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Abstract-With a numerical code for solving the boundary-layer equations, the performance of different 
turbulence models for the natural convection boundary layer for air along a heated vertical plate is tested. 
The algebraic Cebeci-Smith model, the standard k-8 model with wall functions for k and E and different 
low-Reynolds number k-8 models are tested. The Cebeci-Smith model calculates a too low wall-heat 
transfer and turbulent viscosity. The standard k-e model with wall functions gives a too high wall-heat 
transfer, but the velocity and temperature profiles agree reasonably with experiments. Accurate wall-heat 
transfer results require the use of low-Reynolds number k-e models ; the models of Lam and Bremhorst, 
Chien, and Jones and Launder perform best up to a Grashof number of 10”. For larger Grashof numbers 
the Jones and Launder model is best. A sensitivity study shows that the wall-heat transfer with the standard 
k-c model largely depends on the choice of the wall functions for k and E. Replacing these wall functions 
by zero wall conditions for k and E and adding the functions D and f, of the Chien model to the standard 
k-6 model gives a simple, but accurate low-Reynolds number k-8 model for the natural convection 

boundary layer. 

1. INTRODUCTION 

TIME AND length scales of a turbulent flow are often 
so small that in general the turbulence in the unsteady 
Navier-Stokes equations is further modelled. The 
two-equation k-c model for turbulence is most widely 
used. This model is usually applied in combination 
with wall functions for the velocity and temperature 
close to a fixed wall to avoid the calculation of the 
steep gradients in the thin wall region. The wall func- 
tions also give boundary conditions for the differential 
equations for the turbulent kinetic energy k and the 
rate of dissipation of turbulent energy E. In many 
flows the use of wall functions actually is not fully 
justified and Launder [l] has suggested that it might 
be ‘time to abandon wall functions’. But in the thin 
wall region the turbulence is low, and the standard k- 
E model has to be corrected for the low-Reynolds 
number effects. Different so-called low-Reynolds 
number k-t models have been proposed in the litera- 
ture. 

Prandtl (21 showed that when the characteristic 
number of the flow, i.e. the Reynolds number for a 
forced convection flow and the Grashof (or Rayleigh) 
number for a natural convection flow, becomes infi- 
nitely large, some terms disappear from the Navier- 
Stokes equations, yielding the boundary-layer equa- 
tions close to a fixed wall. To compare the per- 
formance of different low-Reynolds number k--E 
models near to a wall, Pate1 et al. [3, 41 have solved 
the turbulent boundary-layer equations for a forced 
convection boundary layer, namely the flow along a 
flat plate in a uniform oncoming stream. A similar 
comparison will be made here for a natural convection 

boundary layer, namely the flow of air along a heated 
vertical plate placed in a stagnant, isothermal environ- 
ment. Besides a comparison of the low-Reynolds 
number k-c models, also comparisons will be given 
for the well-known algebraic model of Cebeci-Smith 
and the standard k-e model with wall functions. 

Using the standard k-8 model, a difficulty is that 
no good wall functions exist for the natural convection 
boundary layer. Recently George and Capp [5] and 
Cheesewright [6] have made some first proposals for 
these wall functions. At the moment natural con- 
vection computations still use the standard k-c model 
with the logarithmic wall functions, which formally 
only hold for forced convection boundary layers with 
small pressure gradients. The sensitivity of the precise 
choice of these wall functions is investigated. Such a 
sensitivity study is also made for three low-Reynolds 
number k-c models: the models of Lam and Brem- 
horst [7], Chien [8, 91 and Jones and Launder [lo]. 

2. TURBULENT BOUNDARY-LAYER 
EQUATIONS 

The time-averaged, two-dimensional, incom- 
pressible, turbulent boundary-layer equations are 

!!+!?=0 
ax ay 

au2 auv 
ax+-= -~~+SB(T-T,)fd(“+“,)dU ay ay aY 

ad- ad- a v v, aT 
ax+ay=ay Fr+, a, ( > 
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NOMENCLATURE 

CIn, C2ET c3c coefficients in e-equation V velocity component perpendicular to the 

c, coefficient in v,-equation plate 
D low-Reynolds number source term in W velocity component perpendicular to the 

k-equation u- and v-components 
E low-Reynolds number source term in X vertical coordinate beginning at the 

e-equation leading edge of the plate 

:: 

low-Reynolds number correction for c ,s xb beginning of the computational domain 
low-Reynolds number correction for c2E in the x-direction 

f&I low-Reynolds number correction for c, XV transition point 

9 gravitational acceleration x0 length scale, (v’/g/IAT) Ii3 

GP buoyancy production of turbulent kinetic y coordinate perpendicular to, and 
energy beginning at, the plate 

Gr, local Grashof number, g/3A Tx3/v 2 Y+ dimensionless y-coordinate, yu,/v. 
k turbulent kinetic energy, ujuj/2 

N% local Nusselt number, Greek symbols 

-xlAT]a(T- T,)/aylw P coefficient of thermal expansion 

P pressure & rate of dissipation of turbulent kinetic 

Pk shear production of turbulent kinetic energy, v(ZJu;/ax,)(&4~/ax,) 
energy i dimensionless y-coordinate, yNu,/x 

Pr Prandtl number V molecular kinematic viscosity 
Rek turbulent Reynolds number, yJk/v v, turbulent kinematic viscosity 

Re, turbulent Reynolds number, k2/vE P density 
T temperature Ok turbulent Prandtl number fork 
AT characteristic temperature difference, OT turbulent Prandtl number for T 

Tw-T, or: turbulent Prandtl number for E. 

