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Although most field soils are heterogeneous, existing analytical solutions to 
estimate field saturated hydraulic conductivity Kf, in unsaturated systems assume 
that the soil is homogeneous. To overcome the limitations of existing analytical 
solutions we propose a multistep constant head borehole test to evaluate the field 
saturated hydraulic conductivity of layered media. The field test consists of 
con’ducting constant head borehole tests at different depths that correspond to the 
different layers in the soil. Measurements of water level and the stable flow rate 
are then used to compute the hydraulic conductivity of each layer. Equations for 
evaluating the saturated conductivity of each layer are derived. To determine the 
flow contribution of each layer, a new pressure solution is also presented. One of 
the assumptions of the proposed analytical solution is that the pressure gradient 
on the borehole wall of each layer is independent of the hydraulic conductivity of 
the layer. Comparison of analytical results with numerical simulation results show 
that this assumption is reasonable. The proposed analytical procedure can be 
used to calculate both the saturated and unsaturated flow components. For deep 
boreholes with large H/a ratios (2 20; H constant depth of water; a borehole 
radi.us) the effect of unsaturated flow on the estimated field saturated hydraulic 
conductivity can he neglected and only one borehole is required. However, for 
shalllow boreholes (H/a < 20), the unsaturated flow component is not negligible 
and can be estimated by drilling two nearby boreholes of different radii. Field test 
results are provided to demonstrate the application of the proposed method using 
deep boreholes in an arid setting. Constant-head borehole tests were repeated at 
different depths, depending on the number of layers in the system. This test 
provides a method to determine the vertical distribution of hydraulic conductivity 
for layered soils which is important for accurate evaluation of subsurface flow and 
contaminant transport. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

Hydraulic conductivity is a critical parameter for 
evaluation of subsurface flow and contaminant trans- 
port. Analysis of contamination in the unsaturated zone 
requires information on the spatial variability of 
hydraulic conductivity. Field techniques for estimating 
hydraulic conductivity of soils in the unsaturated zone 
are generally considered more reliable than laboratory 
techniques because they avoid disturbance of the 
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sediments and can provide information on hydraulic 
conductivity over a much larger scale than that based on 
laboratory analyses. 

Most field tests used to estimate field saturated 
hydraulic conductivity of unsaturated soil (KrS) are 
based on constant head borehole tests conducted in 
uncased boreholes. Analytical solutions are used to 
determine I& from these tests and numerical simula- 
tions are generally restricted to evaluating the accuracy 
of the analytical solutions. Analytical approaches used 
to estimate KrS assume that soils are homogen- 
eous9~10~11~*2~13~17~‘*~21, however, most field soils are 
heterogeneous. For layered soils, KrS estimates based 
on these methods that assume homogeneity are 
dominated by KrS of high-conductivity layer. In hetero- 
geneous soils, the flow distribution in a borehole is 
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not uniform with depth and the estimated hydraulic 
conductivity is thus a function of the location of the 
high-conductivity layer. Recent studies’12,314 showed that 
when Reynolds et d’s model’ is used, some tests con- 
ducted in the same borehole at two depths (for example, 
0.05-0.1 m) provide unrealistic (negative) estimates of 
& because of soil heterogeneity. The homogeneity 
assumption associated with available analytical solu- 
tions for estimation of Kf, is a serious limitation to 
evaluation of flow and transport in heterogeneous soils. 
To accurately evaluate flow in heterogeneous soils, we 
need information on the vertical distribution of Kfs. 

There are several possible ways of evaluating the 
vertical distribution of Kfs. One possibility is to drill a 
borehole and conduct a constant head test, then deepen 
the borehole and conduct another test in the next deeper 
layer. This assumes that the soil layering system is 
known a priori. In addition, water added during the first 
test could result in significant smearing of the borehole 
in the case of clayey soils when the borehole is deepened. 
When conducting these tests in thick unsaturated 
sections, it is not practical or economical to conduct 
the tests in this way. A second alternative to evaluating 
the vertical distribution of Kfs is to use packers. Packers 
will generally not work very well in boreholes drilled 
through unconsolidated sediments because of the rough- 
ness of the borehole wall and the borehole may also 
collapse. There are no accurate analytical solutions 
available to estimate Kfs from this type of test. The most 
practical approach to estimating hydraulic conductivity 
in a layered media is to drill the borehole to the 
maximum depth and conduct tests at different depths and 
measure the steady state inflow rates for each test. There are 
no analytical methods available to estimate Kfs from this 
type of multistep constant head borehole test. Although 
numerical simulations could be conducted to evaluate Kfs , 
such simulations are not straightforward and may be 
difficult and time consuming. 

The objectives of this research were to (1) develop an 
analytical approach to evaluate Kfs of layered soils; (2) 
develop a new pressure solution to analyze the flow 
contribution of each layer to the total flow; (3) numeri- 
cally evaluate the assumptions used in the development 
of the proposed method; (4) demonstrate field test 
results; (5) compare the results of the proposed analyti- 
cal procedure with traditional analytical approaches 
that assume homogeneity. 

