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Analytical solutions for laminar fully developed flows in
double-sine shaped ducts

J. Ding, R. M. Manglik

Abstract Fully developed, constant property, laminar flows in
double-sine shaped ducts are considered. This cross section
represents a limiting inter-plate channel geometry in plate heat
exchangers. Accurate analytical solutions based on the Galer-
kin integral method are presented. Heat transfer with both
T and H1 thermal boundary conditions is analyzed; they
simulate the most fundamental practical heating/cooling
applications. Velocity and temperature distributions, along
with fRe, Nu

T
, and Nu

H1
results for flows in double-sine ducts

of different aspect ratios (1/84c48) are presented. Effects of
the relative cross-sectional geometry and thermal boundary
conditions are delineated. A comparison of the thermal-
hydraulic performance with that of other compact channel
geometries is made. The results suggest an optimum (Nu/fRe)
performance in a double-sine duct of aspect ratio near unity.

Analytische Lösungen für vollausgebildete Laminarströmungen
in zweiseitig sinusförmig ausgebildeten Kanälen
Zusammenfassung Es werden vollausgebildete Laminarströ-
mungen in zweiseitig sinusförmig ausgebildeten Kanälen unter
Voraussetzung konstanter Stoffwerte untersucht. Der Quer-
schnitt repräsentiert die geschachtelte Trennwandanordunung
von Plattenwärmetauschern. Exakte Lösungen, gewonnen
mittels der Galerkinschen Integralmethode, werden mitgeteilt,
wobei für den Wärmeübergang die thermischen Randbedin-
gungen T\const. und qR \const. zugrunde liegen, welche die
wichtigsten praktischen Anwendungsfälle bei Heizung oder
Kühlung simulieren. Die Darstellung der Ergebnisse umfaßt
die Geschwindigkeits- und Temperaturfelder, die Reibungsbei-
werte und Nusselt-Zahlen im Bereich des Seitenverhältnisses
1/84c48. Die Einflüsse der bezogenen Kanalquerschnitts-
geometrie und der thermischen Randbedingungen werden
dargelegt. Ferner erfolgt ein Vergleich des thermisch-hydrauli-
schen Verhaltens mit jenem für andere Kanalgeometrien von
Kompaktwärmetauschern. Die Ergebnisse lassen erkennen,
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daß für doppelseitig sinusförmig ausgebildete Kanäle optima-
les U® bertragungsverhalten bei einem Seitenverhältnis nahe
Eins resultiert.

Nomenclature
a, b characteristic dimensions of the duct, Fig. 2
a
k
, b

k
, c

k
coefficients of series solution, Eq. (18)

A
c

duct cross-sectional area (m2)
c
p

specific heat of fluid at constant pressure (J/kg K)
d
h

hydraulic diameter, 4A
c
/P

w
(m)

d
n

eigenvector corresponding to the nth eigenvalue,
Eq. (22)

f Fanning friction factor, Eq. (26)
H1 constant wall heat flux with uniform peripheral

temperature boundary condition
h convective heat transfer coefficient (W/m2 K)
k fluid thermal conductivity (W/m K)
Nu peripherally average Nusselt number, hd

h
/k

p fluid pressure (N/m2)
P
w

wetted perimeter (m)
Pr fluid Prandtl number, kc

p
/k

Re Reynolds number, ou
m

d
h
/k

T temperature (K)
T constant wall temperature boundary condition
u, um axial and axial mean velocity (m/s)
U, U*, U

m
dimensionless axial velocity, Eqs. (5), (21) and (26)

x, y, z cartesian coordinates (m)
X, Y dimensionless cartesian coordinates, Eq. (4)

Greek symbols
a thermal diffusivity, k/oc

p
c aspect ratio of the duct cross section, 2b/2a
!y, !Y dimensional and non-dimensional contour of duct

cross-section, Eqs. (1) and (12)
h dimensionless temperature, Eq. (6)
j
n

the nth eigenvalue, Eqs. (24) and (25)
k fluid dynamic viscosity (N s/m2)
o fluid density (kg/m2)
t Galerkin function, Eqs. (14) and (18)
u weight function, Eq. (17)

