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Abstract—With a numerical code for solving the boundary-layer equations, the performance of different
turbulence models for the natural convection boundary layer for air along a heated vertical plate is tested.
The algebraic Cebeci-Smith model, the standard k—¢ model with wall functions for k and ¢ and different
low-Reynolds number k—& models are tested. The Cebeci-Smith model calculates a too low wall-heat
transfer and turbulent viscosity. The standard k—& model with wall functions gives a too high wall-heat
transfer, but the velocity and temperature profiles agree reasonably with experiments. Accurate wall-heat
transfer results require the use of low-Reynolds number k—& models ; the models of Lam and Bremhorst,
Chien, and Jones and Launder perform best up to a Grashof number of 10''. For larger Grashof numbers
the Jones and Launder model is best. A sensitivity study shows that the wall-heat transfer with the standard

k-¢ model largely depends on the choice of the wall functions for &k and ¢. Replacing these wall functions
by zero wall conditions for k and ¢ and adding the functions D and f“ of the Chien model to the standard
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k—s model gives a simple, but accurate Iow-Reynolds number k—&¢ model for the natural convection
boundary layer.

1. INTRODUCTION
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boundary layer, namely the flow of air along a heated

TIME AND length scales of a turbulent flow are often
so small that in general the turbulence in the unsteady
Navier-Stokes equations is further modelled. The
two-equation k—¢ model for turbulence is most widely
used. This model is usually applied in combination
with wall functions for the velocity and temperature
close to a fixed wall to avoid the calculation of the
stccp gfaulcl’llb ln I.IlC ll'llIl Wdll reglon l ne wau Iunc-
tions also give boundary conditions for the differential
equations for the turbulent kinetic energy k and the
rate of dissipation of turbulent energy & In many
flows the use of wall functions actually is not fully
justified and Launder [1] has suggested that it might
be ‘time to abandon wall functions’. But in the thin
wall region the turbulence is low, and the standard k-
¢ model has to be corrected for the iow-Reynoids
number effects. Different so-called low-Reynolds
number k-¢ models have been proposed in the litera-
ture.

Prandtl {2] showed that when the characteristic
number of the flow, i.e. the Reynolds number for a
forced convection flow and the Grashof (or Rayleigh)
number for a natural convection flow, becomes infi-
nitely large, some terms disappear from the Navier—
Stokes equations, yielding the boundary-layer equa-
tions close to a fixed wall. To compare the per-
formance of different low-Reynolds number k—
models near to a wall, Patel et al. [3, 4] have solved
the turbulent boundary-layer equations for a forced
convection boundary layer, namely the flow along a
flat plate in a uniform oncoming stream. A similar
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vertical plate placed in a stagnant, isothermal environ-
ment. Besides a comparison of the low-Reynolds
number k—¢ models, ailso comparisons wiil be given
for the well-known algebraic model of Cebeci-Smith
and the standard k—& model with wall functions.
Using the standard k—¢ model, a difficulty is that

no good wall functions exist for the natural convection
boundary layer. Recently George and ("'ann fﬂ and
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Cheesewnght [6] have made some first proposals for
these wall functions. At the moment natural con-
vection computations stiii use the standard k— model
with the logarithmic wall functions, which formally
only hold for forced convection boundary layers with
small pressure gradients. The sensitivity of the precise
choice of these wall functions is investigated. Such a

cpnuh\nfv cfndv is also made for three ln\n_ppvnnlde

number k—s models. the models of Lam and Brem~
horst [7], Chien [8, 9} and Jones and Launder [10].

2. TURBULENT BOUNDARY-LAYER
EQUATIONS

The time-averaged, two-dimensional, incom-
pressible, turbulent boundary-layer equations are
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f1  low-Reynolds number correction for ¢,
f>  low-Reynolds number correction for ¢,,
f.  low-Reynolds number correction for ¢,

g gravitational acceleration

G, buoyancy production of turbulent kinetic
energy

Gr, local Grashof number, gfATx?/v?

k turbulent kinetic energy, uju;/2

Nu, local Nusselt number,
—X/AT[T—T)/0yl

p pressure

P, shear production of turbulent kinetic

energy
Pr  Prandtl number
turbulent Reynolds number, y,/k/v
turbulent Reynolds number, k2/ve
T temperature

AT  characteristic temperature difference,
T.,— T,

T. characteristic shear stress temperature,
—v(@T/0y),,/Pru,

T* dimensionless temperature, (T, — T)/T,

u vertical velocity component

u, velocity scale, (gBATv)"?
u, characteristic shear stress velocity,
J (v(3u/dy),)

u*  dimensionless velocity, u/u,

NOMENCLATURE
Cier Cey €3, coefficients in e-equation v velocity component perpendicular to the
C, coefficient in v,-equation plate
D low-Reynolds number source term in w velocity component perpendicular to the
k-equation u- and v-components
E low-Reynolds number source term in x vertical coordinate beginning at the
e-equation leading edge of the plate

X,  beginning of the computational domain
in the x-direction

X, transition point

xo length scale, (vi/gBAT)'/?

y coordinate perpendicular to, and

beginning at, the plate

dimensionless y-coordinate, yu,/v.