THEORY 

Governing equation 

According to Elrick and Reynolds3, the steady-state 
flow in uniform unsaturated soils can be represented by 
the following equation: 

(27rH2/C + m2)Kfs + (27rH/C)& = Q (1) 

where Q is the steady intake rate of water, H is the water 
depth in the borehole, C is the shape factor (dimension- 
less), a is the borehole radius, Kfs is the field saturated 
hydraulic conductivity, and 4, is the matrix flux 
potential and is defined as 

(2) 

where K&i is the initial pressure head (assumed uniform) 
in the soil, K(9) is the hydraulic conductivity as a 
function of pressure head (@I) for infiltration. The first 
term in equation (1) is related to saturated flow and the 
second term is related to unsaturated flow. The 
proposed analytical approach first considers saturated 
flow only and is later extended to consider both 
saturated and unsaturated flow. Calculations based on 
equation (1) using an H/u ratio of 20 and C values 
based on Reynolds et cdl2 and typical values for a 
clayey soil (o* = Kfs/qb, = 12m-‘) and sandy soil 
(Q* = 36m-‘) (Ehick and Reynolds3) showed that the 
unsaturated flow component is at least one order of 
magnitude less than the saturated flow component and 
can be neglected for large H/a ratios. This is consistent 
with Elrick and Reynolds4 statement that larger H/a 
ratios minimize the contribution of the unsaturated flow 
component. 

Flow rate from a single layer 

For layered media we have to calculate the flow rate 
from each layer. We assume that the flow in saturated, 
layered soils is at steady state and the soils in each 
horizontal layer are homogeneous and isotropic. 
According to Reynolds et a1.‘2, the flow velocity in the 
soils around the borehole can be expressed as the 
following: ’ 

V,P 
8% = Kfs---- 

& Ir=a 

?Jzp = 
dQP -Kfs dz I so 

where Kfs is the field-saturated hydraulic conductivity, 
9, is the water-pressure function, zlrp is the velocity 
perpendicular to the borehole axis, u.~ is the vertical 
velocity, 1_‘g is the gravitational velocity (as shown in 
Fig. l), z is the vertical coordinate and the origin of the 
coordinates is the bottom of the borehole (positive 
upward), and r is the radial coordinate. The total flow 
out of the borehole (Q,) is 

Qt = IA wr,d& + 
w I Ab 

v,dAi, + 
f 

u,d&, (6) 
Ab 
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Fig. 1. Approximation of steady-state flow out of a well in a 
cylinder cosordinate system. 

where A, is the area of the borehole wall and Ab is the 
area of the borehole cross section. 

According to equations (3) through (5), Reynolds 
et aLI2 developed this equation: 

(7) 
For a layered, saturated how system, this equation may 
be written as 

(8) 
where Ktsj is the field-saturated hydraulic conductivity 
of layer j, hj is the distance from the bottom of the 
borehole to the top of layer j, and !Br,, is the water- 
pressure function for layer j. This equation can also be 

written as 

Qt = QI + Q2 + Q3. . . . . + Qm (9) 
where Qj is the flow rate out of layer j from the 
borehole. For homogeneous soil, the hydraulic con- 
ductivity can be obtained from Reynolds et a1.12: 

where C is the shape factor that depends on the H/a 
ratio and can be obtained by different methods. 
In general, equation (8) can be rewritten as 

j# 1; Wa) 

and forj = 1, 

(lib) 

This equation shows that the flow out of the first layer 
has components that depend on hydrostatic pressure 
and gravity in addition to radial flow whereas the flow 
out of the overlying layers is described by radial flow 
only. The equation also shows that the flow rate out of 
layer j can be evaluated on the basis of the pressure 
function !l$. 

Description of field test and data analysis 

To determine the hydraulic conductivity of each layer, we 
propose to conduct tests at different depths within the 
same borehole and to measure the steady-state in-flow 
rates for each test. Figure 2a and b illustrates a multistep 
constant-head borehole test conducted in a four-layered 
soil. Figure 2a shows the constant-head borehole test 
conducted on the first layer to determine its conductivity. 
Figure 2b shows the test conducted on the first and second 
(bottom two) layers. From the first test, we obtain the 
conductivity of the first layer using equation (10) and by 
using equation (11 b), we compute its flow rate. We then 
obtain the flow rate of the second layer by subtracting the 
flow rate of the first layer from the total flow rate using 
equation (9). The conductivity Kn2 can then be calculated 
by using equation (1 la) if the derivative of the pressure 
function is available. Similarly, we can calculate the flow 
rate of the third and fourth layers and evaluate 
conductivity KfS3 and Kfsrl, respectively. 

