized Reynolds number seems to be in good agreement with 
experimental studies carried out in plate heat exchangers. 

1. I n t r o d u c t i o n  

Sizing of heat  transfer equipment requires the 
knowledge of  both the heat transfer area and the 
pressure drop. For  heat exchangers,  performance 
is described by empirical correlations between di- 
mensionless numbers,  such as the friction factor 

f / 2 ,  Reynolds number  Re, Prandtl number  Pr, Nussel~ 
number  Nu, etc. 

Isothermal laminar flow of Newtonian fluids in 
relatively simple geometries (circular, rectangular,  
triangular, etc.) has been studied extensively. Shah 
and London [1] gave a complete review of  the 
analytical solutions obtained by applied mathe- 
matics. 

Laminar flow of non-Newtonian fluids has been 
the subject of  extensive study for many years. The 
most  widely encountered non-Newtonian behaviour 
is pseudoplastic behaviour. The power law model 
is often sufficient to describe the rheological be- 
haviour of  such shear-thinning fluids for engineering 
or industrial purposes.  

The dimensionless numbers containing viscosity 
(Re, Pr) must  be generalized for shear-thinning non- 
Newtonian fluids. This generalization is often based 
on the well-known concept  of  Metzner and Reed 
[2]: the dimensionless numbers are generalized to 
obtain identical correlations for both Newtonian and 

non-Newtonian fluids in the laminar flow regime. 
This method has been used successfully for  mo- 
mentum transfer in simple geometries,  such as 
circular ducts or infinite parallel plates. This type 
of generalization theoretically requires the analytical 
expression of the velocity profile. For  other  ge- 
ometries, no simple analytical velocity profile exists, 
even for rectangular or triangular ducts. Therefore,  
for  these cross-sections, no simple expression of 
the generalized Reynolds number  exists. 

In practice, different methods  are used to gen- 
eralize the Reynolds number  for complex flow sys- 
tems. 

(1) Theoretical expressions: when the velocity 
profile is known analytically (circular ducts, infinite 
parallel plane plates), a theoretical  expression of 
the generalized Reynolds number  can be found by 
using the method of Metzner and Reed [2]. 

(2) Semi-theoretical expressions: Kozicki et  al.  
[3] proposed  a generalized Reynolds number  for 
the flow of  power  law fluids in ducts of  arbitrary 
cross-section (rectangular, triangular, annular, el- 
liptical) based on a numerical determination of  the 
velocity profiles. 

(3) Experimental  methods: Leuliet [4] and Ren~ 
et  al .  [5] proposed  an experimental  method for 
plate heat  exchangers.  These high performance heat  
exchangers present  very complex flow passages. 
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Therefore no theoretical expression of the gener- 
alized Reynolds number could be established. The 
Reynolds number was determined through pressure 
drop and flow rate experimental measurements for 
isothermal flow of pseudoplastic fluids. 

This brief review of the different approaches used 
for the determination of the generalized Reynolds 
number shows an increase in complexity of the 
method with an increase in complexity of the flow 
passage geometry. The purpose of  this work is to 
define a generalized Reynolds number regardless of 
the geometry characteristics of the duct cross-sec- 
tion. 

2.  S t a t e  o f  t h e  a r t  

2.1. Newton ian  f lu ids  
The relationship between the friction factor and 

the Reynolds number for laminar isothermal flow 
of  Newtonian fluids in cylindrical ducts is 

f- Re -- ~ (1) 
2 

In this equation, f /2  is the friction factor 

f ~w APDH 
-- (2) 

2 pUavg 2 4LpUavg 2 

and Re is the classical Reynolds number 

Re-- pUav~DH (3) 

2.2. Non-Newtonian  f lu ids  
The power law model is widely used to describe 

the stress--strain relationship of pseudoplastic fluids 

• --k~ n (4) 

In this relation, ~/ is the shear rate, v is the shear 
stress, k is the consistency index and n is the flow 
behaviour index. The power law model is only valid 
over a limited range of shear rate. A local description 
of the flow curve is often used for more accurate 
evaluation [6]. 

Using this theological model for simple ducts 
(circular or infinite parallel plates), it is possible 
to solve the momentum equation and to obtain the 
generalized Reynolds number defined by Metzner 
and Reed [2] 

pYavg 2 -nDHn 
Re s k¢(n)n C _  ~ (5) 

where ~ is the product of the friction factor and 
the Reynolds number for a Newtonian fluid under 

laminar flow conditions. The function ¢(n) is a 
simple hyperbolic function of the flow behaviour 
index. For circular ducts 

3 n +  1 
¢ ( n )  = 

4n 

For infinite parallel plates 

2 n +  1 
¢ ( n ) =  an  

Consequently, a single friction curve equation is 
available for both Newtonian and pseudoplastic 
fluids 

f- neg = e (6) 
2 

This method, developed under laminar isothermal 
conditions, can be used successfully in different 
situations: turbulent flow regime despite the lack 
of theoretical justification [ 7-9 ]; non-isothermal sit- 
uations (heat transfer); generalization of other di- 
mensionless numbers, such as the Prandtl number 
for heat transfer applications. 