Greek symbols
B coeflicient of thermal expansion

g rate of dissipation of turbulent kinetic
energy, v(0u;/0x,)(0u;/0x;)

4 dimensionless y-coordinate, yNu, /x

v molecular kinematic viscosity

v, turbulent kinematic viscosity

p density

o,  turbulent Prandtl number for &
oy  turbulent Prandtl number for T
o, turbulent Prandtl number for s.

Superscript
fluctuating quantity.

Subscripts
t turbulent quantity
w wall condition
o0 environment condition.

The Boussinesq approximation has been applied,
implying that the density p is considered constant
everywhere, except in the temperature buoyancy term,
in which it is replaced by a linear dependence (con-
stant coefficient of thermal expansion f) on the tem-
perature difference 7— T,. An eddy viscosity model
has been used to model the turbulent Reynolds stresses

— Ju
—uv =y
dy
o W OT
—uT—oTay. @

The following models for the turbulent viscosity have
been tested.

2.1. Algebraic model of Cebeci—Smith

Cebeci and Smith [11] used the following model to
describe the turbulence in a forced convection bound-
ary layer, which was modified by Cebeci and Khattab

[12] for a natural convection boundary layer

1210u0ylyy.
if y < y. (v is continuous at y,)

|, |y 3)
if y > y, forced convection

(0.0756,)*|0u/0y|yy.
if y 2 y, natural convection

with
! = ky[l —exp (—y* /A4 ")} (Van Driest length)

x = 0.41 (Karman constant)

i

= J0Eua),)

Uy dum>”2

A* =26/N; N={1-11.
6/N; N (1 1.8y5
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7 = 0.55[1 —exp (—0.243z1/2—0.2982, )]

Rey
Zl—m_l,R€9>425,
Uy | © u u
Ree _T b . (1 —uw>dy

52=r (4 —t) dy

0
0, is the y-position of ugs ; |ugs — i, | = 0.05Uy,,.

The factor y is an intermittency factor, which accounts
for the experimental observation that the boundary
layer is turbulent at the outer edge during a fraction y

of time only
6
- r
(52 )

This expression is used for forced convection boundary
layers, whereas it is taken equal to 1 for natural con-
vection boundary layers. 7y, is a function to describe
the transition from a laminar (y,. = 0) to a turbulent
(- = 1) flow. From experiments it seems that a forced
convection boundary layer becomes turbulent at a
local Reynolds number of 1.5x 10%, and a natural
convection boundary layer at a Grashof number of
2x10°. The turbulent Prandtl number for tem-
perature o is taken as

o = 04(1—exp(—yp*/A™))
7 0.44(1 —exp(—y*/B*))

with

1S .
Bt =——% c(log,, (Pr))~!
=1

\/Pri
¢, =34.96, c,=2879, c;=33.95,
cy =633, c¢5=—1.186.

2.2. Standard k— model with wall functions

Two differential equations are introduced to describe
the kinetic energy of the turbulent velocity fluctuations
k and the rate of turbulent energy dissipation ¢
ouk ovk 8 < v,)ak

0x+5=5 v —+Pk+Gk—8

0y
tus ow_0(  w\es
ox ' dy  dy v o, /0y

£
+(c i Pr—cpetec3,G) 7 (4

3

k

with
ou\? oT k?
P =y <@> , Ge= —Vtgﬂg, Vo=

As a consequence of the boundary-layer simplifications
used in this study, the buoyancy production term G,
can be neglected ; Lin and Churchill [13] retained the

term, after replacing the temperature’s x-gradient by
its y-gradient, to model fluids with a Prandtl number
larger than 1 (water, oil).

Boundary conditions for k& and ¢ at the wall are
found from wall functions. It is known that close to
a fixed wall velocity and temperature profiles in a
forced convection boundary layer, with negligible
pressure gradient, can be approximated by log-
arithmic wall functions

1
+ +
W= pan O

Tr =2195In(y*)+13.2Pr—5.66 &)
with

T,—T
T,

(ot
Pru \dy ),

These wall functions can be used in the fully turbulent
inertial sublayer at y* > 11.5. In the viscous sublayer
close to the wall, y* < 11.5, turbulence can be
neglected. Assuming that convection and molecular
diffusion of k can be neglected in the inertial sublayer,
the differential equation for k in equations (4) sim-
plifies to

, T =

u =/ (v(0u/oy).), T.=

P == (6)