System of equations for field saturated hydraulic 
conductivity in layered media 

For an m-layered soil (with m being the number of soil 
layers), the total flow rate from all layers can be 
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(a) 
Test 1 

Q,l = Q, 

(b) 
Test 2 

Qf2 = Q, + 0, 

’ Kl 

Fig. 2. Illustration of the multistep constant-head borehole test conducted at different water depths to determine the field-saturated 
hydraulic conductivity of layered soils. 

expressed as 

Q~=QI+Qz+Q~+......+Q,=~~~K,,D,, 

where 

Di = -a --Llr,&, j # I 

and 

D, = -a 
s 

hl dQP 
h,arI,=,dz+ ;% 

s 
I. _,dz+;. (13b) 

I 

(12) 

O-4 

Assuming that the radial pressure gradient at the 
borehole wall is independent of the hydraulic conduc- 
tivity of each layer and using dimensionless pressure, 
equation (13a) can be rewritten as 

Dj = -_a*H2 
f 

h; a!q 
h;_, dv’ lrw dz*, j # 1 (14) 

where a* = a/H, z* = z/H, @i = qp/H, r* = r/H, 
dz* = dz/H, hJ = hj/H; and H, = H. 

For m tests at m different depths, the following 
equations can be used: 

2x& DII = Qu- 

2rGtD2t + 2&t&2 = Qt2 
(15) 

. . . . . . . . . 

2%s1 &I + 2+&,2 + . . . + 2xKf,,D,,,,,, = Q,, 

where Dij is the coefficient for both the jth test and the 
ith layer. The value of this coefficient is equal to the flow 
rate from layer i in the borehole for test j when Kfsj = 1. 
It can be expressed as 

Dij = -a’H; 
f 

h:j a~* 
LIr*=adz* j # 1 

h;,-I &* 
(16) 

where Hj is the water depth in test j. 
When j = 1, we assume that the soil below the borehole is 

the same as that in layer 1. Using equation (1 l), we have 

(17) 

where h~j is 

h; = hi/Hi (18) 

where hi is defined as that for equation (8), and Hj is the 
water depth in the borehole for the jth test (numbered 
from the bottom to the top). 

Equation (15) can also be written in a matrix format 
as follows: 
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Equation (19) shows that the number of unknown 
conductivity variables depends on the number of layers 
(m). Because coefficients Dij and Qfj will be non-zero, 
this system of equations has a unique solution for Kfsj. 

Determination of coefficielnt Dij 

As shown in equations (16), (17), and (19), to solve for 
Kfsj, it is necessary to determine the pressure gradient in 
the r-direction for each layer, d@rj/dr. Because it is 
difficult to determine this gradient, we assume that the 
distribution of the pressure derivative with respect to r 
along the borehole wall at steady state is independent of 
the hydraulic conductivity of layer. The coefficient Dij 
can be obtained from equ.ations (16) and (17) using the 
pressure function for the constant-head borehole test in 
uniform soil. Several pressure functions are available for 
this constant-head borehole test’2)20,2’ although they 
overestimate the water pressure, as shown in Fig. 3 
(where the straight line is the actual pressure distribution 
on the borehole wall). To determine the Kf, of layered 
soils we must assume a reasonable flow distribution. 
Glover’s solution2i produces an approximately linear 
flow distribution that resembles the distribution 
observed in numerical simulations’5 Reynolds et aL’sI 
half-source solution assurnes no flow out of the top half 
of the borehole. In cosntrast, numerical simulation 
results of Stephens and Neuman’4 show that the flow 
distribution is linear. Reynolds et al.‘s assumption12 of 
no flow out of the top half of the borehole is unsuitable 
for analysis of layered soils. One procedure that will 
reduce the overestimated pressure in the lower portion 
of the borehole is to chan,ge the boundary condition and 
make the maximum pressure close to the hydrostatic 
pressure on the borehole wall. On the basis of Glover’s 
solution2’, 

K4q = Q 1 -z* 
2rH2Kf, 

sinh-’ - 
r* 

+ sinh-’ c 
r* 

(20) 

we use the following assumption: 
$ = ,L3 at z* = zi, and r* = a*, (21) 

where z(; is the coordinate of maximum pressure from 
Glover’s pressure solution and ,8 is a weighting factor 
used to reduce the water pressure from Glover’s 
solution. As shown in Fig. 3, when we incorporate 
equation (20) into equation (21) and compare it with 
equation (10) for a large H/a ratio, we have 

--6.4 xi2 0 d.2 014 0.6 0:e i l-2 14 1;6 

Fig. 3. Comparison of the pressure distribution obtained by 
different methods, showing the actual pressure distribution on 

the borehole wall with a straight line, where H/a = 100. 