Subscripts
b bulk or mixing-cup value
H1 pertaining to the H1 thermal boundary condition
m mean value
max maximum value
T pertaining to the T thermal boundary condition
w at the duct wall
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1
Introduction
Laminar flow heat transfer in complex duct geometries is of
both fundamental and practical interest. Analytical, numerical
and experimental results for such flows are essential for the
design and application of compact heat exchangers. In the use
of compact surfaces and/or heat transfer enhancement devices,
many different irregular and non-circular duct shapes are
obtained [1—3]. Of particular interest is the plate heat ex-
changer, which has found an increasingly wide spectrum of
applications in food and chemical processing, heat recovery,
and refrigeration, among others [4, 5], in recent years. It
consists of corrugated plates that are gasketed and stacked
together within a bolted frame, in a manner that provides
two-fluid stream flow passages in alternate inter-plate channels
(additional constructional details are given in Refs. [4, 5]).
There are more than 60 different plate surface corrugation
patterns [4], and some typical corrugation profiles and the
corresponding channel geometries are illustrated in Fig. 1.
These modifications essentially provide for larger surface area
and small hydraulic diameter channels, thereby promoting
enhanced heat transfer.

Several investigations have reported solutions for laminar
flow and heat transfer in circular and non-circular ducts [1, 6],
and this problem continues to evoke much research interest
[7—9]. Of the different duct shapes shown in Fig. 1, Shah [10]
has reported analytical solutions for fully developed laminar
flows in triangular, sine, rhombic, and trapezoidal ducts. In all
these cases, isothermal friction factor and Nusselt number
results for the H1 and H2 thermal boundary conditions are
presented. Schmidt and Newell [11] and Haji-Sheikh et al. [12]
have considered the T boundary conditions for triangular and
rectangular ducts. Additionally, for the T boundary condition,
heat transfer results for a rhombic duct are given by Asako and
Faghri [13], for a trapezoidal duct by Farhanieh and Sunden
[8], and for sine shaped channels by Sherony and Solbrig [14].

Fig. 1a, b. Typical channel geometries employed in corrugated plate
heat exchangers. a basic shape, b channel contours obtained in
plate-and frame heat exchangers

Fig. 2. Flow cross-section geometry and coordinate system for
a double-sine shaped duct in chevron plate (b\0°) passages

A valuable collection of heat transfer and pressure drop results
for laminar flows in a variety of different channel shapes is
given in Refs. [1, 6].

The more widely used plate heat exchangers consist of
plates with chevron type corrugations that have a sinusoidal
shape [4], as shown in Fig. 2. When the chevron inclination
angle b\0° for these corrugations, the inter-plate flow
channels have a double-sine shaped cross section. In effect,
laminar flow heat transfer in a double-sine duct represents
a limiting case for the heat transfer enhancement due to
chevron plates. However, despite their increased usage over the
last several decades for many different applications [4, 5],
results for such flows do not appear to have been reported in
the literature. This is addressed in the present study, and
velocity and temperature field solutions for hydrodynamically
and thermally fully developed laminar flow are presented. For
the heat transfer problem, both the constant wall temperature
(T) and constant wall heat flux with peripherally constant
temperature (H1) boundary conditions are considered.

A large body of the heat transfer literature has dealt with
numerical and analytical solutions for duct flow problems
[1, 6]. Often, due to the complex channel cross-section geo-
metry, closed form analytical solutions are difficult to attain.
A particularly powerful and quite accurate technique, that
readily lends to solutions for irregular shaped duct flows,
is the Galerkin integral method [12, 15, 16]. Haji-Sheikh et al.
[12] and Lakshminarayanan and Haji-Sheikh [7], among
others [17—19], have demonstrated the effectiveness of this
technique. Very accurate results for laminar flows in triangular
and rectangular ducts, for both thermal entrance region and
fully developed conditions, have been presented [7, 12, 17]. In
the present study also, the Galerkin integral method has been
employed to obtain solutions for fully developed laminar flows
in double-sine shaped ducts. As explained earlier, these results
have much significance in the practical usage of, and evalu-
ation of the heat transfer enhancement in plate heat exchangers
with sinusoidally corrugated plates.
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2
Mathematical analysis
Many fundamental problems in mechanics, that are governed
by differential equations and the so-called minimum prin-
ciples, can be solved by determining the equilibrium position
corresponding to the minimum potential energy of the given
mechanical system. This is essentially the mathematical basis
of the Galerkin’s integral method [15], i.e. to obtain the
solution by minimizing the integral of the governing differen-
tial equation that describes the specified problem. This method
is applied in the present study to obtain solutions for the
velocity and temperature fields in fully developed laminar
flows with heat transfer in straight ducts of double-sine shaped
cross sections.