Tt characteristic shear stress temperature, 

- v(aTlay)wipr u, Superscript 
T+ dimensionless temperature, (T, - T)/T, fluctuating quantity. 
U vertical velocity component 

uo velocity scale, (gsATv) ‘I3 Subscripts 

U, characteristic shear stress velocity, t turbulent quantity 

u+ +(au/aY)w) W wall condition 
dimensionless velocity, u/u, 00 environment condition. 

The Boussinesq approximation has been applied, 
implying that the density p is considered constant 
everywhere, except in the temperature buoyancy term, 
in which it is replaced by a linear dependence (con- 
stant coefficient of thermal expansion /?) on the tem- 
perature difference T- T,. An eddy viscosity model 
has been used to model the turbulent Reynolds stresses 

au 
-ufvl = v, - 

ay 
~ VaT - u’T’=‘-_. 

gT ay 
The following models for the turbulent viscosity have 

been tested. 

[ 121 for a natural convection boundary layer 

/2]au/ay]yy, 
if y < y, (vt is continuous at yc) 

if y > y, forced convection 

(0.0756 1 ~~w~Yhtr 
if y > yc natural convection 

(3) 

with 

I= rcy[ 1 - exp ( - y + /A + )] (Van Driest length) 

K = 0.41 (Karman constant) 

Y+ = y$; U, = J(v(aujay)w) 

2.1. Algebraic model of CebecCSmith A+ =26/N; N= l-11.8vU”dU” 
112 

Cebeci and Smith [l l] used the following model to 
u,’ dx > 

describe the turbulence in a forced convection bound- 
ary layer, which was modified by Cebeci and Khattab 

a = 0.0168 e; 
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rt = 0.55[1-exp(-0.2432;‘*-0.2982,)] 

Z, =g-- l,Re,>425; 

Res =yrE(l -E)dY 

6* = s ,R (~a, - 4 dy 

6, is the y-position of ugg ; ]ugS -u, ] = O.O&,,,. 

The factor y is an intermittency factor, which accounts 
for the experimental observation that the boundary 
layer is turbulent at the outer edge during a fraction y 
of time only 

This expression is used for forced convection boundary 
layers, whereas it is taken equal to 1 for natural con- 
vection boundary layers. ytr is a function to describe 
the transition from a laminar (rtr = 0) to a turbulent 
(rtr = 1) flow. From experiments it seems that a forced 
convection boundary layer becomes turbulent at a 
local Reynolds number of 1.5 x 106, and a natural 
convection boundary layer at a Grashof number of 
2 x 109. The turbulent Prandtl number for tem- 
perature or is taken as 

0.4(1-exp(-y+/A+)) 

aT=0.44(1-exp(-y+/B+)) 

with 

B+ =&j,Cj(lO&~(~‘))” 

c, = 34.96, c2 = 28.79, c3 = 33.95, 

cq = 6.33, cg = -1.186. 

2.2. Standard k-e model with wall,functions 

Two differential equations are introduced to describe 
the kinetic energy of the turbulent velocity fluctuations 
k and the rate of turbulent energy dissipation E 

auk auk a 
z+-=- v+; %+p,+G,-e 

ay ay ( > ay 
aMe au& a v, a& 
ax+ay=ay v+a, ay ( > 

with 

+(c,,~~-che+c,.c,,G~)~ (4) 

As a consequence of the boundary-layer simplifications 
used in this study, the buoyancy production term Gk 
can be neglected ; Lin and Churchill [ 131 retained the 

term, after replacing the temperature’s x-gradient by 
its y-gradient, to mode1 fluids with a Prandtl number 
larger than 1 (water, oil). 

Boundary conditions for k and E at the wall are 
found from wall functions. It is known that close to 
a fixed wall velocity and temperature profiles in a 
forced convection boundary layer, with negligible 
pressure gradient, can be approximated by log- 
arithmic wall functions 

u+ = &In (9y+) 

with 

T+ = 2.195ln(y+)+l3.2Pr-5.66 (5) 

T,-T 
T+ =--- 

Tt 

These wall functions can be used in the fully turbulent 
inertial sublayer at y+ > 11.5. In the viscous sublayer 
close to the wall, y+ < 11.5, turbulence can be 
neglected. Assuming that convection and molecular 
diffusion of k can be neglected in the inertial sublayer, 
the differential equation for k in equations (4) sim- 
plifies to 

Pk =&. (6) 

Hence, it is assumed that the production and 
dissipation of turbulent energy balances. Further, 
Prandtl’s mixing length model is assumed to hold 

Vt = (0.41y)2? 
ay’ 

With the energy equilibrium (6) Prandtl’s mixing 
length model (7) and the expression for v, in the k-e 
model (4), wall functions for k and E are found 

k 1 
z= 

JG 
VE 
z=& (Y’ ’ 11.5). 