Due to the complexity of the quasi-elliptic partial 
differential equation describing the flow of pseu- 
doplastic fluids in other cylindrical ducts, there is 
no general expression for the generalized Reynolds 
number. 

A simple technique for estimating the flow be- 
haviour of non-Newtonian fluids in ducts of unusual 
cross-section was proposed by Miller [10]. He con- 
sidered that, for the range of flow behaviour index 
n=0.4--1,  function ~b(n) was approximately equal 
to unity. In fact, this method leads to important 
errors when n is less than 0.7 as shown by Midoux 
[111. 

The most practical theory was developed by Ko- 
zicki et al. [3] and used by many workers [12-141. 
The general form of the proposed generalized Rey- 
nolds number is based on the generalization of the 
well-known Rabinowieh-Mooney equation. This gen- 
eralized Reynolds number can be written in the 
same form as that defined by Metzner and Reed 
[2]. The function ~(n) is thus described by the 
following hyperbolic form 

v n +  1 
¢(n) = (v + 1)n (7) 

where v is a geometrical parameter depending on 
the cross-section of the cylindrical duct [3]. 

When Kozicki et al. [3 ] developed this generalized 
Reynolds number in 1966, v~rflson and Thomas's 
method [6] permitting an accurate description of 
pseudoplastic fluid flow curves using the power law 
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model, was not  available. Kozicki and Tiu [151, 
being aware of the problem caused by the power  
law model, proposed  different generalized Reynolds 
numbers using an accurate description of  flow curves 
by complex mathematical  models (Metter, Re- 
iner-Rilvin). 

Whatever  model is used for the description of 
the flow curve, two main parameters  are needed to 
define a generalized Reynolds number.  

(1) The parameter  ~, which is the product  of  the 
friction factor  and the Reynolds number  for  the 
isothermal laminar flow of  Newtonian fluids. As 
previously mentioned this geometrical  parameter  
may be theoretical  (simple geometries),  semi-the- 
oretical CKozicki et al. [3]) or  experimental  (Leuliet 
[4]). 

(2) The parameter  v must  be identified to calculate 
function ~b. This function is theoretically known for 
circular ducts and infinite parallel plates [2]. For  
other  simple geometries (rectangular,  isoceles tri- 
angular, annular, elliptical), Kozicki et al. [3] pro- 
posed a numerical determination of  this value. Re- 
sults from this approach were in agreement  with 
experimental  data in the literature. However, the 
complexity of  the velocity profile in such geometries  
always resulted in a complex mathematical  form 
for parameter  v. 

The only available method for complex geome- 
tries, such as plate heat exchangers,  involves pres- 
sure drop and flow rate measurements  under  laminar 
isothermal conditions with different pseudoplastic 
fluids in order  to obtain different values of the flow 
behaviour index n [4, 5]. 

In conclusion, the determination of  a generalized 
Reynolds number  is a complex problem which can 
only be solved simply for circular ducts and infinite 
parallel plates. For  complex flow passage, such as 
that encountered in high performance heat ex- 
changers, no simple method is available. The ex- 
perimental  method  proposed  by Leuliet [4] is a 
good example of the complexi ty of  this problem. 

3 .  P r o p o s e d  g e n e r a l i z e d  R e y n o l d s  n u m b e r  

The following form of the generalized Reynolds 
number  is p roposed  for any cylindrical duct of  
arbitrary cross-section in order  to avoid the diffi- 
culties ment ioned above 

pUavg 2 -nDHn 
• , ,  (8) 

Reg= k { ( 2 4 n +  ~)/(24 + ~)n} ~ - ~  

This definition is identical to the equation (5) where 
the parameter  v (eqn. (7)) is defined by 

24 
v = - -  (9) 

The great  advantage of  this definition is that only 
one geometrical  parameter,  ~, is necessary to define 
the generalized Reynolds number. Moreover, this 
parameter  is known (theoretically or  experimentally) 
for  a very large number  of  ducts. 

Obviously, eqn. (8) reduces to Metzner and Reed's 
[2] definitions for  circular ducts (~--8) and infinite 
parallel plates (~= 12). 

The function ~b(n) proposed by Kozicki et  al. [3], 
which is in agreement  with data available in the 
literature, was compared with our  function. The 
different values of the parameters  ~ and v are 
summarized in Table 1. 

For  the differeiit geometries presented in Table 
1, the evolution of function ~b with the flow behaviour 
index (0.05 ~<n< 1) has been studied and compared 
with the results of Kozicki et al. [3]. 

(1) For  rectangular ducts, for  the four aspect  
ratios, the difference between the ¢ functions never 
exceeds 3%. However, we can estimate that, for  
the rectangular duct of aspect  ratio 0.5, the v value 
proposed by Kozicki et  al. [3] is underestimated: 
we can expect  a value greater than 3 (circular duct) 
when the ~ parameter  is smaller than 8. 