Hence, it is assumed that the production and
dissipation of turbulent energy balances. Further,
Prandt!l’s mixing length model is assumed to hold

ou
ve = (0.41y)? P @)

With the energy equilibrium (6), Prandtl’s mixing
length model (7) and the expression for v, in the k—¢
model (4), wall functions for k and ¢ are found

k 1

u Jeu

Ve 1
The wall function for k gives a boundary condition
for the k-equation at the wall, whereas the wall func-
tion for ¢ gives a boundary condition for the e-equa-
tion at the first inner computational grid point from
the wall. The wall functions do not hold for forced
convection boundary layers with large pressure gradi-
ents, natural convection boundary layers and if the
condition y* > 11.5 is not satisfied. At the moment
the development of a natural convection wall function
for k and ¢ has not been completed yet; turbulent
natural convection computational studies use wall
functions like equations (8) to obtain boundary con-
ditions for the standard k—¢ model. Moreover, most
natural convection calculations take the first inner
computational grid point at y* < 11.5, where they
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do not use wall functions for the velocity and the
temperature, but only use wall functions for k and e.

2.3. Low-Reynolds number k—¢ models

The standard k—¢ model only holds if the local
turbulence Reynolds number, i.e. a measure for the
turbulence intensity v,/v, is large. Close to the wall,
e.g. this is not the case, and a modification of the
model should be applied. Low-Reynolds number
effects are modelled by the introduction of the func-
tions f4, f5, f.. Dand E

ovk 0 v, \ 0k
+@-—@<V+a>@+l)k—8+l)

Ous [ ove_ O, )
6x+6y_6yv o,/ 0y

+ewfiPi—eanf D7 +E O

ouk
ox

with

Most low Reynolds number k— models, as sum-
marized in Table 1, were originally developed for
forced convection boundary layers. The last model in
this table, the To and Humphrey [17] model, was
developed for natural convection boundary layers.
Lin and Churchill {13] used the Jones and Launder
[10] model to calculate the natural convection bound-
ary layer for air.

The results for the natural convection boundary
layer do not strongly depend on the choice of the
turbulent Prandtl number for the temperature o,. For
example, increasing 6, from 0.9 to 1.0 decreases the
wall-heat transfer by 5%.

The choice of the functions f,, f, f,., D and E
should depend on the following considerations (see
also Patel et al. [3, 4]).

2.3.1. Experimental limit for small y. For small y,
the velocity fluctuations can be expanded according
to

w=ay+b,y

’

v = 2

byy

w’ =a3y+b3y2. (10)

With these series, k (= uju}/2), ¢ (= vdu;[dx,0u;|0x,)
and v, (= —u'v'/(du/dy)) become (assuming homo-
geneous turbulence)

k= Ay*+By*+...
e =v(2A+4By+...)

—ab,y*+...
(Qu/0y).,

vV, =

(11)
with
A= (ai+ad))2, B=ab,+ayb,.

2.3.2. D function and wall functions for k and e.
Using series (11), the k-equation close to the wall
reduces to

2

0%k
v— —&+D = 0(y?)

5 (12

with

0%k
All models apply & = 0 as a wall condition, consistent
with series expansion (11) for k. Not all models apply
the non-zero value ¢ = 2vA4 as a wall condition; in
order to satisfy equation (12) for at least the O(1)
terms, models applying ¢, = 0 introduce a function
D. Consequently, in that case the dissipation should
be interpreted as ¢ — D, rather than as ¢ alone.
2.3.3. f, and E functions. Close to the wall the &-
equation reduces to
2 2
vi—afiltE=00. )

The choice for f, and E should be such that
8%/dy* = O(1) for small y. For example, if E = 0 and
a non-zero &, value is prescribed (implying that &
is O(1) for small ), consistency is only found with
2= O(»*) for small y. Some models introduce a non-
zero E term, but its physical meaning is not very clear.

.Most models choose f, such that the decay of iso-

tropic grid turbulence is modelled in agreement with
experiments. These experiments show that the tur-
bulent kinetic energy k decays as x ™", with n = 1.25
for large Re, (i.e. for small x; Re, = k*/ve) and n = 2.5
for small Re, (i.e. for large x). The decay is described
by

ok _
ax ¢

de g?

a= _CZEvaE' (14)

Substitution of k = ¢,x™" and ¢ = ¢,x " in equations
(14) leads to

n+1
Cafr=—

(15)
For Re, » oo all models have f, = 1, implying (with
n = 1.25) that ¢,, should be 1.8. Indeed all models
apply this value, or a value close to it. All models,
except the Lam and Bremhorst [7] model, also
approximately reproduce the low-Reynolds number
decay limit, i.e. (with #n = 2.5) f, = 1.4/c,, in the limit
Re, — 0.

2.3.4. f, function. This function should be such that
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the behaviour v, = O(y?) in equations (10) is repro-
duced for small y. All models give a power of 3 or 4,
with the exception of the Reynolds model which gives
a power of 6 [15].