The wall function for k gives a boundary condition 
for the k-equation at the wall, whereas the wall func- 
tion for E gives a boundary condition for the s-equa- 
tion at the first inner computational grid point from 
the wall. The wall functions do not hold for forced 
convection boundary layers with large pressure gradi- 
ents, natural convection boundary layers and if the 
condition y+ > 11.5 is not satisfied. At the moment 
the development of a natural convection wall function 
for k and E has not been completed yet; turbulent 
natural convection computational studies use wall 
functions like equations (8) to obtain boundary con- 
ditions for the standard k-E model. Moreover, most 
natural convection calculations take the first inner 
computational grid point at y+ < 11.5, where they 
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do not use wall functions for the velocity and the 
temperature, but only use wall functions for k and E. (11) 

2.3. Low-Reynolds number k--E models with 

The standard k--E model only holds if the local 
turbulence Reynolds number, i.e. a measure for the 

A = (a:+a:)/2, B = a,b, +a,b,. 

turbulence intensity v,/v, is large. Close to the wall, 2.3.2. D function and wall ,functions ,for k and E. 

e.g. this is not the case, and a modification of the Using series (1 I), the k-equation close to the wall 

model should be applied. Low-Reynolds number reduces to 

effects are modelled by the introduction of the func- a*k 
tions f‘,, f2, f,,, D and E vv - E+D = O(y’) (12) 

auk auk a 

a*k 
T=2A+6By+.. 

au8 au.5 a v, a& ( > 
ay 

ax+ay=ay v+fo, ay All models apply k = 0 as a wall condition, consistent 
with series expansion (11) for k. Not all models apply 

+(c,,f,P,-cz,fze);+ E (9) 
the non-zero value E = 2vA as a wall condition; in 
order to satisfy equation (12) for at least the O(1) 
terms, models applying E, = 0 introduce a function 

with D. Consequently, in that case the dissipation should 

Pk = v, * 0 
2 

be interpreted as E-D, rather than as E alone. 
2.3.3. f2 and E functions. Close to the wall the E- 

ay equation reduces to 

v, = cfi f$ v$-c*,f*;+E=O(y). (13) 
E 

Most low Reynolds number k-E models, as sum- 
The choice for f2 and E should be such that 

marized in Table 1, were originally developed for 
a2s/dy2 = O(1) for small y. For example, if E = 0 and 

forced convection boundary layers. The last model in 
a non-zero E, value is prescribed (implying that E 

this table, the To and Humphrey [17] model, was 
is O(1) for small y), consistency is only found with 

developed for natural convection boundary layers. 
f 2 = O(y*) for small y. Some models introduce a non- 

Lin and Churchill [13] used the Jones and Launder 
zero E term, but its physical meaning is not very clear. 

[IO] model to calculate the natural convection bound- 
Most models choose f2 such that the decay of iso- 

ary layer for air. 
tropic grid turbulence is modelled in agreement with 

The results for the natural convection boundary 
experiments. These experiments show that the tur- 

layer do not strongly depend on the choice of the 
bulent kinetic energy k decays as xpn, with n = 1.25 

turbulent Prandtl number for the temperature or. For 
for large Re, (i.e. for small x; Re, = k2/vE) and n = 2.5 

example, increasing or from 0.9 to 1.0 decreases the 
for small Re, (i.e. for large x). The decay is described 

wall-heat transfer by 5%. 
by 

The choice of the functions f ,, f2, f,,, D and E 

should depend on the following considerations (see 
also Pate1 et al. [3, 41). 

2.3.1. Experimental limit for small y. For small y, 

ak -=-_E 
ax 
a& &* 
-= 

the velocity fluctuations can be expanded according ax -c*,f*-. 
k 

(14) 

to Substitution of k = c ,x-~ and E = c2xmm in equations 

u’ = a,y+b, y2 
(14) leads to 

n+l 
VI = b,y* C2Ef2 = -. 

II 
(15) 

w’ = a,y+b3y2. (10) For Re, + co all models have f2 = 1, implying (with 

With these series, k (= z&:/2), E (= vau;jaxjau;/axj) 
n = 1.25) that czE should be 1.8. Indeed all models 

and v, (= - u’v’/(au/ay)) become (assuming homo- 
apply this value, or a value close to it. All models, 

geneous turbulence) 
except the Lam and Bremhorst [7] model, also 
approximately reproduce the low-Reynolds number 

k=Ay2+By3+... 
decay limit, i.e. (with n = 2.5) f 2 = 1.4/c, in the limit 
Re, ---) 0. 