(2) Concentric circular ducts are widely used in 
many fluid flow and heat  transfer devices. For an 
inner diameter to outer diameter ratio f rom 0.05 

TABLE 1. Comparison of parameter v found by the two metfiods 

Geometry Aspect ~ [1] v [3] v=24/~ 
ratio 

Circular ducts 

Infinite parallel plates 

Rectangular ducts 

Concentric annuli 

Isoceles triangular ducts 

Elliptical ducts 

- 8 3 3 

- 12 2 2 

E--- 1.00 7.113 3.190 3.374 
E=0.75 7 .238 3.152 3.316 
E=0.50 7.774 2.982 3.087 
E=0.25 9.116 2.547 2.633 

K=0.90 11.998 2.001 2.000 
K=0.50 11.906 2.015 2.016 
K=0.10 11.171 2.135 2.148 
Kffi0,05 10.783 2.196 2.226 

A~I0 ° 6.237 4.058 3.848 
A=40 ° 6 .611  3.490 3.630 
A = 6 0  ° 6.667 3.446 3.600 
A - ~ 9 0  ° 6.576 3.494 3.650 

/3----0.90 8 .011 2.999 2.996 
/3--0.50 8 .411 3.000 2.853 
fl=0.30 8.948 3.000 2.682 
fl=0.10 9.657 3.000 2.485 
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Fig. 2. C o m p a r i s o n  o f  f u n c t i o n  ¢ for  a p la te  h e a t  e x c h a n g e r .  

to 0.9, the difference between the two @ function 
values does not exceed 1%, which is quite acceptable. 

(3) Differences between ~(n) functions fall within 
a range of 1% for the flow of a power law fluid 
through isoceles triangular ducts. The highest dif- 
ferences are observed when the flow behaviour 
indices are below 0.2. 

(4) The highest disagreement between the two 
functions is found for elliptical ducts (Fig. 1), es- 

pecially for values of n below 0.4. However, pa- 
rameter v should not be considered as a constant 
equal to 3 when the ~ parameter varies in the range 
8.01-9.66 (see Table 1). 

Finally, in order to test our approach for complex 
geometry, the results published by Ren6 et al.  [5] 
on the flow of power law fluids in complex flow 
arrangement plate heat  exchangers were investi- 
gated. The exchanger equipped with straight cor- 
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rugated plates (model V7, Vicarb Co., France) was 
studied experimentally by Leuliet [4] in order  to 
determine friction curves for both Newtonian and 
pseudoplastic fluids. 

The experimental  values found for parameter  
and function ~b(n) in this complex flow system were 

C ~ ( 2 n +  1 1 ):/n 

In Fig. 2, the experimental  function ~b (eqn. (10)) 
is compared with the proposed form (eqn. (11)) 

24n  + 56.6 
~b(n) = (11) 

(24 + 56.6)n 

This comparison was performed for the range of 
flow behaviour index used in the experimental  work. 
Agreement between the two curves is quite satis- 
factory: the highest deviation between the two func- 
tions produces  a variation in the generalized Rey- 
nolds number  of  less than 3%. 
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Appendix  A: Nomenclature  

4. Concluding remarks A 

In this paper,  we have proposed  a generalized D H 

Reynolds number  for cylindrical ducts of arbitrary E 
cross-section. Such Reynolds numbers exist in the 
literature, but usually require two parameters:  v and f 
~. K 

Despite the lack of theoretical  justification, we 
have shown that only one geometrical  parameter  k 
can be used to generalize the Reynolds number. L 
Moreover, this geometrical  parameter  (~ parameter)  n 
can easily be obtained analytically or experimentally: 

is the product  of the friction factor and the AP 
Reynolds number  for the isothermal laminar flow Uavg 
of  Newtonian fluids, v 

We have shown that the use of  this generalized 
Reynolds number  is sufficient for  engineering pur- 
poses, e .g .  for  pressure  drop prediction, and even 
for very complex flow passages such as those en- 
countered in plate heat  exchangers.  
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opening angle of the isoceles triangular 
duct (deg or tad) 
hydraulic diameter (m) 
ratio of minor to major side of the rec- 
tangular duct (dimensionless) 
Fanning number  (dimensionless) 
ratio of  inner to outer  radius of  the annulus 
(dimensionless) 
consistency index (Pa s n) 
duct length (m) 
flow behaviour index for Ostwald de Waele 
fluids (dimensionless) 
pressure drop (Pa) 
mean velocity of  flow (m s - l )  
parameter  (dimensionless) 

G r e e k  l e t t e r s  

ratio of minor to major axis of the ellipse 
(dimensionless) 

~/ shear rate (s -1) 
~7 Newtonian viscosity (Pa s) 

geometrical  parameter  (dimensionless) 
p density (kg m -3) 
T shear stress (Pa) 
÷w average shear stress (Pa) 
~b function of  the flow behaviour index (di- 

mensionless) 