The new pressure solution corresponding to equation 
(22) is 

After the maximum pressure point z(; is found, 
equation (23) can be used to evaluate the pressure 
distribution. By trial-and-error, we find that a p 
value of 0.9 provides the best fit for equation (22) with 
the hydrostatic pressure, compared with numerical 
simulation results and Reynolds et al.‘s solution’2. 
Figure 3 shows that the pressure calculated by the 
proposed equation (23) is closer to the actual pressure 
(straight line) than the other solutions (detailed evalua- 
tion was conducted by Xiang and Chen2’). The 
derivative of pressure with respect to the r coordinate 
at r* = 

as;, 
br* 

2’ is 

P (1 -z*) 

{ [ 

1 -z* 
1*=0* = - - ~ 

B a* &TjG 

+&&2 -p-f& 
1 

+&i&z ’ 1 
where r* = r/H and 
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z; can be evaluated from the following equation (by 
a*;/az* = 0): 

F(.$) = - 
( 

1 -z(; 
sinh-’ a+ + sinh-’ $ 

> 

+$G- 
= 0. (26) 

*2 

Integrating equation (24) for test j in the region of 
[/+I, hi] and at r* = a*, we have 

x 
[ 

* % 
sinh-’ ?- at2 + sinh- 

1 1 - z* 

012 I) (27) 
J J 

Y-l 

where ai = a/Hi and Hj is defined as that for equation 
(18). We may rewrite equation (27) as 

J 

% a** ~dz~~{_-#!-l),/~+!+ 
h:,_, & 

xJ,,..:l.(l-$) 

x 
1 
sinh-’ ~ + sinh-I * oh’, 

I I 11 

_q#++iGJq 

+‘-:“-‘J-1 

+ I-$ 

( )i 

sinh-’ ~ + sinh-I 
a; 

X 
1 - hTj-1 

af I). (28) 
The integrand in the second term of equation (17) 

may be expressed as follows: 

z=-g[sinh-l(G) +sinh-l$] 

(29) 

z* = 0 results in: 

- 
sinh- ’ (30) 

Definite integration of this equation in the region [0, a*] 
is 

a *2 

- - sinh-’ 
2 

i.o.5 . (31) 1 
Therefore, the coefficient D, can be calculated from 
equations (16), (17), (28), and (3 1) for different dimension- 
less depths of h; for testj after determining the root z: for 
the corresponding water depths Hi. All tests must be 
conducted in the same borehole at different water depths. 

ANALYSIS OF THE UNSATURATED FLOW 
COMPONENT 

The above analysis considered the saturated flow 
component only and is valid for large H/u ratios 
(2 20). Inclusion of the unsaturated flow component in 
estimation of Kfs is important for small H/a ratios 
(H/a < 20) 5~6~7114,15~16V’9. The unsaturated effect can be 
considered using the following (from equation (1)): 

H 
2xDKfs + 27r-4, = Q, 

C (32) 

which is equivalent to equation (1) with D defined in 
equations (16) and (17). For layered media and C M 1, 
equation (19) is rewritten according to equation (32) as 

2X D21 D22 . . . 0 Ah2, Ah22 . . . 0 
. . . . . . . . . . . . . . . . . . . . . . . 

D ml Dm2 . . D,, Ah,, Ah,2 . . . Ah,,,,,, 1 I 

D,, 0 . . . 0 ahI1 0 . . 0 

X 

f&l 
&s2 

. 

Kfsrn 

4 ml 

4 m2 

. . . 

4 mm 

Qt, 

Qt2 
(33) 

where Ahij = (hi - 5-1 )/Hi is the dimensionless layer 
thickness. For C # 1, replace Ahii with D;j/A,,. 
Because the number of unknowns is greater than the 
number of equations, equation (32) cannot be solved for 
k,j and 4,. However, if we conduct another test in a 
nearby borehole that has a different radius, we can 
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obtain an additional system of equations, as follows: 

I Dil 0 . . 

2n DI, D& , . . . . . . . . . 
D;, Ok2 . . 

X 

Km 
J&z 
. . . 

Gn 
4 ml 

+ m2 

. . . 

hV?l 

0 AhI 0 

0 Ah Ah 
. . . . . . . . 
%n Ah Ahm2 

er1 
QT2 
. . . 

Q&l 

. . 0 

. . 0 

. . . . . 

. . Mnm I 
(34) 

where the coefficient Drj can be determined as before by 
substituting a different radius. Because the radii of the 
boreholes are different in equations (33) and (34), the 
coefficients Dt and the l-low rates Q;i in equation (34) 
will be different from those in equation (33). When we 
run two multistep const,ant-head borehole tests in the 
same layer but in boreholes having different radii, we 
obtain different total flow rates from each test. By 
computing the coefficients and solving equations (33) 
and (34), we can obtain Kfsi and vmi for the layered soils 
simultaneously. This means that to obtain another 
parameter, the matrix flux potential, two boreholes are 
required to conduct tests at desired water depths. 

The proof of the solvability of equations (33) and 
(34), the algorithm for ca.lculating the conductivity, and 
the error analysis for equation (19) are presented in the 
Appendix. 