Some restrictions for the low-Reynolds number
functions have been formulated. An inconsistency
occurs for the Lam and Bremhorst model and for the
Reynolds model; the consequences of these incon-
sistencies and the accuracy of all other models require
a comparison with experiments.

3. NUMERICAL SOLUTION

The boundary-layer equations are solved for a semi-
infinite heated vertical plate in a stagnant, isothermal
environment. The variables are nondimensionalized
with the length scale x,, the velocity scale u, and the
temperature scale AT (= T,,— T, ). This leads to

u v T-T, k xp¢ v,
u, uy AT " ud ui’ uex,

X y XogPAT v
—f<, , Pr, 3 ,uoxo). 16)

Because the geometry and boundary conditions in this
natural convection problem do not define a length
and velocity scale, they are formed with the
coefficients gBAT and v

vl 1/3
Yo (glfAT >

1o = (gPATY) .

an

With this choice the dimensionless solution only
depends on Pr and on the following dimensionless

coordinates :

X v
Yy _ gﬁATy3 v _ 1/3
v ( ) = Gr)>. (18)
The following boundary conditions are applied :
X = x;,: laminar - and T-profiles specified
kK ve k |0(ufug)
X=X a2 0.647, = \/C“u7) 3(y/xa)
T—T,
y=0 u=V=0,‘*K,T——l
k and ¢ specified by the considered k—¢ model
Y=Y u=0,T=T,
K
kiO,alO,v—cﬂvs—ZO. (19)

The calculations are started at Gr, = 10°, where the
laminar similarity solution for the vertical plate is

prescribed. Turbulence is introduced at Gr, = 2 x 10°
by switching on the turbulence model, and introducing
an amount of turbulent energy if a k—¢ model is used.
The outer edge of the computational domain is taken
far enough to neglect its influence on the development
of the boundary layer. Values of k and ¢ close to zero
(but such that also k?/e remains small) are prescribed
at this outer edge. The calculation is ended at
Gr, = 10"

The computational domain is covered with an equi-
distant grid in the x-direction and a non-equidistant
grid in the y-direction. A v-grid point at an x-station
is positioned just between two u-grid points (staggered
grid). Grid points for the scalar variables coincide with
the u-grid points. The x-derivatives are discretized with
finite differences, whereas the y-derivatives are
approximated with a finite-volume-like discretization.
This discretization retains the characteristics of the
finite volume/staggered grid discretization used for
solving the Navier—Stokes equations as far as possible.
Because the boundary-layer equations are parabolic
they can be solved in a single sweep, going from one
x-station to the next downstream station. An attempt
was made to solve the system of non-linear equations
at each x-station with the Newton—Raphson method.
This method linearizes the equations at each iterative
level, and solves the resulting block tri-diagonal
matrix equation with a direct Gauss elimination. The
method converges with a quadratic speed, which was
checked for the laminar solution. The turbulence
models are so complex that they were only partially
linearized ; still a fast convergence was found with
the Cebeci—Smith model. The k—& models, however,
required a very accurate initial guess to prevent diver-
gence. Our conclusion that the Newton—Raphson
method is therefore unusable to solve the boundary-
layer equations with a k—& model agrees with Vanka’s
[18] experiences with this method to solve the Navier—
Stokes equations with a k—¢ model. Hence it was
decided to use a segregated solution method ; during
an iteration the different differential equations in the
boundary-layer equations are updated one after the
other, solving only tri-diagonal matrix equations for
each variable. Some underrelaxation was required to
prevent divergence and obtain a reasonable speed of
convergence.

Difficulties can arise to achieve a turbulent tran-
sition with a low-Reynolds number k—¢ model. If the
turbulence model is switched on at Gr, =2x10°,
without introducing turbulent energy at this station
or at the outer edge, the solution will remain laminar.
If a v-profile is prescribed at the first station upstream
of Gr, = 2x10°, the solution becomes turbulent. If
such a profile is not prescribed, but instead a small
non-zero v, is prescribed at the outer edge, a normal
transition occurs at the 18 x 20 grid, a late transition
is found at the 36 x 40 grid and there is no transition
at the 72 x 80 grid. Once the solution has become
turbulent, the solution at Gr, = 10'? is almost inde-
pendent of the way the turbulence is introduced. The
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examples illustrate that the solution of the low-Reyn-
olds number k— model is nonunique ; assuming that
the solution for large Gr, is independent of the starting
profile, both a laminar and turbulent solution exist
for large Gr,, applying homogeneous boundary con-
ditions for k and ¢ at the wall and at the outer edge.
This nonuniqueness can cause numerical problems.
Ozoe et al. [19] tried to calculate the turbulent Navier—
Stokes flow of water in a cavity heated from the side
with the Jones and Launder model, setting k and ¢ to
zero at all surfaces, but found that k£ and ¢ either
converged to zero at all grid points or diverged.