E = v(2Af4Bvf.. .) , I 2.3.4. f,, function. This function should be such that 
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the behaviour v, = 0(Y3) in equations (10) is repro- 
duced for small Y. All models give a power of 3 or 4, 
with the exception of the Reynolds model which gives 
a power of 6 [15]. 

Some restrictions for the low-Reynolds number 
functions have been formulated. An inconsistency 
occurs for the Lam and Bremhorst model and for the 
Reynolds model ; the consequences of these incon- 
sistencies and the accuracy of all other models require 
a comparison with experiments. 

3. NUMERICAL SOLUTION 

The boundary-layer equations are solved for a semi- 
infinite heated vertical plate in a stagnant, isothermal 
environment. The variables are nondimensionalized 
with the length scale x0, the velocity scale u0 and the 
temperature scale AT (= T,- Too). This leads to 

U v T-T, k X,,E v, 
- 

___ 
ug’ 240’ - 7’ 2 u; ) 

uoxo 

= f ($, k, Pr, 9, 2). (16) 

Because the geometry and boundary conditions in this 
natural convection problem do not define a length 
and velocity scale, they are formed with the 
coefficients gfiAT and v 

V= 

(H 

113 

xo = g/3AT 

u. = (g/3ATv)‘j3. (17) 

With this choice the dimensionless solution only 
depends on Pr and on the following dimensionless 
coordinates : 

= Gri13 

Y -= “3 = &r/3. 
Yo 

Y (18) 

The following boundary conditions are applied : 

x = xb : laminar u- and T-profiles specified 

x = Xrr : 2 = 0.647, $ = ,,/c 

T- T, 
y=o: u=v=o,-----~~ 

AT 

k and E specified by the considered k-E model 

Y=Y,: u=O, T= T, 

k2 
kJ0, E/O; 5 = c,,; = 20. 

V 
(19) 

The calculations are started at Gr, = 109, where the 
laminar similarity solution for the vertical plate is 

prescribed. Turbulence is introduced at Gr, = 2 x 10” 
by switching on the turbulence model, and introducing 
an amount of turbulent energy if a k--E model is used. 
The outer edge of the computational domain is taken 
far enough to neglect its influence on the development 
of the boundary layer. Values of k and E close to zero 
(but such that also k2/c remains small) are prescribed 
at this outer edge. The calculation is ended at 
Gr, = 10”. 

The computational domain is covered with an equi- 
distant grid in the x-direction and a non-equidistant 
grid in the y-direction. A v-grid point at an x-station 
is positioned just between two u-grid points (staggered 
grid). Grid points for the scalar variables coincide with 
the u-grid points. The x-derivatives are discretized with 

finite differences, whereas the y-derivatives are 
approximated with a finite-volume-like discretization. 
This discretization retains the characteristics of the 
finite volume/staggered grid discretization used for 
solving the Navier-Stokes equations as far as possible. 

Because the boundary-layer equations are parabolic 
they can be solved in a single sweep, going from one 
x-station to the next downstream station. An attempt 
was made to solve the system of non-linear equations 
at each x-station with the Newton-Raphson method. 
This method linearizes the equations at each iterative 
level, and solves the resulting block tri-diagonal 
matrix equation with a direct Gauss elimination. The 
method converges with a quadratic speed, which was 
checked for the laminar solution. The turbulence 
models are so complex that they were only partially 
linearized ; still a fast convergence was found with 

the Cebeci-Smith model. The k--E models, however, 
required a very accurate initial guess to prevent diver- 
gence. Our conclusion that the Newton-Raphson 
method is therefore unusable to solve the boundary- 
layer equations with a k--E model agrees with Vanka’s 
[18] experiences with this method to solve the Navier- 
Stokes equations with a k-8 model. Hence it was 
decided to use a segregated solution method ; during 
an iteration the different differential equations in the 
boundary-layer equations are updated one after the 
other, solving only tri-diagonal matrix equations for 
each variable. Some underrelaxation was required to 
prevent divergence and obtain a reasonable speed of 
convergence. 

Difficulties can arise to achieve a turbulent tran- 
sition with a low-Reynolds number k--E model. If the 
turbulence model is switched on at Gr, = 2 x 109, 
without introducing turbulent energy at this station 
or at the outer edge, the solution will remain laminar. 
If a v,-profile is prescribed at the first station upstream 
of Gr, = 2 x 109, the solution becomes turbulent. If 
such a profile is not prescribed, but instead a small 
non-zero v, is prescribed at the outer edge, a normal 
transition occurs at the 18 x 20 grid, a late transition 
is found at the 36 x 40 grid and there is no transition 
at the 72 x 80 grid. Once the solution has become 
turbulent, the solution at Gr, = lOI is almost inde- 
pendent of the way the turbulence is introduced. The 
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examples illustrate that the solution of the low-Reyn- 
olds number k-c model is nonunique ; assuming that 
the solution for large Gr, is independent of the starting 
profile, both a laminar and turbulent solution exist 
for large Gr,, applying homogeneous boundary con- 
ditions for k and E at the wall and at the outer edge. 
This nonuniqueness can cause numerical problems. 
Ozoe et al. [ 191 tried to calculate the turbulent Navier- 
Stokes flow of water in a cavity heated from the side 
with the Jones and Launder model, setting k and E to 
zero at all surfaces, but found that k and E either 
converged to zero at all grid points or diverged. 

