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Abstract. We propose a microscopic model based on directed percolation for the process of mechan-
ical clogging of a porous medium by particles suspended in a fluid flow. Under appropriate conditions
the deposited particles may form fractal clusters. A criterion for the occurrence of fractal clogging is
presented. It links together the particle size and the pore size distribution. The effect of microscopic
inhomogeneities is studied inside and outside the critical region using Monte Carlo calculations in
two dimensions. The critical exponents remain unchanged because the perturbation induced by these
inhomogeneities is irrelevant. The percolation threshold is found to shift to higher values almost
linearly with increasing size of obstacles. For size distributed obstacles the arithmetic mean of the
distribution is the only significant parameter which determines the shift. Type and broadness of the
distribution have no influence. Also the percolation probability depends only on the mean even out-
side the critical region for all values of the occupation probability. Occupying the same fraction of
the porous matrix, large obstacles cause more particles to deposit than small ones.

Key words: fractal pore clogging, directed percolation, inhomogeneous porous medium, Monte Carlo
simulations, percolation threshold, finite-size scaling, car parking problem

1. Introduction

Flow of suspended particles in porous media plays an important role in a number
of industrial and natural processes [1]. Deep-bed filtration [2, 3, 4], ground water
contamination by slowly invading pollutants below waste disposal sites [5] or by
migrating bacteria [6] and the formation of river beds [7] may serve as a few
examples. Two basic approaches are widely used to model the phenomenon. In the
classical engineering approach, the porous medium is treated as a continuum at
length scales which are in the range of a representative elementary volume [8]. Then
one can write down differential equations for the physical quantities describing the
two-phase flow and solve them with appropriate initial and boundary conditions.
However, continuum models are not well suited when processes, on a length scale
much smaller than the representative elementary volume, cause dramatic changes
in macroscopic quantities such as the permeability and the connectivity of the
medium. If such phase transitions are likely to occur statistical models built up by
microscopic processes may provide a more realistic treatment of the system. As
an example, we take the process of the deposition of particles in a porous medium
which eventually leads to clogging. We will also demonstrate the effect of small
impermeable inclusions on the critical behaviour of the system.
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We present here a simple statistical model for the clogging of pores which
already shows some of the important features of the real process. Starting from
the microscopic process of the clogging of one pore, macroscopic results can
be obtained by performing many of such processes and calculating the averages
afterwards. Thus, a Monte Carlo simulation is a suitable method of investigation.

Sahimi and Imdakm [9] have already noticed that isotropic percolation models
cannot be used to describe the flow of resuspended particles since spatial symmetry
is broken by the direction of flow. So we employ a directed percolation model
[10] which belongs to a different universality class. For a general understanding
of statistical models which exhibit phase transitions, scaling laws for physical
quantities of every universality class are found and the behaviour near the critical
point is governed by universal exponents. These exponents are independent of
microscopic details of the system like the type of the underlying lattice.

But for practical engineering applications the non-universal behaviour of a
system may be of great importance. For example, the fraction of particles deposited
in a filter bed depends strongly on the coordination number of interconnected pores
although a variation of this number will not change universal behaviour. The main
emphasis in this work is based upon the investigation of non-universal behaviour
and the results are occasionally checked against violation of universality.

In the field of hydrogeology, several experiments on a laboratory scale [7, 11]
and on a field scale [12] investigating the sedimentation of suspended particles in a
porous matrix have already been done. But they were performed under conditions
that make it hard to compare their results directly with the simple model presented
here. Of greater importance are experiments done by Harvey et al. [6] and by
Silliman [13]. They measured breakthrough curves of bacteria and small-sized
microspheres in macroscopically heterogeneous porous media. Silliman [13] also
investigated the spatial distribution of deposited particles but with a relatively
low resolution. Experiments which make use of a directed percolation model, to
interpret these patterns, are not known to the author. At least on a laboratory scale
they could be performed to validate the present model.

This theoretical study was performed to learn more about the functioning
of the process that creates the spatial distribution of particles inside a clogged
porous medium. Especially, we will address the following questions. Can deposited
particles form clusters with fractal properties under appropriate conditions? How
do the total number and mass of these particles depend on their own size and on
the pore structure? How do small inhomogeneities change the permeability of the
medium with respect to particles?