All results to be presented in the sequel were made
on a fine 72 x 80 grid, which was checked to give
almost grid-independent results.

4. COMPARISON OF THE DIFFERENT
MODELS

Patel et al. [3, 4] have compared the performance
of some of the k— models (Table 1) for the forced
convection boundary layer along a flat plate. In order
to check our numerical code, these calculations have
been repeated, and a perfect agreement has been
found with their tabulated wall-shear stress
coefficients. The natural convection boundary layer
was calculated by Cebeci and Khattab [12], using the
Cebeci—Smith model, by Lin and Churchill {13], using
the Jones and Launder model, and by To and Hum-
phrey [17] with their own model. Present results agree
up to a graphical accuracy, except for the results with
the To and Humphrey model, which considerably
deviate.

Evaluation of the experiments for air at large
Grashof numbers [6, 20-25] gives the following best
fit curves for the wall-heat transfer coefficient and
the velocity and temperature profiles

Nu, = 0.106Gr)">

540 —4402(1-1/3¢)
conductive/thermo-viscous sublayer
JE SR
U, buoyant sublayer

4.34In{—3.13(+0.57 In{ +24.3
fully turbulent layer

L
.

1-¢
conductive/thermo-viscous sublayer

0.63(~"*—0.23
buoyant sublayer

0.28—0.08In¢
fully turbulent layer.

(20)

-

The expression for the wall-heat transfer fits the

experiments in the Grashof number range 5x 10"~
10", and the velocity and temperature profiles fit the
experimental range 5x10'°-5x10". The Nusselt
number Nu, and the length scale { are defined as

o= (2 (T=Te
=X\ \TAT /),

yNu,
{=—=
X

@n

As shown by George and Capp [5] and Cheesewright
[6], the coordinate { seems to be a similarity length
scale of the turbulent natural convection boundary
layer, giving a Gr,-independent solution for u/u, and
(T—T,)/AT in the limit Gr, — 0. Close to the outer
edge the {-coordinate is not expected to be the right
similarity scaling.

Our calculated wall-heat transfer for the different
models is shown in Fig. 1 as a function of Gr,. The
results at Gr, = 10" are summarized in Table 2. In
particular the standard k—¢ model with wall functions
gives a too high result and the Cebeci—Smith model a
too low result. Using the Lam and Bremhorst model,
the results with the Dirichlet and Neumann boundary
condition for ¢ at the wall are indistinguishable. The
models of Lam and Bremhorst, Chien, and Jones and
Launder are the low-Reynolds number k—¢ models
which are closest to the experiment up to Gr, = 10",
For larger Grashof numbers the wall-heat transfer
according to the models of Lam and Bremhorst and
Chien becomes a bit too high. However, the Jones and
Launder model remains close to the experiment.

The velocity and temperature at Gr,, = 10'! is com-
pared with experiments in Fig. 2. The velocity
maximum with the Cebeci—-Smith model and with the
standard k—¢ model with wall functions is too high.
None of the models is close to the experimental curves
in the whole { range. Concerning the models of Lam
and Bremhorst, Chien, and Jones and Launder it is
noticed that they all fall above the experiments in the
region close to the outer edge of the boundary layer.
The Chien model is closest to the experimental tem-
perature near the wall in the buoyant sublayer
(0.1 < { < 1). The velocity maximum in the Jones and
Launder model is a bit too high.

The turbulent quantities k/uZ, ve/uj and v,/v are
compared in Fig. 3. For all models (except for the
standard k—¢ model with wall functions, the To and
Humphrey model and the Hoffman model) the quali-
tative picture is the same : the turbulent kinetic energy
k forms a plateau around the position of the velocity
maximum and reaches its maximum close to the outer
edge, where the turbulent viscosity also reaches its
maximum. The turbulent dissipation rate & reaches its
maximum just a bit nearer to the wall than the
velocity. The low values of the turbulent viscosity v,
found with the Cebeci-Smith model and the Hoffman
model correspond with the laminar-like looking vel-
ocity profiles in Fig. 2(a), i.e. thin with a large velocity
peak.
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xxx x> Jones & Launder
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o
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18 12
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Gr,

FiG. 1. Calculated wall-heat transfer (Pr = 0.72).

Table 2. Wall-heat transfer at Gr, = 10'' (Pr = 0.72)

Model Nu,
Experiment 492%
Cebeci-Smith 389
Standard k— with w.f. 642
Lam and Brembhorst (Dirichlet) 541
Lam and Bremhorst (Neumann) 541
Chien 543
Hassid and Poreh 679
Reynolds 1
Hoffman 345
Jones and Launder 465
To and Humphrey 679

+ According to the best fit curve Nu, = 0.106Gr)”; e.g.
455 according to Siebers ez al. [25], and 514 according to
Miyamoto et al. [23].