All results to be presented in the sequel were made 
on a fine 72 x 80 grid, which was checked to give 
almost grid-independent results. 

4. COMPARISON OF THE DIFFERENT 

MODELS 

Pate1 et al. [3, 41 have compared the performance 
of some of the k-E models (Table 1) for the forced 
convection boundary layer along a flat plate. In order 
to check our numerical code, these calculations have 
been repeated, and a perfect agreement has been 
found with their tabulated wall-shear stress 
coefficients. The natural convection boundary layer 
was calculated by Cebeci and Khattab [ 121, using the 
Cebeci-Smith model, by Lin and Churchill [13], using 
the Jones and Launder model, and by To and Hum- 
phrey [17] with their own model. Present results agree 
up to a graphical accuracy, except for the results with 
the To and Humphrey model, which considerably 
deviate. 

Evaluation of the experiments for air at large 
Grashof numbers [6, 20-251 gives the following best 
fit curves for the wall-heat transfer coefficient and 
the velocity and temperature profiles 

NM, = 0.106Gr;‘3 

54[-4452(1 -l/35) 
conductive/thermo-viscous sublayer 

u 
-_= 39.7{‘/‘- 14.5 

UO buoyant sublayer 

4.34ln[-3.13<+0.57jln[+24.3 
fully turbulent layer 

conductive/thermo-viscous sublayer 

T-T, 
-= 0.63[- “3 -0.23 

AT buoyant sublayer 

0.28 -0.08 In [ 
fully turbulent layer. 

(20) 

The expression for the wall-heat transfer fits the 

experiments in the Grashof number range 5 x lo”- 
lo’*, and the velocity and temperature profiles fit the 
experimental range 5 x IO”-5 x 10”. The Nusselt 
number Nu, and the length scale [ are defined as 

Nu, = -x($(G))w 
Y% 

(=y. (21) 

As shown by George and Capp [5] and Cheesewright 
[6], the coordinate [ seems to be a similarity length 
scale of the turbulent natural convection boundary 
layer, giving a Gr,-independent solution for u/u0 and 
(T- T,)/AT in the limit Gr, + co. Close to the outer 
edge the [-coordinate is not expected to be the right 
similarity scaling. 

Our calculated wall-heat transfer for the different 
models is shown in Fig. 1 as a function of Gr,. The 
results at Gr, = 10” are summarized in Table 2. In 
particular the standard k-e model with wall functions 
gives a too high result and the Cebeci-Smith model a 
too low result. Using the Lam and Bremhorst model, 
the results with the Dirichlet and Neumann boundary 
condition for E at the wall are indistinguishable. The 
models of Lam and Bremhorst, Chien, and Jones and 
Launder are the low-Reynolds number k--E models 
which are closest to the experiment up to Gr, = 10”. 
For larger Grashof numbers the wall-heat transfer 
according to the models of Lam and Bremhorst and 
Chien becomes a bit too high. However, the Jones and 
Launder model remains close to the experiment. 

The velocity and temperature at Gr, = 10” is com- 
pared with experiments in Fig. 2. The velocity 
maximum with the Cebeci-Smith model and with the 
standard k-E model with wall functions is too high. 
None of the models is close to the experimental curves 
in the whole c range. Concerning the models of Lam 
and Bremhorst, Chien, and Jones and Launder it is 
noticed that they all fall above the experiments in the 
region close to the outer edge of the boundary layer. 
The Chien model is closest to the experimental tem- 
perature near the wall in the buoyant sublayer 
(0.1 < < < 1). The velocity maximum in the Jones and 
Launder model is a bit too high. 

The turbulent quantities k/u& YE/U: and v,/v are 
compared in Fig. 3. For all models (except for the 
standard k-c model with wall functions, the To and 
Humphrey model and the Hoffman model) the quali- 
tative picture is the same : the turbulent kinetic energy 
k forms a plateau around the position of the velocity 
maximum and reaches its maximum close to the outer 
edge, where the turbulent viscosity also reaches its 
maximum. The turbulent dissipation rate E reaches its 
maximum just a bit nearer to the wall than the 
velocity. The low values of the turbulent viscosity v, 
found with the Cebeci-Smith model and the Hoffman 
model correspond with the laminar-like looking vel- 
ocity profiles in Fig. 2(a), i.e. thin with a large velocity 
peak. 
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FIG. 1. Calculated wall-heat transfer (Pr = 0.72). 
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Table 2. Wall-heat transfer at Gr, = 10” (Pr = 0.72) 

Model NUX 

Experiment 492t 
Cebeci-Smith 389 
Standard k-z with w.f. 642 
Lam and Bremhorst (Dirichlet) 541 
Lam and Bremhorst (Neumann) 541 
Chien 543 
Hassid and Poreh 619 
Reynolds 1 
Hoffman 345 
Jones and Launder 465 
To and Humphrey 679 

t According to the best fit curve Nu, = 0.106Gr:” ; e.g. 
455 according to Siebers et al. [25], and 514 according to 
Miyamoto et al. [23]. 