NUMERICAL SIMULA.TIONS OF THREE- 
LAYERED SOILS 

Governing equation for numerical simulations 

To examine the accuracy and intrinsic assumptions of 
the multistep constant-head borehole test, the analytical 
results were compared with numerical simulation results 
for different ratios of H/cl. The boundary-value problem 
for the borehole test is described by the following 
equations: 

($+++;$=O -moo<<<; 

a < r < rf(z) 

subject to the following boundary conditions: 

Q,(a,z) = (H - z), 0 < z < H 

(35) 

(36) 

*,(rf,zf) = 0, (37) 

rf 
aQp(rfrZf)n + @@,(rf9f)n = o 

ar r a, 2 

aQr(O,r) = o 
ar 

0 < z < -00, and 

Qp(r, -cm) = 0, (40) 

where qp is the water pressure, rf is the radius of the free 
surface i.e. iI!* = 0, zr is the elevation of the free surface 
above the horizontal datum plane from which head is 
measured, a is the borehole radius, and n, and n, are the 
normal cosine in r-and z-directions, respectively. 

Stephens and Neuman13 evaluated the constant head 
borehole test using a free surface code, and simulation 
results were used to study infiltration in the absence of 
capillary effects. The assessment was somewhat uncer- 
tain because when the hydraulic gradient near the free 
surface is small, the evaluations of the free surface 
contain anomalies, as pointed out by Philip’. 

From our experience, the code FREESURF performs 
well when the free surface is approximately horizontal. 
When the free surface is close to vertical, however, the 
initial assumption of the free surface may control the 
free surface shape. To avoid this difficulty in determin- 
ing the free surface, we used the same procedure as that 
of Reynolds et a1.12. The boundary conditions are the 
following (with equation (36)): 

!ljr(r, H) = 0 a < r < rout (41) 

Qp(rout, z) = 0 zb -C z < H and (42) 

*r(r, zb) = 0 a < r < rout (43) 

where rout is the distance from the borehole center to the 
radial exterior boundary and zb is the distance from the 
base of the borehole to the bottom boundary. Although 
we do not compute the free surface, from simulation 
results, the pressure beyond the actual free surface is 
almost zero, and no significant flow crosses the exterior 
boundary. 

In this problem, a is much smaller than the exterior 
radius rout. The final mesh used for the simulations 
was 100 (r-direction) x 40 (z-direction). We used rout = 
6000 and zb/H = 20 for different borehole radii (a). 
When a = O-01, the minimum increment of r, Armin = 
0.00125 units, is adjacent to the borehole and the 
maximum increment of r, Armax = 754 units, is at the 
exterior boundary. For a borehole radius of a = 0.002, 
the minimum increment of r is Armin = 0*0002797 and 
the maximum increment of r is Armax = 839. 

Effect of pressure distribution and pressure gradients on 
estimated conductivity 

To evaluate the multistep constant-head borehole test 
for estimation of field saturated hydraulic conductivity 
in layered media, we need to consider the effects of 
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pressure distribution and pressure gradients on the 
evaluated conductivity. 

For layered soils, the pressure distribution in the soil 
may change because of different conductivities in each 
layer. A borehole having a unit length, located in a 
three-layered soil, is considered. The thickness of soil 
layers is 0.3, 0.4, and 0.3 unit length, bottom to top. We 
assume the conductivity of the soil below the bottom of 
the borehole has the same conductivity as that of the 
bottom layer, and the conductivity of the middle layer is 
different from the top and the bottom layers. The mesh 
interval in the I direction is the same as that mentioned 
in the previous section. The vertical interval is AZ = 0.05 
unit length. Figure 4 illustrates the spatial pressure 
distribution in the vicinity of the borehole for dif- 
ferent layer conductivities, in which the ratios of 
K2/K1(K1 = K3) range from 0.01 to 100. When the 
conductivity of the middle layer is small (K2/K1 < l), 
the pressure gradient in the r and z directions is greater 
than the pressure gradient that results when the 
conductivity of the middle layer is large (KJK, >> 1). 
The influence area where the conductivity of the middle 
layer is low is slightly smaller than that where the 
conductivity of the middle layer is high. 

produce some error for the flow at the bottom. We also 
note that when the bottom layer has high hydraulic con- 
ductivity, the proposed pressure function performs well. 

Figures 5 and 6 demonstrate that the assumption that 
pressure gradients are independent of hydraulic con- 
ductivity is reasonable for layered soils, that such as 
assumption will not strongly affect the conductivity 
estimation of layered media, and that the proposed 
method is preferred where the bottom layer has a high 
hydraulic conductivity. 

FIELD APPLICATIONS 

Field conditions, procedures, equipment and computer code 

In the development of the multistep constant-head 
borehole, it was assumed that the radial gradient of 
water pressure at the borehole wall is independent of the 
conductivity of different layers. In order to check this 
assumption, we used the same layered soil model as we 
used in previous simulations. Figure 5 illustrates the 
derivative of pressure head on the borehole wall with 
respect to r-coordinate (or hydraulic gradient in 
r-direction) as a function of the conductivity ratio 
(K2/K1 and K1 = KS). This figure shows that the average 
derivative value of each layer varies slightly: the 
derivative of the bottom layer provides the highest 
value, whereas the derivative of the top layer provides 
the lowest value. Figure 5 also shows that the derivative 
almost stayed constant for K2/KI = O.OOl-0.1 and 
10-1000, and it varies only slightly in the region of 
K2/K, = 0.1-10. For the top layer, the derivative 
increases for a large conductivity ratio. For the 
bottom layer, however, the average derivative decreases 
when the conductivity ratio is large. The maximum 
relative error for the top, middle, and bottom layers is 
0.16, 0.06 and O-07, respectively. This shows that the 
evaluated conductivity for the top layer may have a 
higher error than that of the bottom layer. In general, 
the derivative of the hydraulic head with respect to r- 
direction shows no significant change when the con- 
ductivity ratio varies from 0.001 to 1000. 