2. Model Setup

Let us consider a column of porous matter with a liquid (or gaseous) current of
constant discharge through it. On top of the column, spherical particles of radius
R are injected at a fixed position called the origin. They are carried away by the
current through the labyrinth made up by the interconnected cylindrical pores until
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DIRECTED PERCOLATION MODEL FOR CLOGGING IN A POROUS MEDIUM 135

they reach the outlet at the bottom. The radii r of those cylindrical bonds are
distributed homogeneously in space and have a known pore size distribution �(r).

We will make now an assumption about the process whereby a particle passes
through the labyrinth. It can move from pore to pore until its radius R is larger
than the pore radius r. Then it will bridge the pore and rest there forever. It
cannot move backwards against the direction of the current. Thus, the flow field is
introducing an anisotropy. This shall be by definition the microscopic mechanism
for our simulation. The particles cannot interact among themselves if we keep their
concentration low. For particle radii larger than 30�m our assumption is reasonable
because pore bridging is the dominant process. Other effects like van der Waals
adhesion or chemical reactions do not occur [3].

The probability p that a particle hits a pore for deposition is given by

p =

R
1

R �(r) drR
1

0 �(r) dr
(1)

and is completely determined by a combination of geometrical properties of the
particles and the porous matrix. In accordance with the terminology of percolation
theory [4] we call p the occupation probability. Although one may argue that larger
pores contain a higher percentage of the fluid flow, Equation (1) is still correct.
Pore diameters can be weighted in this way because Equation (1) is looking at
all potential trapping locations. This is entirely dependent on spatial properties
and, thus, the flow distribution is not important. The pore size distribution can be
taken from a measurement. By taking particles with varying radii, p can be tuned
experimentally. In our model small particles have a very low chance of deposition.
They will therefore reach the outlet at the bottom of the column, whereas large
particles cannot intrude into the porous matrix and most of them will rest on top
of it. Obviously, there is a critical radius in between where a maximum number of
particles will deposit. In this way, the process of deposition is described as a critical
phenomenon. In an infinitely large matrix an infinitely large number of particles will
deposit when a critical occupation probability or percolation threshold pc = p(Rc)
is reached. This corresponds to the divergence of the mean cluster size S which we
define later in Equation (5). The particles with the critical radius Rc then form a
cluster with self-similar or fractal properties. Once the pore size distribution and pc
are known, Rc can be calculated from Equation (1) implicitly. Comparing a given
particle radius R to Rc can now serve as a criterion to predict fractal pore clogging.

Other quantities like the correlation lengths �?; �k perpendicular and parallel to
the direction of flow are also diverging. The order parameter P0 is defined as the
probability that a cluster stretches from the origin to the outlet. This percolation
probability is zero below the critical point. Inside the critical region all these
quantities vary as a function of p with power laws and universal critical exponents
[14].
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Hence, we get

S �j p� pc j
� ;

�?;k �j p� pc j
��?;k;

P0 � (p� pc)
� for p > pc:

(2)

Universality is independent of the chosen lattice type and holds for each dimen-
sion if perturbations to the system remain irrelevant (cf. [15, 16] and references
therein).

For practical reasons we perform the calculations in two dimensions and reshape
the column into a thin slab. We map the positions of the pore centres on lattice
points of a square lattice and the direction of flow is along the square diagonals.
To the lattice we apply the rules of directed site percolation [10]. For the 2d case,
the percolation threshold and the critical exponents have been deduced accurately
from a series expansion [17]

pc = 0:705489(4)

 = 2:278(2); �? = 1:097(2);

�k = 1:734(2); � = 0:276(3):

(3)

The fractal dimension df at the critical point is defined as the exponent of the
relation between a characteristic length � and the mass S of a cluster. If we take
� =
q
�?�k we have

S � �
df with df = 1:805(2) < 2 (4)

in two dimensions [15, 16]. Below pc the clusters are again fractals but with a
lower dimension [14]. Above pc fractality is maintained in regions smaller than
�?�k whereas in larger areas the cluster behaves like a ‘massive’ object: S � �d.