$ No converged solution could be obtained. 

5. SENSITIVITY OF THE MODEL 
PARAMETERS 

The influence of the choice of the boundary con- 
ditions fork and E in the standard k-e model has been 
checked. Hence, the following values for k and E at 
the first inner grid point have been varied 

E, = u: 
0.41y’ 

(22) 

The calculated wall-heat transfer on a 36 x 40 grid is 
shown in Fig. 4. It is seen that a minimum is reached 
close to the original choice, equations (22), ‘giving a 
wall-heat transfer which is 29% above the exper- 
imental value. Decreasing E, and/or increasing k,, i.e. 
increasing the turbulent viscosity at the first inner 
grid point, drastically increases the wall-heat transfer. 
Some natural convection studies [ 19,261 use boundary 

3 I2 

conditions slightly different from equations (22) 

k, = 0 at the wall 

$/4k3/2 

,$ =L 
w 0.41y 

at the first inner gridpoint. (23) 

The influence of varying these values is depicted in 
Fig. 5. The original choice, equations (23), leads to a 
wall-heat transfer which is 51% above the exper- 
imental value. Decreasing E, largely increases the wall- 
heat transfer. Increasing E, decreases the wall-heat 

transfer until a 43% too large value is found for 
&,‘00. 

A sensitivity study is also made for the low-Reyn- 
olds number k--E models of Lam and Bremhorst, 

Chien, and Jones and Launder, which turned out to 
agree best with the experiments in the preceding 
section. The influence of the different terms in these 
models is given in Table 3. In all three models the 
trivial choice f 2 = 1 does not alter the wall-heat trans- 
fer. Further, the interchange of a non-zero boundary 
condition for E with a non-zero D term nearly influ- 
ences the wall-heat transfer. Setting E, = 0 (with 
D = 0) in the Lam and Bremhorst model or setting 
D = 0 (with E, = 0) in the Jones and Launder model 

also leads to only small changes ; decreasing 1 D 1 (with 
E, = 0) in the Chien model, however, enormously 
increases the wall-heat transfer. Omitting the E term 
(which has not a clear physical meaning) in the Jones 
and Launder model drastically increases the wall-heat 
transfer by 50%. However, the inhuence of E in the 
Chien model can be neglected. Only the Lam and 
Bremhorst model takes the f, function (which also 
has not a very clear physical meaning) not equal to 1; 
its influence is seen to be very large. The influence of 
the f, function is large for all models. 

The poor performance of the To and Humphrey 
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FIG. 2. Calculated velocity (a) and temperature (b) profiles. 
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model (Table 2) which actually is a modified Jones 
and Launder model, has been investigated. Firstly, To 
and Humphrey exchanged the D term with a non-zero 
boundary condition for E at the wall, which only leads 
to small differences. Secondly they added a correction 
f 3 to the f 2 function, which was also shown to have 
a negligible effect. Lastly To and Humphrey omitted 
the E term in the Jones and Launder model; our 
calculations show that retaining the E term in the To 
and Humphrey model decreases the wall-heat transfer 
at Gr, = 10” by 26%, giving a value close to the 
experimental one. 

This sensitivity analysis suggests that among the 
low-Reynolds number k--E models the Chien model 
has to be preferred, because both the Lam and Brem- 

horst model and the Jones and Launder model contain 
a term (the S, term and the E term, respectively) 
which has not a very good physical foundation, as 
explained in Section 2, but largely contributes to the 
result. A disadvantage of the Chien model is that it 
contains only low-Reynolds number contributions 
due to wall influence (except for the fi term, which 
was checked to be of negligible importance), not 
accounting for the low turbulence effects at the outer 
edge of the boundary layer. The wall-heat transfer 
with the standard k-c model is largely influenced by 
the choice of the wall functions for k and E. If these 
wall functions are replaced by zero wall conditions 
for k and E, and the functions D and f,, of Chien are 
added to the standard k-e model, a new low-Reynolds 
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FIG. 3. Calculated turbulent quantities at Gr, = 10” (Pr = 0.72) : (a) turbulent kinetic energy; (b) rate of 
turbulent energy dissipation ; (c) turbulent viscosity. 

number k-c model is obtained. This model calculates 
the turbulent natural convection boundary layer as 
good as the best existing low-Reynolds number k--E 
models (see last variation of the Chien model in Table 
3), but uses less low-Reynolds number functions. 

6. CONCLUSION 

If homogeneous boundary conditions for k and E 
at the outer edge are applied, the solution of all low- 
Reynolds number k-c models is nonunique; both a 
laminar and a turbulent solution can occur. The solu- 
tions of the Cebeci-Smith model and the standard k- 
E model with wall functions seem to be unique. 