The geometrical details and the variables that describe the
relevant attributes of a double-sine duct are shown in Fig. 2.
The outer boundary or the contour of the duct is described by

!y\^b cos(nx/2a), [a4x4a, [b4y4b (1)

Steady state, constant property, hydrodynamically and ther-
mally fully developed laminar flow is considered. Also, axial
conduction and viscous dissipation are ignored; these are
reasonable idealizations for most large Pe and Pr flows
[1, 6, 9]. The corresponding axial momentum and energy
conservation equations can be expressed as

k A
2u
x2

]
2u
y2 B\

p
z

(2)

k A
2T
x2

]
2T
y2 B\ocp u

T
z

(3)

where, for thermally fully developed flows,

T
z

\G
[(Tw[T )/(Tw[Tb)] (dTb/dz)

(dTb/dz)
for T
for H1

Equations (2) and (3) are subject to the following boundary
conditions:

u\0, T\Tw on !

In order to render the governing differential equations
dimensionless, the following variables, that represent the
dimensionless space coordinates, axial velocity, and fluid
temperature, are introduced:

X\(x/2a), Y\( y/2a) (4)

U\u/[(4a2 /k) (dp/dz)], U*\u/um (5)

h\(Tw[T )/[(4a2 um/a) (dTb/dz)],

hb\(Tw[Tb)/[(4a2 um/a) (dTb/dz)] (6)

where um is the average axial flow velocity and Tb is the bulk
mean temperature. These are given by their usual definitions,
respectively, as

um\
1
Ac

:
A c

u dAc (7)

Tb\
1

umAc
:
Ac

uT dAc (8)

With the substitution of the dimensionless variables, Eqs. (2)
and (3) can be rewritten as

2U
X 2

]
2U
Y 2

[1\0 (9)

2h
X 2

]
2h
Y 2

[#\0 (10a)

where

#\G
[U*h/hb

[U*
for T
for H1

(10b)

which are subject to the following boundary conditions:

U\0, h\0 on ! (11a)

U, h are finite at X\Y\0 (11b)

Note that the dimensionless representation of the contour of
the duct geometry given by Eq. (1) can be expressed as

!Y\^
c
2

cos(nX ), [1
24X41

2 , [
c
2
4Y4

c
2

(12)

where c\2b/2a is the aspect ratio of the double-sine duct cross
section.

The application of the Galerkin integral method and the
Euler—Lagrange equation problem requires that solutions for
Poisson-type governing differential equations correspond to
the minimum of the integral

I\: :
Ac

[ +2'(X, Y )]2 f (X, Y )'] dX dY (13)

over the duct cross section bounded by the shape contour !.
According to the Galerkin procedure, the dependent variable
can be functionally represented as

'\
n
+
k/1

Gk(k(X, Y ) (14)

which unconditionally satisfies the boundary condition '\0
on !. Consequently, the minimum value problem of Eq. (13) is
equivalent to the solution of

: :
Ac

[ +2'[f(X, Y )] (i dX dY\0 (15)

which gives the system of equations that define the coefficients
Gk .