Very often the porous matrix appears to be heterogeneous even on the scale of
several lattice constants. For example, tight clusters of small impermeable inclu-
sions have been observed in sedimentary rock [18]. We treat them as impermeable
inhomogeneities of varying size with a given distribution which are located at ran-
dom positions. In our model, they block lattice sites which a particle cannot visit
while finding its way through the outlet. We first took point-like obstacles shown in
Figure 1. They were randomly distributed over the lattice and are taken to be hard
so that two of them cannot sit on the same site. Their effect is to reduce the network
coordination number locally. A density d for the inhomogeneities is introduced by
dividing the number of blocked sites by the total number of lattice sites.

In order to investigate the influence of the obstacle size we looked at horizontal
splinters with random spatial distribution. Their length l is measured in diagonal
lattice constants and the density d is calculated in the same way as for points. We
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Figure 1. Points (full circles) and horizontal splinters with l = 2 (connected full circles) as
inhomogeneities on a square lattice, screened sites are grey circles.

choose this shape because it has the largest effect since a maximum number of
lattice sites is additionally blocked or ‘screened’ (Figure 1). Other shapes were
found to be less effective, e.g. vertical splinters do not screen at all and therefore
act as points.

3. Validity

Setting up a model inevitably requires us to make some simplifications which limit
the range of validity. Therefore their implications are discussed below and are
compared to more realistic assumptions.

The pore structure is modelled by cylindrical pores connected by nodes. The
pore centres are mapped on sites of a square lattice. In reality there are pore necks
between nodes, bulges at nodes and the lattice is irregular, e.g. of the Voronoi
type. This difference could lead to a shifted percolation threshold. We take a dis-
tribution of pore diameters which is homogeneous in space in the unperturbed
system. But there may be correlations in the pore structure, e.g. in sedimentary
rock which change the permeability [18]. We therefore introduced impermeable
inhomogeneities on a microscopic scale. The medium has now undulating correla-
tions of the hard sphere type in it. A system with this kind of inhomogeneities that
rest at fixed locations is said to exhibit ‘quenched disorder’ [19].

The flow and transport process is treated jointly in one model of directed site
percolation and we always assume the fluid flow and the movement of the particles
inside a pore to be from top to bottom. These are drastic simplifications which make
it difficult to model time-dependent processes. Since particles do not necessarily
fill up all the accessible fraction of the medium it is better to split up the particle
movement in three steps. First we have to determine the accessible fraction of
the pore space by undirected bond percolation. Then we must calculate the fluid
velocity field in the medium. Hereby we obtain an anisotropy which is provided
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in this simple model by using directed percolation. By tracking the particles along
the flow field we can now bring them to their actual trapping location.

As tracers we use spheres with fixed radius whereas experiments [6, 13] have
been done with a size distributed ensemble. These experiments suggest that the
clogging mechanism is a combination of mechanical trapping (straining) and
adsorption whereas we take pore bridging to be the dominant process.

Nevertheless, it can be argued that even a more sophisticated model would show
similar spatial patterns of deposited particles. That means it falls into the same class
of universality. Thus, the simplifications place few restrictions on the aim of our
investigations.

4. Monte Carlo Simulations

The Monte Carlo simulations were performed with an algorithm for directed site
percolation on a square lattice along the diagonal direction [15, 16] which was
modified to include the treatment of inhomogeneities. We choose a site on top of
the slab as the origin x = y = 0 and from there we try to find our way to the outlet
at x = L. We call the origin ‘active’ because a particle can sit there and eventually
move to the next row. We decide whether a neighbouring site in the next row is
active by means of a Monte Carlo step. First we check if the site is blocked by
an obstacle. If not, a random number is drawn and compared with the occupation
probability p. If it is smaller than pwe activate the site, and by reiterating the whole
Monte Carlo step we grow a cluster of occupied sites inside a ‘light cone’ of a
90� opening angle. A light cone is now defined by the area which is occupied by a
cluster with p = 1. For the directed problem, the probability for a site to become
active in row x+ 1 depends only on its neighbouring sites in row x. To be part of a
cluster these sites must be connected to the origin. Five configurations have to be
considered to determine whether the site in row x+ 1 will also be connected. The
site percolations are shown in Figure 2.