1 No converged solution could be obtained.

5. SENSITIVITY OF THE MODEL
PARAMETERS

The influence of the choice of the boundary con-
ditions for £ and ¢ in the standard k—& model has been
checked. Hence, the following values for k and ¢ at
the first inner grid point have been varied

u? u

YT e T o4l

The calculated wall-heat transfer on a 36 x 40 grid is
shown in Fig. 4. It is seen that a minimum is reached
close to the original choice, equations (22), giving a
wall-heat transfer which is 29% above the exper-
imental value. Decreasing ¢,, and/or increasing k,, i.e.
increasing the turbulent viscosity at the first inner
grid point, drastically increases the wall-heat transfer.
Some natural convection studies [19, 26] use boundary

22

conditions slightly different from equations (22)
k,=0 at the wall

3/47,3/2
Cu

041y

The influence of varying these values is depicted in
Fig. S. The original choice, equations (23), leads to a
wall-heat transfer which is 51% above the exper-
imental value. Decreasing ¢, largely increases the wall-
heat transfer. Increasing &, decreases the wall-heat
transfer until a 43% too large value is found for
£y — OO,

A sensitivity study is also made for the low-Reyn-
olds number k— models of Lam and Bremhorst,
Chien, and Jones and Launder, which turned out to
agree best with the experiments in the preceding
section. The influence of the different terms in these
models is given in Table 3. In all three models the
trivial choice f, = 1 does not alter the wall-heat trans-
fer. Further, the interchange of a non-zero boundary
condition for ¢ with a non-zero D term nearly influ-
ences the wall-heat transfer. Setting ¢, =0 (with
D =0) in the Lam and Bremhorst model or setting
D = 0 (with ¢, = 0) in the Jones and Launder model
also leads to only small changes ; decreasing | D| (with
&, = 0) in the Chien model, however, enormously
increases the wall-heat transfer. Omitting the F term
(which has not a clear physical meaning) in the Jones
and Launder model drastically increases the wall-heat
transfer by 50%. However, the influence of E in the
Chien model can be neglected. Only the Lam and
Bremhorst model takes the f, function (which also
has not a very clear physical meaning) not equalto 1 ;
its influence is seen to be very large. The influence of
the f, function is large for all models.

The poor performance of the To and Humphrey

at the firstinner gridpoint.  (23)

&y =
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FiG. 2. Caiculated velocity (a) and temperature (b) profiles.

model (Table 2), which actually is a modified Jones
and Launder model, has been investigated. Firstly, To
and Humphrey exchanged the D term with a non-zero
boundary condition for ¢ at the wall, which only leads
to small differences. Secondly they added a correction
f3 to the f, function, which was also shown to have
a negligible effect. Lastly To and Humphrey omitted
the E term in the Jones and Launder model; our
calculations show that retaining the E term in the To
and Humphrey model decreases the wall-heat transfer
at Gr, = 10" by 26%, giving a value close to the
experimental one.

This sensitivity analysis suggests that among the
low-Reynolds number k—& models the Chien model
has to be preferred, because both the Lam and Brem-

horst model and the Jones and Launder model contain
a term (the f| term and the E term, respectively)
which has not a very good physical foundation, as
explained in Section 2, but largely contributes to the
result. A disadvantage of the Chien model is that it
contains only low-Reynolds number contributions
due to wall influence (except for the f, term, which
was checked to be of negligible importance), not
accounting for the low turbulence effects at the outer
edge of the boundary layer. The wall-heat transfer
with the standard k— model is largely influenced by
the choice of the wall functions for k and e. If these
wall functions are replaced by zero wall conditions
for k and ¢, and the functions D and f, of Chien are
added to the standard k—¢ model, a new low-Reynolds
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FiG. 3. Calculated turbulent quantities at Gr, = 10"

(Pr = 0.72) : (a) turbulent kinetic energy ; (b) rate of

turbulent energy dissipation ; (¢) turbulent viscosity.

number k— model is obtained. This model calculates
the turbulent natural convection boundary layer as
good as the best existing low-Reynolds number k-¢
models (see last variation of the Chien model in Table
3), but uses less low-Reynolds number functions.

6. CONCLUSION

If homogeneous boundary conditions for k and ¢
at the outer edge are applied, the solution of all low-
Reynolds number k—¢ models is nonunique; both a
laminar and a turbulent solution can occur. The solu-
tions of the Cebeci-Smith model and the standard k-
& model with wall functions seem to be unique.

The wall-heat transfer at Gr, = 10" for air as cal-
culated with the Cebeci—-Smith model is 21% below
the experimental value. The turbulent viscosity cal-
culated with this model is much too low, resulting in a
laminar-like velocity profile, having a small boundary-
layer thickness and a velocity peak which is 22%
above the experimental value.