Note that in Eqs. (13) and (15) the function f (X, Y )
represents the following:

f (X, Y )\







1, '\U

[U*h/hb, '\hT
[U*, '\hH1

(16)

Furthermore, the Galerkin function ( is described by X, Y
and a weight function u(X, Y ), which in turn depends upon
the duct flow geometry. Note that u(X, Y )\0 on the duct
boundary, and for the double-sine shaped geometry (Fig. 2) it
is given by

u(X, Y )\(Y]1
2c cos nX ) (Y[1

2 c cos nX ) (17)
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Thus, the velocity and temperature field solutions given by
Eq. (14) may be expressed as

'\G1(1]G2(2]G3(3]2]Gn(n
\u(X, Y ) (G1]G2 X2]G3Y2]G4 X 4]G5 X2Y2

]G6 Y 4]2) (18)

Here G
k

can be designated as a
k
, b

k
, and c

k
, respectively,

corresponding to the field variables '\U, h
T
, and h

H1
, i.e.

U\u(X, Y )(a1]a2X2]a3Y2]a4X 4]a5X2Y2]a6Y4]2)

(18a)

hT\u(X, Y )(b1]b2X2]b3Y2]b4X 4]b5X2Y2

]b6Y4]2) (18b)

hH1\u(X, Y )(c1]c2X2]c3Y2]c4X 4]c5X2Y2

]c6Y4]2) (18c)

By substituting Eq. (18) in Eq. (15) and solving the
resulting system of equations, the coefficients G

k
(or a

k
, b

k
, and

ck) can be evaluated. This is quite straightforward for the U and
hH1

problems. For the velocity problem, the system of equa-
tions are

n
+
k/1

ak : :
A c
A

2(k
X2

]
2(k
Y2 B (i dX dY\: :

A c

(i dX dY (19)

and for the temperature problem with H1 condition

n
+
k/1

ck : :
Ac
A

2(k
X2

]
2(k
Y2 B (i dX dY\[: :

Ac

(iU* dX dY (20)

In the latter case, U*(X, Y ) is obtained from the velocity field
solution as

U*\(u/um)\CAc
n
+
k/1

ak(k(X, Y )DN
C : :

Ac

n
+
k/1

ak(k(X, Y ) dX dYD (21a)

Also, the maximum velocity occurs at the center of the axi-
symmetric duct cross section and

U*
.!9

\(u
.!9

/um)\U*(0, 0) (21b)

For the temperature problem with the T boundary condi-
tion, however, combining Eqs. (15) and (18b) yields

n
+
k/1

bk : :
Ac

(i+2(k dX dY]
n
+
k/1

(bk/hb) : :
Ac

U*(i(k dX dY\0

(22)

This is an eigenvalue problem, and Eq. (22) can be restated in
matrix form as

[Aª ]MBN][Cª ] MB@N\0 (23)

where the elements b@
k\(bk/hb). The solution of this equation

takes the form

MBN\b1Md1Nej1z]b2Md2Nej2z]2]bnMdnNejn z (24)

where j
n
’s are the eigenvalues that are obtained by solving

det DAª ]jCª D\0 (25)

Equation (25) suggests that the eigenvalues j
n

are all negative if
the matrix [C4 ] is finite and positive; Md

n
N in Eq. (24) are the

corresponding eigenvectors. Also, elements of the coefficients
in Eq. (23) are obtained from

aL ik\: :
Ac

(i+2(k dX dY and cL ik\: :
Ac

U* (i(k dX dY

Having determined the velocity and temperature distribu-
tions, the corresponding fully developed friction factor and
Nusselt number need to be calculated. From its definition and
a force balance across an element of duct cross section, the
Fanning friction factor is given by

fRe\[[(dh/2a)2] /(2Um)\[[Ac(dh/2a)2] /

A2 : :
Ac

U(X, Y ) dX dYB (26)

For the peripherally averaged Nusselt number, the usual
hydraulic diameter based definition is employed. In the case of
the H1 boundary condition, this is obtained from

NuH1\[(dh/2a)2] /(4hb) (27)

In the case of fully developed flow (z]R) with the T boundary
condition, it can be shown that the contribution of all eigen-
values, except j

1
, diminishes. Consequently, the Nusselt

number can be calculated as

NuT\[1
4 j1(dh/2a)2 (28)