In a finite-size system the order parameter P0 is the probability that a cluster
grown from the origin reaches the outlet. Such a cluster is called ‘infinite’. ‘Finite’
clusters are those dying before x = L. In order to spare computer time the Monte
Carlo algorithm ensures that a cluster reaches x = L as fast as possible. This is
done by always trying to activate those sites with the largest x-coordinate. The
coordinates of sites from which a cluster may eventually grow are stored in a list
of active sites. Time is spared because the whole infinite cluster has not been built.
Subsequently, if there are no active sites left, a complete finite cluster has been
grown. For each value of p we always grow 105 clusters in a system of length
L = 1000 where the total number of lattice sites is N = 501501.

Three clusters created with this Monte Carlo algorithm are shown in Figure 3
below, at and above the percolation threshold pc. Below pc, the correlation lengths
�k;? are exponentially small and clusters usually die before they connect to the
outlet. At pc the cluster becomes fractal or self-similar and has holes in it at all
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Figure 2. Probability of the site at row x+1 to become active (full circle) or not active (circle),
sites with full circles are connected to the origin.

length scales. But still it does not extend horizontally in an infinite system since
the ratio of the correlation lengths vanishes as �?=�k �j p � pc j

�k��? . Large
holes disappear for a massive cluster above pc and it has a finite opening angle. A
representative elementary area can be defined in this case if it is larger than �k�?.
A cluster now marks the geometric space which is available for the particles. If
the cluster is finite (Figure 3(a), (b)) this space can be filled up with particles by
stacking them one above another. If it is infinite (Figure 3(c)) there are still some
dead end pores where particles will deposit. But with increasing p this number is
reduced rapidly and most of the particles reach the outlet.

The obstacles were placed on the lattice with equal probability for each position
until the desired density was reached. This was done with an algorithm which is
also used for the car parking problem [20]. If part of a splinter fell outside the light
cone this part was truncated and excluded from the density calculation. If a length
distribution �(l) for splinters was given, the density for a length l was calculated
as d(l) =

R l+1
l �(l0) dl0 with l = 0; 1; 2; : : : and for l = 0 we get points. To obtain

the number of splinters of length l we multiplied d(l) with the total number of
lattice sites N and made the resulting number an integer. For our value of N this
procedure ensures that we get d = �ld(l) with an accuracy of at least three digits.

Near pc and for small obstacles l 6 5, it was sufficient to change the spatial
distribution after 1000 clusters have been grown. To obtain better statistics at p . 1
for larger obstacles, the distribution was renewed after both 100 and 10 clusters.
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Figure 3. Directed percolation clusters at (a) p = 0:66, (b) p = pc, (c) p = 0:75 (from left to
right) in an unperturbed system with L = 1000.

Table I. Number of repetitions of the obstacle distri-
bution (1) near pc, (2) at p. 1 (for all simulations:
system length L = 1000, lattice sites N = 501501,
105 clusters grown).

d!

#l
0.025 0.05 0.075 0.1

0–5 102, 102 102, 102 103, 104 103, 104

6–10 103, 103 103, 104 103, 104 103, 104

Here the fluctuations of the percolation probability P0 are caused by those of the
obstacle distribution. In Table I the simulation parameters are shown schematically.
Scanning the region 0:65 6 p 6 1 with a step length �p = 0:0025 meant 140
separate simulations for the calculation of a whole curve P0(p). Since it took an
order of magnitude longer to create a new distribution than to grow a cluster, this
was very time consuming especially for higher values of p.

A detailed view of a cluster in an environment of lognormal size distributed
splinters, with arithmetic mean � and standard deviation �, is given in Figure 4.
Because obstacles frequently stop their growth, we must now increase p to obtain
infinite clusters. Subsequently, pc is shifted to higher values. Without obstacles the
cluster would be massive but splinters now tear large holes inside. On small areas
above a splinter, particles can pile up by forming a massive triangle with no holes
in it. Fractal properties now emerge from the interaction between the cluster and
the inhomogeneities which are perturbing the system.