The wall-heat transfer at Gr, = 10” for air as cal- 
culated with the Cebeci-Smith model is 21% below 
the experimental value. The turbulent viscosity cal- 
culated with this model is much too low, resulting in a 
laminar-like velocity profile, having a small boundary- 
layer thickness and a velocity peak which is 22% 
above the experimental value. 

The standard k-e model with wall functions cal- 
culates a wall-heat transfer at Gr, = IO” which is 30% 
above the experimental value. The velocity and tem- 
perature profiles with this model are only slightly 
worse than with the best low-Reynolds number k-6 
models. The velocity maximum is too high and its 
position is too far from the wall. 
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The models of Lam and Bremhorst, Chien, and 
Jones and Launder are the low-Reynolds number k-e 
models giving the best results in describing the velocity 
profiles for the natural convection boundary layer 
flow of air. Pate1 et al. concluded the same for the 
forced convection boundary layer. At Gr, = 10” the 
wall-heat transfer deviates by only a few percent from 
the experimental value. For larger Grashof numbers 
the Jones and Launder model gives the best wall-heat 
transfer predictions. 
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Accurate heat-transfer calculations for a natural 
convection boundary layer require the introduction 
of low-Reynolds number terms in the standard k-c 
model. The algebraic model of Cebeci-Smith and the 
use of existing wall functions for k and E in the 
standard k-c model lead to a limited accuracy. Re- 
placing these wall functions by zero wall conditions 
for k and E and extending the standard k-c model 
with Chien’s D and f, terms gives a simple low- 
Reynolds number k--E model. It uses less functions 
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FIG. 4. Sensitivity of the boundary conditions k, = ut/,/c,, and E , = u: /0.41y in the standard k-c model 
(Gr, = lo”, Pr = 0.72): (a) E, fixed at E, = u,‘/O.41y; (b) k, fixed at k, = u:/Jc,,. 
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900 I I I 
than existing models, but has the same accuracy as 
the models of Lam and Bremhorst, Chien, and Jones 
and Launder. 
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Variation N% 

None 
(a) Lam and Bremhorst model 

F 1 :, but f, unchanged 

f:= 1 
E, = 0, D = -2v(iQ’k/ay)2 
E, = 0, D = -2vk/y’ 
Ew=o 

(b) Chien model 

D = &,I4 
E, = v(a*k/cYy’)w, D = 0 
cle = 1.44, czr = 1.92 
c,,=1.44,~,,=1.92,E=O,f,=f,=l 

None 
f, = 1 

k:; 

D=O 

(c) Jones and Launder model 

E, = 2v(&/k/ay).Z, D = 0 

541 
9% 

45% 
0% 
2% 

-9% 
0% 

543 
13% 
0% 
0% 

24% 
9% 
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-3% 

465 
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0% 
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6% 
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COMPARAISON DES MODELES DE TURBULENCE POUR LA COUCHE LIMITE DE 
CONVECTION NATURELLE LE LONG DUNE PLAQUE CHAUDE VERTICALE 

R&sum’_Avec un code numerique pour resoudre les equations de couche limite, les performances de 
differents modtles de turbulence sont testes pour la couche limite de convection naturelle d’air le long 
dune plaque chaude et verticale. On a test& le modele algebrique Cebec-Smith, le modele standard k--E 
avec des fonctions de paroi pour k et e et differents modeles k-e B faible nombre de Reynolds. Le modele 
Cebec-Smith calcule un transfert thermique pa&al et une viscosite turbulente trop faibles. Le modele k- 
e standard avec des fonctions de paroi donne un transfert a la paroi trop Cleve, mais les profils de vitesse 
et de temperature sont en accord raisonnable avec les experiences. Des rtsultats p&is de transfert a la 
paroi requibrent l’utilisation des modeles k-e i faible nombre de Reynolds; les modeles de Lam et 
Bremhorst, de Chien, de Jones et Launder conviennent jusqu’a un nombre de Grashof de 10”. Pour des 
nombres de Grashof plus grands, le modele de Jones et Launder est meilleur. Une etude de sensibilite 
montre que le transfert thermique I la paroi avec le modble standard k-e depend largement du choix des 
fonctions de paroi pour k et e. Le remplacement de ces fonctions par des conditions de zero a la paroi pour 
k et e et l’addition des fonctions D et f, du modele de Chien au modele k-e standard, donnent un modtle 

simple et prbis pour la couche limite de convection naturelle. 