The purpose of this application was to determine the Kfs 
in layered soils, because conductivity values pertain 
directly to contaminant transport, performance assess- 
ment, recharge rate evaluation, and waste disposal 
facility design. We were also interested in the conduc- 
tivity differences between soil layers. The proposed test 
method was used in West Texas for characterization of 
layered soils. The test procedure resembles that for the 
constant-head borehole test but is different because the 
same procedure must be repeated at various water 
depths in the borehole depending on the number of 
layers. Although numerous flow meters are available, 
Dwyer flow meters with different scales were used in our 
field tests to determine the flow rate out of the borehole. 
Because the flow rate is often small in the first and 
second tests, a small-scale flow meter having a region of 
0.2-22 g h-’ (0*0182-2.0 m3/day) was used. A larger 
flow meter having a region of 0.2 to 2 g min-’ (1*09- 
10.9m3/day) was used for the third or fourth test. A 
water tank having a 5,000 1 (5 m3) capacity was used as 
water supply in the field. A soil having a higher 
conductivity may require a larger tank. 

The code LAYERK19 was completed according to the 
proposed equations. This code was designed to deter- 
mine the field-saturated hydraulic conductivity and the 
matric flux potential for individual layers, and it has 
several functions that allow flexible applications. The 
input data for each test consist of the layer thickness, 
water level, radius, and flow rate. The code can also be 
used to predict the flow rate at each layer by giving 
appropriate values for krsi and 4mi. 

RESULTS 

Figure 6 illustrates hydraulic gradient distribution A total of six tests were conducted in the study area. 
along the. borehole wall obtained by the analytical Because deep boreholes (a = O-1 m and H/a > 20) were 
solution, equation (24), and numerical simulations for used the unsaturated flow component was ignored. The 
different combinations of layer conductivity contrast. measured flow rates, water depths, and the evaluated 
This figure shows that all curves are close to the conductivity through the use of LAYERK are shown in 
analytical results, although the analytical solution may Table 1. This table shows that for layered soils, the 
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Fig. 4. Pressure distributions for different hydraulic conductivity contrasts, where all figures are extracted from the large simulated 
zones; water source is simulated by the hydrostatic pressure from 0 to 1 at the borehole wall. 

conductivity of each layer may differ by up to three 
orders of magnitude. The geometric average conductiv- 
ity for layered soils weighted by the thickness of the 
layer is different from that obtained by the regular 
constant-head borehole test. For example, the average 
conductivity of borehole 80 is 6.69 x 10e6 m s-l. How- 
ever, the conductivity obtained by the regular constant- 
head borehole test is 1.20 x 10e6 m s-l (using measure- 
ment results of the last test (test 3) and employing 
equation (10) with an assumption of uniform soil, a 
lower value than the average conductivity computed 
from the layered soils. Although this difference is not 
significant, it shows that the conductivity value obtained 
by the regular constant-head borehole test for this 
layered soil is an estimate depending on the location of 
the high-permeability layer. Therefore, to conclude that 
the conductivity obtained from the constant-head bore- 
hole test would be equal to the average conductivity of 
layered soils is erroneous. For example, when the high- 
permeability layer is located in the upper portion of the 
borehole, the computed conductivity (kr,) is lower than 
the average conductivity of these layers. On the other 
hand, when the high-permeability layer is located in the 

lower portion of the borehole, the conductivity (&) for 
the layered soil will be higher than the average 
conductivity. 

Using the tests conducted in low-permeability soils 

0.001 0.1 10 1000 
YK1 

Fig. 5. Distributions of derivative &Pi/&* on the borehole 
wall for different hydraulic conductivity values K2/KI, where 
K, = Kj and the top, middle, and bottom layer are 0*3,0.4 and 

0.3 m thick, respectively. 



J. Xihg et al. 

0 0.2 0.4 0.6 0.6 1 

1 -2’ 

Fig. 6. Comparison of distributions of derivative &Pi/&* on 
the borehole wall between numerical simulations and the 

proposed pressure function. 