In two dimensions the perturbations induced by the inhomogeneities do not
change the critical exponents. This can be shown by the replica trick [21] and
the perturbations are said to be irrelevant in this case. The method is often
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Figure 4. Cluster (circles) between 300 6 x 6 450 with lognormally distributed splinters
(triangles, � = 4, � = 1) at shifted pc = 0:808 and d = 0:05.

used in statistical physics to calculate averages of systems which show quenched
disorder [19].

To determine the shift of pc with high precision one has to use the scaling
hypothesis [14]. It says that exactly at pc, the percolation probability varies with
the system length as P0 � L�=�k . At the critical point, a log-log plot of this relation
yields a straight line and a linear fit of the Monte Carlo data gives the best result
with the lowest error. We performed this fit for various values of the density d 6 0:1
and the splinter length l 6 10 and found that the exponent ratio �=�k was always
consistent with 0:159. Usually we used a simpler method to determine the shift.
Namely, we looked at the mean cluster size

S(p; L) =
X nss

2

P
nss

; (5)

where ns is the number of finite clusters of particle number or mass s. At pc, it
diverges according to relation (2). But for finite systems it has its maximum value
at p(L) which goes to pc like (p(L) � pc) � L

1=�k . We scanned S(p) in steps of
�p = 0:0025 and took the maximum for pc with an error bar �p.

In Figure 5, S(p) is shown for the unperturbed system and for points at different
densities. Due to finite-size effects, larger obstacles induce broader maxima and
the error was then assumed to be 2�p. These results were compared for some cases
with the values of pc obtained from the high precision method and were always
found to be equal within the error bars. Inspection of additional data shows that
the absolute height of the maximum is almost doubled when we keep the density
constant and increase the splinter length by ten diagonal lattice constants. This is
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Figure 5. Mean cluster size S(p) of the unperturbed system (circles) and for points with
d = 0:025, 0:05, 0:075, 0:1 (from left to right).

Figure 6. Percolation probability P0(p) for the unperturbed system (circles) and for splinters
at d = 0:05 with length l = 0 (points), 1, 5, 10 (from left to right).

obviously a non-universal effect but in principle we see that large obstacles force
more particles to deposit than small ones.

5. Results

Figure 6 shows the percolation probability P0(p) for splinters of increasing length
at constant density d = 0:05. The shifted percolation threshold pc is 0:740(3) for
points as indicated. Because finite-size effects are strong P0 does not vanish at pc.
For the same reason, the slopes of P0 decrease but it has been checked that the
exponents do not change so that universal behaviour is maintained.

Long splinters reduce P0(p) to less than 1 even if p = 1. The areas which
consist of a splinter and the screened sites below it (Figure 1) can form percolating
clusters which are perpendicular to the direction of flow. They hereby reduce the
permeability of the medium even for very large pore sizes and this limit leads to a
continuum percolation model for the obstacles.
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Figure 7. Shifted percolation threshold pc(l) for different densities d.

To obtain the pc-shift quantitatively for a wider range a parameters we deter-
mined pc for splinter lengths l 6 10 and densities d 6 0:1. The shift increases
almost linearly with the length as shown in Figure 7. For each curve a linear
extrapolation to pc = 1 yields the splinter length lmax where the medium becomes
totally impermeable. For the densities d = 0:025; 0:05; 0:075; 0:1 the correspond-
ing length lmax is 44; 16; 10; 6 respectively. Plotting them as a function of d would
give a phase diagram separating the permeable phase from the impermeable one.
But this would require data for more than four points and is left for future investi-
gation.

The curves in Figure 7 can serve as gauge curves if we want to identify an
unknown size distribution �(l) of obstacles. First, we determine the pc-shift of this
distribution �(l). For a given density we can assign to � an effective length leff

which we define by the inverse function

p
�1
c (�) � leff : (6)

This length dominates the shifting process whereas contributions from larger or
smaller splinters in the distribution are less important.