VERGLEICH VON TURBULENZMODELLEN FUR DIE GRENZSCHICHT DER 
NATURLICHEN KONVEKTION AN EINER BEHEIZTEN VERTIKALEN PLATTE 

Zuaarnmenfaasung-Mit Hilfe eines numerischen Rechenprogramms zur Losung von Grenzschicht- 
problemen wurde die Anwendung von verschiedenen Turbulenzmodellen fiir die Grenzschicht der 
natiirlichen Konvektion von Luft an einer beheizten vertikalen Platte tiberpriift. Untersucht wurde das 
Cebeci-Smith-Modell, das Standard k-e-Model1 mit Wandfunktionen fur k und e und unterschiedliche k- 
e-Modelle fiir geringe Reynolds-Zahlen. Das Cebec-Smith Model1 errechnet einen zu geringen Wlrme- 
tibergang an der Wand und eine zu geringe turbulente Viskositat. Das Standard k-e-Model1 ergibt einen 
zu hohen Wlrmetibergang an der Wand-die Geschwindigkeits- und Temperaturprofile stimmen jedoch 
gut mit den Experimenten i&rein. Urn den Wlrmetibergang an der Wand richtig zu berechnen, mu8 ein k- 
e-Model1 fiir geringe Reynolds-Zahlen benutzt werden. Dabei liefern die Modelle von Lam und Bremhorst, 
Chien, Jones und Launder die besten Ergebnisse bis zu GrashoEZahlen von 10”. Fiir gr68ere Grashof- 
Zahlen ist das Model1 von Jones und Launder das beste. Eine Parameterstudie zeigt, daB der Wirme- 
iibergang an der Wand beim Standard-k-e-Model1 sehr stark von der Wahl der Wandfunktion k und E 
abhangt. Setzt man diese Wandfunktionen zu 0 und erweitert das Standard-k-e-Model1 urn die Funktionen 
D und f, aus dem Chien-Modell, so erhalt man ein genaues k-e-Model1 fur kleine Reynolds-Zahlen fur 

die Grenzschicht der natiirlichen Konvektion. 

CPABHEHHE MOflEJIER TYPBYJIEHTHOCTM, kiCllOJlb3YEMbIX fiJUl PACgETA 
IIOI-PAHINHOl-0 CJIOII Y HAl-PETOfi BEPTMKAJIbHOtl FIJlACTklHbI l-lPki 

ECTECTBEHHOft KOHBEKqklH 

WIIpH 110~0uw wcnewol cxehnd,HcnoJIbsyeb4oii AJIX peruem ypaeiiemifi norpamimioro 
CJIOll, Hc0leAycTCK aAeKBaTHOCTb pa3JlHYHba MOAeAefi Typ6yJIeHTHmH AJIS paC'ieTa IIOrpaHH'tHOrO 

CnOI BO3Llyxa y HarpeTOfi BepTHUJIbHOii IuISTliHbI B yCJIOBAKX eCTeCTBeHHOfi KOHBeEAHH. kia.ilH3H- 

pytolca aAE6priH¶eCKa# MOAeAb ~e6eCH-&HTa,o6bI¶HaX MOAeJIb k-e C npHCTeHHbIMH @HKAHKMH 

AJUI k H E El pa3AH'iHble MOAeJm k-E AJIll HH3KHX ¶EiCeJl PefiHOJIbAGl. MOAeJIb L&6e'GH<MHTa AaeT 

BeCbMa 3uzeHHue 3Haqem Ten.noBoro noToKa Ha creHKe H Typ6ynemofi BI~~KO~TH. 06brwas 

MOAeAb k-e C UIpE~HHb[MB &HWiIIMH AaeT O'IeHb BbIcoKHe 3HaSeIiHfl TelUlOBOrO lIOTOKa Ha CTeHKe, 

o~na~onpo@~~H c~opoa-~erehfnepa~yp~ AocraTo~~oxopomocornacyroTcacsKcnepsihte~TanbsibwH 

AaHHblMH.HiU6OA~TO'lHOe O~AeJleHEeTelTAOBOrO IIOTOKa Ha CTeHKe rpe6yer HCllOJIb30BaHHK HH3- 

KO~ikOAbACOBbU MOAWIeti k-e; MOAeAH &Ma H &eMxOpcTa, qeHa, a TaKXCe &COHGi H &yHLlepa 

cams mqwmie pe3yJIbTaTbl AAK gacen rpacrot$a, He npe~bnmuowix 10”. Bbnue aroro sria=remia 
ny¶ue uccron~~~~MoAeAb~o~ca aJIayyrrepa.rIoKa3ano,qTo TennonepeHocHaffeeKe,pacc9a- 

Ed no Cra~~apTi?Oii MOJVZ.~-B k-e, CHA~HO 3aBHcHT OT Bbl6opa npHCTemibIX &HE@ AAS k H e. 
&bIeHa 3TliX @yYHd HyJIeBUMH yCAOBEIlhSH AAS k H e H BBOA +yHKIlHti MOAeJIE qetia D Hfr B 

O6SmIiylO MOAeJlb k-e Aae.T npocryr0, HO AOcTaTOSHO Cl'pOryIo MOAeJlb k-e ZUIX HH3KHX 'IHCen PeztHO- 
,,bACZ,BCJIyS,eeC!TeCTBeHHO~KOHBeKARHBnO~aHH'lHOMCAOe. 