With the numerical computations of a
k
, b

k
, c

k
, and j

k
, the

velocity and temperature distributions, and isothermal friction
factors and Nusselt numbers can be evaluated from Eqs. (18)
and (26)—(28) for different aspect ratios of the duct cross
section. These were carried out by using standard numerical
techniques. The solutions of the linear simultaneous equations
for coefficients a

k
, b

k
, and c

k
were obtained by the Gauss—

Jordan method [20]. The generalized eigenvalue problem in
the temperature solution for the T condition was solved by
Matlab version 4.2c.1 [21]. The numerical integration for
one-dimensional and two-dimensional space domains, respec-
tively, were executed by using Romberg and 16-point Gauss—
Legendre algorithms [20]. The number of terms and coeffi-
cients in the series expansion were selected such that the
maximum error was less than 0.01%, relative to the solution
with larger number of terms; the friction factor, Nusselt
number and peak values of velocity and temperature profiles
attain virtually constant values as n increases, thereby indicat-
ing convergent solutions. Additional details of the analysis and
solution methodology are given in Ref. [21].

In order to verify the reliability and accuracy of the above
procedures, the problem of fully developed laminar flow with
heat transfer in sine ducts was first solved. For this geometry,
as mentioned earlier, Shah [10] has given analytical solutions
for (u

.!9
/u

m
), fRe, and Nu

H1
; Sherony and Solbrig [14] have

given finite difference solutions for Nu
T
. The comparison of the

present results with those of Shah [10] and Sherony and
Solbrig [14] is given in Table 1. As is evident from the tabu-
lation, these results are in excellent agreement with those of
previous studies, particularly with the analytical results of Ref.
[10]. In the case of the T problem, the present solutions appear
to be more accurate than those in Ref. [14].
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Table 1. Fully developed laminar
flow and heat transfer character-
istics in sine ducts

c\
2b

2a
u
.!9

/u
m

fRe Nu
T

Nu
H1

Present Ref. Present Ref. Present Ref. Present Ref.
study [10] study [10] study [14] study [10]

0 — 2.400 — 9.600 — 1.178* — 1.920
1/8 2.357 2.357 9.7428 9.743 1.454 — 2.017 2.017
1/4 2.291 2.291 10.123 10.123 1.730 1.800 2.213 2.213
1/2 2.211 2.211 11.207 11.207 2.110 2.120 2.617 2.617
3/4 2.190 2.190 12.234 12.234 2.353 2.330 2.916 2.916
1.0 2.197 2.197 13.023 13.023 2.472 2.450 3.102 3.120
3/2 2.239 2.239 14.023 14.022 2.545 2.600 3.267 3.267
2.0 2.284 2.288 14.575 14.553 2.515 — 3.292 3.311
4.0 2.451 — 15.340 — 2.276 — 3.230 —
8 2.780 — 15.719 — 1.967 — 2.992 —
R — 3.825 — 15.303 — 0.739* — 2.521

* Given in Refs. [1, 10]