To illustrate the meaning of leff we determined pc for four different size dis-
tributions of obstacles with the same arithmetic mean � at d = 0:05. The result
is shown in Table II. Within the error bars, pc was always consistent with 0:815
which is the value of splinters with fixed length l = 5. From this result we deduce
that the shift of pc is completely determined by the mean � of the size distribution.
Size distributed splinters have the same effect as those with fixed length. Because
at the critical point the cluster is a fractal it does not feel variations in the size of
splinters. Only the number of blocked sites and therefore the density d induce the
pc-shift. Thus, the results of Table II are explained by the self-similarity of clusters
at pc.

Furthermore, Figure 8 illustrates that not only at pc but in the whole range
pc 6 p 6 1 the percolation probability P0(p) is almost identical for size distributed
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Table II. Numerical values of pc for four obstacle size distribu-
tions at density d = 0:05.

� � Type pc

5.0 3.16 lognormal 0.818(3)
5.0 3.16 even, h(0) = � � � = h(10) = 1=11 0.820(5)
5.0 5.0 lognormal 0.813(5)
5.0 5.0 peaked, h(0) = h(10) = 1=2 0.813(3)

l = 5 0.815(3)

Figure 8. Percolation probability P0(p) for splinters with length l = 5 and lognormally
distributed length with � = 5, � = 5.

splinters and for those with fixed length. This result is somewhat unexpected.
Obviously, outside the critical region the tendencies for long splinters to increase
and for short splinters to decrease P0(p) are just neutralized.

6. Conclusions

We have described the process of pore clogging by large particles in a porous
medium by directed percolation. Due to the anisotropy introduced by the direction
of flow this process belongs to a class of universality different from normal random
percolation.

Assuming mechanical trapping for large particles (> 30�m), the accessible
fraction of the medium has been identified to be a directed percolation cluster.
We have varied the radius of the migrating particles and the spatial pattern of
this fraction experienced a phase transition. The medium was permeable only for
small particles whereas for particles with a radius larger than a critical radius Rc

it became impermeable. Sakthivadivel (1972) [11] already observed this type of
radius experimentally, but for size distributed particles in a porous matrix with a
regular lattice structure. Also Silliman [13] reported that larger particles deposit
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with a higher probability. He found the trapping mechanism to be a combination
of adsorption and straining for particles > 7�m in a bed of glass beads of the size
of several millimetres.

In our model, the deposited particles of the critical size form a cluster with
fractal properties and their total number is maximal. Taking smaller radii this
number should decrease. But this is not true in reality because small particles are
adsorbed at pore surfaces [6, 13]. Nevertheless, an experimentally observed fractal
structure of deposited particles would support the relevance of a percolation model.
It would reflect the disorder of the medium as seen by particles of a particular size.

Winterfeld et al. [22] found that the percolation threshold is indistinguishable
for a regular honeycomb lattice with coordination number 3 and a lattice built
up by random Voronoi tessellation. A similar result for directed percolation may
be expected. Note, that in this case we can calculate Rc from Equation (1) for a
given pore size distribution. We have now a criterion at hand to predict fractal pore
clogging.

The system was no longer spatially homogeneous after we introduced imper-
meable inhomogeneities of the size of several lattice constants. Because they acted
like hard spheres they affected correlations in the pore space. They also shifted
the percolation threshold pc to higher values and thereby reduced the perme-
ability. This behaviour had already been suggested by Thompson et al. [18] for
certain types of sandstone. Our results also indicate that large obstacles cause more
particles to deposit than small ones if we keep their densities constant. This is due
to the increased screening effect of large obstacles (Figure 1).

For size distributed obstacles, the mean of the distribution was the only
parameter that determined the shift of the percolation threshold for all values of
the occupation probability p. Surprisingly, this result holds even outside the critical
region for p . 1. Here the spatial extension of the obstacles which is characterized
by the standard deviation should play a role because the percolation clusters are no
longer fractals.

Further investigations should involve three dimensions. Clearly, we then have to
deal with another universality class of directed percolation. Microscopic obstacles
may even shift the corresponding exponents continuously if the perturbations are
relevant for the system [15,16]. Dealing with such behaviour would complicate the
analysis considerably compared to the 2d case.
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