(borehole 51) as another example, four layers of soils are 
considered for a 10.4m deep borehole. Because the 
borehole was backfilled about 3.29m, the actual water 
depths were 6.1, 8.1, 9.5 and 10.4 m. The measurements 
show that the flow rates for layers 1 through 3 were too 
small to be recorded after soil around the borehole was 

saturated. The conductivity for all layers from depths of 
O-10.4 m using the constant-head borehole test is 
6.87 x lo-* m SC’. This value is much lower than that 
for layer 4 but higher than those for layers 1 through 3. 
This example illustrates that for layered soils, it is 
important to estimate the hydraulic conductivity of each 
layer when evaluating vertical water flow and solute 
transport. 

Applicability of the proposed multistep constant head 
borehole test 

The proposed test is particularly suitable for estimating 
hydraulic conductivity of layered media in thick 
unsaturated zones as are found in semiarid and arid 
regions. This requires drilling a deep borehole. In order 
to ignore the unsaturated flow component the thickness 
of the bottom layer should be great enough such that the 
resultant H/u ratio is 2 20. Evaluation of the unsatu- 
rated flow component requires drilling two adjacent 
boreholes of different diameters which greatly increases 
the complexity of the test. The proposed test can also be 
applied at the scale of the Guelph permeameter. At this 
scale the unsaturated flow component should be 
included and two boreholes of different diameters 
should be drilled. At this scale; however, the lateral 

Table 1. The saturated hydraulic conductivity for layered soils using the multistep constant-head borehole test and code LAYERK, 
where a = 0.1 m 

No. Layer Qtj 
no. (ms/s-‘) (Z 

Hla Bottom Top Ki 
layer (m) layer (m) (ms’) 

45 1 
2 
3 
4 

Backfill 

46 1 
2 

Backfill 

51 1 
2 
3 
4 

Backfill 

54 1 
2 
3 

Backfill 

80 1 
2 
3 

Backfill 

84 1 
2 

Backfill 

4.2051 x !O-6 
2.3656 x lo-’ 
6.5186 x lo-5 
9.0419 x lo-5 

9.4625 x lO-6 
4.5420 x lO-5 

6.3083 x lO-6 

3.6798 x lO-6 
8.6214 x lO-6 
4.1004 x 1o-5 

2.6285 x 1O-6 
9.4625 x lO-6 
7.5700 x lo-s 

1.5771 x lo-6 
3.3750 x 1o-4 

2.11 
4.27 
740 
9.47 
0.61 

2.72 27.2 11.95 
4.88 48.8 9.23 
8.02 80.2 7.08 

10.08 100.8 3.93 

3.26 
7.32 
2.16 

5.43 54.3 9.48 
9.48 94.8 4.05 

2.75 
4.84 
6.25 
7.10 
3.29 

6.04 60.4 10.40 4.36 
8.13 81.3 4.36 2.27 
9.54 95.4 2.27 0.86 

1040 10.4 0.86 0.00 

6.56 
12.03 
16.22 
744 

14.00 140.0 23.65 
19.47 194.7 9.65 
23.65 236.5 4.18 

1.69 
2.84 
4.00 
4.43 

6.05 60.5 10.39 
7.19 71.9 4.26 
8.36 83.6 3.19 

3.47 9.83 98.3 
6.86 13.23 132.3 
6.36 63.6 

13.53 
3.70 

9.23 
7.08 
3.93 
1.87 

Average 

4.05 
0.00 

Average 

9.65 
4.18 
0.00 

Average 

4.23 
3.19 
2.03 

Average 

3.70 
0.30 

A verage 

4.30 x lo-’ 
2.95 x 10m6 
1.14 x lo-’ 
2.36 x lo-’ 
8.31 x lo-’ 

3.09 x lo-’ 
1.74 x 1o-6 
9.22 x lo-’ 

< 1.00 x lo-8 
< 1.00 x lo-8 
< 1.00 x lo-8 

3.80 x lO-6 

2.35 x 10-s 
1.15 x lo-’ 
2.19 x lO-6 
4.27 x IO-’ 

7.14 x 10-s 
4.77 x lo-6 
4.29 x 1O-6 
6.69 x lO-6 

1.87 x lo-’ 
3.53 x lo-5 
9.10 x lo-6 

Where H+ is the water depth in the borehole, including the backfilled portion and the average conductivity is calculated by 
K = Cy=, Kjbi/ xi”=, bj, bj is the thickness of layer j. 
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continuity of the layers may not be great enough for the 
layers to extend from one borehole to the other. 