The standard k—¢ model with wall functions cal-
culates a wall-heat transfer at Gr, = 10" which is 30%
above the experimental value. The velocity and tem-
perature profiles with this model are only slightly
worse than with the best low-Reynolds number k—
models. The velocity maximum is too high and its
position is too far from the wall.
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The models of Lam and Bremhorst, Chien, and
Jones and Launder are the low-Reynolds number k—
models giving the best results in describing the velocity
profiles for the natural convection boundary layer

flow of air. Patel et al. concluded the same for the
forced convection boundary layer. At Gr, = 10" the

wall-heat transfer deviates by only a few percent from
the experimental value. For larger Grashof numbers

the Jones and Launder model gives the best wall-heat
transfer predictions.
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FIG. 4. Sensitivity of the boundary conditions k, = u?/,/c, and &, = u?/0.41y in the standard k—& model
(Gr, = 10", Pr=0.72): (a) &, fixed at ¢, = u?/0.41y; (b) k,, fixed at k, = u?/,/c,.
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Accurate heat-transfer calculations for a natural
convection boundary layer require the introduction
of low-Reynolds number terms in the standard k—e
model. The algebraic model of Cebeci-Smith and the
use of existing wall functions for & and ¢ in the
standard k—& model lead to a limited accuracy. Re-
placing these wall functions by zero wall conditions
for k and ¢ and extending the standard k— model
with Chien’s D and f, terms gives a simple low-
Reynolds number k—& model. It uses less functions
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FiG. 5. Sensitivity of the boundary condition ¢, = ¢}/*k*?/
0.4ly in the standard k— model (k,=0, Gr,= 10",
Pr=0.72).

Table 3. Influence on the wall-heat transfer of the different
terms in the low-Reynolds number k-¢ models (Gr, = 10",
Pr=0.72)

Variation Nu

x

(a) Lam and Bremhorst model

None 541
f. =1, but f; unchanged 9%
fi=1 45%
fa=1 0%
éw =0, D = —2v(d,/k[0y)? 2%
&, =0, D = —2vk/y? —9%
=0 0%

(b) Chien model

None 543

fu= 13%
fz = 0%
E=0 0%
D = Dcpien/d 24%
&w = V(0%k/0y?),, D = 0 9%
c,=144,¢,, =192 —3%
co=144,¢,, =192, E=0, f1=f,=1 —3%

(c) Jones and Launder model

None 465

Su=1 23%
f2 =1 0%
E=0 50%
D=0 6%
&y = 2v(0/k/OY)2, D =0 3%

than existing models, but has the same accuracy as
the models of Lam and Bremhorst, Chien, and Jones
and Launder.

6.
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COMPARAISON DES MODELES DE TURBULENCE POUR LA COUCHE LIMITE DE
CONVECTION NATURELLE LE LONG D’UNE PLAQUE CHAUDE VERTICALE

Résumé—Avec un code numérique pour résoudre les équations de couche limite, les performances de
différents modéles de turbulence sont testés pour la couche limite de convection naturelle d’air le long
d’une plaque chaude et verticale. On a testé le modéle algébrique Cebeci-Smith, le modéle standard k-
avec des fonctions de paroi pour k et ¢ et différents modéles k—¢ 4 faible nombre de Reynolds. Le modéle
Cebeci—Smith calcule un transfert thermique pariétal et une viscosité turbulente trop faibles. Le modéle k—
¢ standard avec des fonctions de paroi donne un transfert a la paroi trop élevé, mais les profils de vitesse
et de température sont en accord raisonnable avec les expériences. Des résultats précis de transfert 4 la
paroi requiérent I'utilisation des modéles k—& a faible nombre de Reynolds; les modéles de Lam et
Bremhorst, de Chien, de Jones et Launder conviennent jusqu’a un nombre de Grashof de 10", Pour des
nombres de Grashof plus grands, le modéle de Jones et Launder est meilleur. Une étude de sensibilité
montre que le transfert thermique 4 la paroi avec le modéle standard k—¢ dépend largement du choix des
fonctions de paroi pour k et ¢. Le remplacement de ces fonctions par des conditions de zéro a la paroi pour
k et ¢ et 'addition des fonctions D et f, du modéle de Chien au modéle k—¢ standard, donnent un modéle
simple et précis pour la couche limite de convection naturelle.