CONCLUSIONS 

Existing analytical solutions for the constant head 
borehole test to evaluate the field saturated hydraulic 
conductivity assume that the soil is homogeneous. To 
determine the field-saturated hydraulic conductivity of 
layered media, the multistep constant-head borehole test 
is proposed. Analytical solutions are derived for 
estimating Kts in layered media where the unsaturated 
flow component is negligjble and also for cases where 
the unsaturated flow component is important. For 
typical soils ((Y* 2 10) using deep boreholes with large 
H/a ratios (H/a 2 20), the saturated flow component is 
at least an order of magnitude greater than the 
unsaturated flow component and the latter can be 
neglected. In such tests only one borehole is required 
and the proposed multistep test consists of doing a 
series of constant head tests at different depths that 
correspond to the soil la.yering. For small H/a ratios 
(5 20), the unsaturated flow component can not be 
neglected. Evaluation of both the saturated and 
unsaturated flow components requires drilling two 
adjacent boreholes of different radii. To more accurately 
evaluate the flow distribution within each layer, a new 
water-pressure function is proposed and used to 
determine associated coeflficients. Numerical simulations 
showed that it is reasonable to assume that the radial 
pressure gradient is independent of the conductivity. 
The application of the proposed method is simple and 
requires no complicated data measurements. Field tests 
conducted in a semiarid site demonstrate the application 
of the proposed method and show that the conductivity 
of layered soils may vary by two or more orders of 
magnitude. The conductivity obtained from the regular 
constant-head borehole test provides only an approxi- 
mate value for the layered soils. It may be erroneous to 
consider the conductivity obtained from the constant- 
head borehole test as equal to the geometric average 
conductivity of layered soils because the conductivity 
calculated from the constant-head borehole test depends 
on the location of the high-permeability layer. Hydraulic 
parameters from the proposed multistep constant head 
borehole test can be used as input to more accurately 
simulate subsurface flow and contaminant transport in 
heterogeneous soils. 
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APPENDIX 

Solution of equations (33) and (34) 

TO determine the unknowns Kfsi and &i from equations 
(33) and (34), we must first determine whether we are 
able to obtain solutions from these equations when 
different radii are used for the two tests. For simplicity, 
we write equations (33) and (34) as 

(Al) 

To determine if we can solve equation (33), it is 
necessary to examine whether the determinant of 
matrix [D] is non-zero for a non-zero vector {Q}. 
For determinant [D] = 0, one of these three conditions 
must be satisfied: 

(1) all elements in one column (or row) in [O] must be 
zero; 

(2) any two columns (or rows) in [O] must be the 
same or in proportion; 

(3) any column (or row) must be a linear combination 
of another column (or row). 

In our matrix [D], at least one, D, and Ah, in column 
j (or row i), is not zero. Therefore, condition 1 cannot 
be satisfied, as we note from equation (33) and (34). 
Secondly, no two columns or rows are the same or in 
proportion. To show this, we will consider two similar 
rows: 

[DilDizDi~. . . AhilAhizAhiJ . . .] and 644 

(A3) 

These two rows are obviously not the same or in 
proportion because the coefficient D, differs from Dt, 
although each row has the same elements of Ah, in row 
i. This shows that condition 2 cannot be satisfied either. 

We found that no linear combination of columns or 
rows in equation (33) can be the same as another column 
or row in equation (34). For example, for any constant 
o, we have 

a[DilDizDij.. . AhilAhi2Ahi, . . .] WI 

The values in this row cannot be the same as those in a 
similar row of equation (A2), and condition 3 also 
cannot be satisfied. Therefore, the determinant of matrix 
[D] is non-zero when we use different radii for two 
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multistep constant-head borehole tests. However, it 
should also be noted that when the radii of two 
boreholes are similar, the computed hydraulic param- 
eters may be highly inaccurate. 

Algorithm for Calculating Kfi 

Because the calculation of coefficient Dij is laborious, we 
must use a computer to evaluate the conductivity of 
each layer. The following algorithm may be used for this 
purpose: 

(1) 

(2) 

(3) 

(4) 

(5) 

determine the geometric constant hi, i = 
1,2,3,. . . n for the n-layered soil; 
input parameters hi, borehole radius rw, and flow 
rate Qj measured during test j; 
find the root zo according to the ratio Hj/U from 
equation (26); 
calculate the coefficients Dij according to 
equation (16), (17), (28), and (31); 
solve equation (19) for the field-saturated 
conductivities. 

To consider the unsaturated effect, input two sets of 
flow rates for different radii of boreholes and use the 
same procedure as mentioned above, but solve equation 
(33) and (34) instead of (19) for krsj and pmj. 

Error analysis 

In most cases, measurements of flow rates contain 
certain errors. To determine the estimated conductivity 
error caused by the error in flow rate measurements, it is 
important to see how the estimated conductivity will be 
affected. Rewrite equation (19) as 

[D](K) = IQ) (A9 

Assuming that the error in flow rate {Q} is {AQ} and 
the error in calculated conductivity is {AK}, then 
equation (A5) can be written as 

[Dl{K+ AK1 = tQ + AQ) 646) 

Subtract equation (A5) from equation (A6) to obtain 

Pl{W = {AQI 647) 

According to equations (A5), (A7) and (19), we have 

648) 

Equation (A8) shows that the error in the estimated 
conductivity of layer i depends on the error in measured 
flow rates from previous tests. To reduce the error in the 
estimated hydraulic conductivity, it is necessary to 

eliminate the measurement error of flow rate in the 
first few tests. Equation (A.8) also illustrates that the 
error in the estimated conductivity from the last few 
tests will be higher than that estimated from the first few 
tests, that is, the estimated conductivity for the top layer 
contains a larger error than that for the bottom layer. 
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