VERGLEICH VON TURBULENZMODELLEN FUR DIE GRENZSCHICHT DER
NATURLICHEN KONVEKTION AN EINER BEHEIZTEN VERTIKALEN PLATTE

Zusammenfassung—Mit Hilfe eines numerischen Rechenprogramms zur Lésung von Grenzschicht-
problemen wurde die Anwendung von verschiedenen Turbulenzmodellen fiir die Grenzschicht der
natiirlichen Konvektion von Luft an einer beheizten vertikalen Platte iberpriift. Untersucht wurde das
Cebeci-Smith-Modell, das Standard k—e-Modell mit Wandfunktionen fiir k£ und & und unterschiedliche k—
e-Modelle fiir geringe Reynolds-Zahlen. Das Cebeci-Smith Modell errechnet einen zu geringen Wirme-
libergang an der Wand und eine zu geringe turbulente Viskositit. Das Standard k—g-Modell ergibt einen
zu hohen Wirmeiibergang an der Wand—die Geschwindigkeits- und Temperaturprofile stimmen jedoch
gut mit den Experimenten iberein. Um den Wirmeiibergang an der Wand richtig zu berechnen, muB ein k-
e-Modell fiir geringe Reynolds-Zahlen benutzt werden. Dabei liefern die Modelle von Lam und Bremhorst,
Chien, Jones und Launder die besten Ergebnisse bis zu Grashof-Zahlen von 10''. Fiir gréBere Grashof-
Zahlen ist das Modell von Jones und Launder das beste. Eine Parameterstudie zeigt, daB der Wirme-
iibergang an der Wand beim Standard-k—e-Modell sehr stark von der Wahl der Wandfunktion & und ¢
abhingt. Setzt man diese Wandfunktionen zu 0 und erweitert das Standard-k—¢-Modell um die Funktionen
D und f, aus dem Chien-Modell, so erhilt man ein genaues k—e-Modell fiir kleine Reynolds-Zahlen fiir
die Grenzschicht der natiirlichen Konvektion.

CPABHEHWUE MOJEJEN TYPBYJIEHTHOCTH, UCIIOJB3YEMBIX JJIS1 PACUETA
MMOTPAHHUYHOI'O CJIOSl ¥ HATPETON BEPTHUKAJIBHO! IMJIACTHUHBI ITPU
ECTECTBEHHON KOHBEKLIMM

Amoramus—IIpy nOMOIIK YHUCIICHHOM CXEMBI, HCIIOJIB3YEMOM IS PEIUCHAA YPAaBHCHHH MOrPaHHYHOrO
CJIOs, MCCJIEAyeTCA aAeKBATHOCTh PaljIHYHLIX Mojeieil TypOyJCHTHOCTH IUIS pacyeTa NOrpPaHHYHOrO
CJI0A BO3JyXa Yy HArpeToil BEPTHKAJLHOH ILUIACTHHBI B YCJIOBHSX €CTECTBEHHOH KOHBEKIHH. AHaIM3H-
pytorcs anreGpandeckas mMonenb LleGecn—-Cmura, o6bIMHAS MOJENb k—¢ C MPHCTEHHBIMH (YHKLMAMH
S k B € M pasiHdHBie Mopenu k—& nns HA3kux umcen PefiHonbaca. Mopenp LieGecn—Cmurta maer
BEChbMA 3aHWKEHHBIC 3HAYEHHA TEIUIOBOrO MOTOKA HAa CTEHKE H TypOyJieHTHOH BsiskocTH. OObriHas
MofeNb k—¢ C NPACTEHHHIME (YHKIHMSMH AeT OYeHb BHICOKHE 3HAYEeHMs TEILUIOBOrO MOTOKA Ha CTEHKE,
OAHAKO NPO(HIA CKOPOCTH H TEMIEPATYPhI AOCTATOTHO XOPOIIO COrIACYIOTCA € JKCIEPHMEHTAILHEIMA
naauwme. HanGostee TouHOe ompenesieHre TEILUIOBOTO MOTOKA HAa CTEHKE TpeOyeT HCNONMbL3OBAHMA HHM3-
xopeitHONLACOBHX Mofene# k—e; Mopenn JIama u Bpemxopcra, YeHa, a Taxxe [Ixonca u Jlaynnepa
Jal0T HaHyYIHe Pe3yibTaThl AlA 4ucea I'pacroda, He mpessnuaromux 10!'!. Bpoue aroro 3maveHus
JIydine BCero noaxomuT Moaens Jdxonca u Jlayraepa. ITokaszaHo, 4TO TEILIONEPEHOC HA CTEHKE, PacCyH-
TAHHBI MO CTAHOAPTHOM ModesiHM k—¢, CHILHO 3aBHCHT OT BbIGOpa NpHCTeHHLIX GyHKUME 1ns k H €.
3amena 3THX yHKUHA HyJCBHIMH YCIOBHAMH 1jisi kK ¥ £ H BBox (ynxumit monenu Yewa D n f, B
o6rIuHyI0 MOZieNb k—¢ [aeT mPOCTYIO, HO ZOCTATOYHO CTPOTYIO MOMENb k—& A HU3KUX uncen Peiino-
JIbICA B CIIy4ae eCTECTBEHHOH KOHBEKIHH B NOTPAHHYHOM CJIOE.