Table 2. Coefficients a
k

for the velocity distribution in double-sine ducts of different aspect ratio

ak c\2b/2a

1/8 1/4 1/2 1.0 2.0 4.0 8.0

a
1

0.4823E]00 0.4412E]00 0.3443E]00 0.1968E]00 0.7867E[01 0.2466E[01 0.6846E[02
a
2

0.2978E]00 0.7361E]00 1.0003E]00 0.9571E]00 0.3665E]00 0.1199E]00 0.4151E[01
a
3

[0.4230E[01 [0.1174E]00 [0.1697E]00 [0.1362E]00 [0.5090E[01 [0.9584E[02 [0.1288E[02
a
4

[0.5655E]00 [0.1370E]00 3.7921E]00 0.1169E[01 3.5089E]00 1.2309E]00 [0.7374E[01
a
5

[0.0903E]00 [2.7011E]00 [1.7164E]00 [0.7439E]00 [0.1081E]00 [0.1244E[01
a
6

0.4582E[02 0.1703E]00 0.1428E]00 0.5014E[01 0.4754E[02 0.3363E[03
a
7

3.4449E]01 [2.4843E]01 [8.9684E]00 5.8846E]00
a
8

[2.6632E]01 [2.7607E]00 [0.3739E]00 [0.9533E[01
a
9

6.2056E]00 1.1778E]00 0.5843E[01 0.3547E[02
a
10

[0.2033E]00 [0.4451E[01 [0.1411E[02 [0.5196E[04
a
11

1.7112E]02 6.0947E]01 [4.6582E]01
a
12

[6.3486E]01 [6.5084E]00 0.1545E]00
a
13

1.1941E]01 0.3804E]00 0.1719E[01
a
14

[1.0880E]00 [0.1355E[01 [0.4582E[03
a
15

0.2011E[01 0.1671E[03 0.3897E[05
a
16

1.6841E]02
a
17

[6.4051E]00
a
18

0.1758E]00
a
19

[0.2513E[02
a
20

0.2280E[04
a
21

[0.1099E[06

3
Results and discussion
Analytical solutions for fully developed laminar flow with heat
transfer in double-sine shaped ducts of different aspect ratios,
1/84c48, are presented. Both local (velocity and temper-
ature distributions) and global (friction factor and Nusselt
number) results are given, and the effects of ducts geometry
and thermal boundary conditions (T and H1) on the perfor-
mance are discussed.

3.1
Velocity and temperature fields
The velocity, U, and temperature, h

T
and h

H1
, distributions are

given by Eqs. (18a)—(18c), respectively. The corresponding

coefficients a
k
, b

k
, and c

k
for different aspect ratio ducts are

listed in Tables 2—4. It may be noted that more number of
terms are needed in the series expansion of Eq. (18) as
c increases in order to obtain accurate solutions. For example,
in Table 2 for the U distribution, 4 terms are needed for c\1/8
and 21 terms for c\8; similarly, as seen in Table 3, 6 terms are
needed for h

T
solution with c\1/2 and 21 terms are needed

with c\4 and 8. As mentioned previously, the numerical
accuracy in all cases was ensured by successively increasing the
number of terms in the series until the relative error was less
than 0.01% .

The normalized velocity profiles, u/u
m

, for three different
aspect ratio ducts, c\0.25, 1.0, and 4.0, are presented in Fig. 3.
As can be seen, the duct aspect ratio greatly affects the velocity
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Table 3. Coefficients b
k

for the temperature distribution in double-sine ducts with the T boundary condition

b
k

c\2b/2a

1/8 1/4 1/2 1.0 2.0 4.0 8.0

b
1

1.0000E]00 1.0000E]00 1.0000E]00 1.0000E]00 1.0000E]00 1.0000E]00 1.0000E]00
b
2

[2.2427E]01 [1.4691E]01 [5.1581E]00 0.8355E[01 1.7662E]00 2.7694E]00 4.2462E]00
b
3

[1.0613E]02 [3.0224E]01 [1.0219E]01 [4.9411E]00 [3.0321E]00 [1.6581E]00 [0.8431E]00
b
4

1.1008E]02 5.7139E]01 1.1138E]01 4.6830E]00 2.9593E]01 3.0946E]01 [1.6410E]01
b
5

1.4979E]03 3.3306E]02 6.4692E]01 6.4607E]00 [6.3468E]00 [5.9917E]00 [3.5791E]00
b
6

7.8967E]03 6.1070E]02 5.8375E]01 1.4135E]01 4.8674E]00 1.1336E]00 0.2714E]00
b
7

4.7619E]01 [2.0726E]02 [2.2437E]02 6.6378E]02
b
8

[5.6325E]01 [6.4071E]01 [1.8601E]01 [9.5065E]00
b
9

[1.1098E]01 9.3634E]00 3.8169E]00 1.1208E]00
b
10

[1.9916E]01 [4.5169E]00 [0.3517E]00 [0.4056E[01
b
11

1.2613E]03 1.5070E]03 [4.9450E]03
b
12

[3.4412E]02 [1.9534E]02 [4.9718E]01
b
13

1.4623E]02 1.5579E]01 2.6483E]00
b
14

[8.4426E]00 [0.8457E]00 [0.1392E]00
b
15

1.7944E]00 0.4023E[01 0.2809E[02
b
16

1.6845E]04
b
17

[5.9670E]02
b
18

2.9456E]01
b
19

[0.4164E]00
b
20

0.6240E[02
b
21

[0.7260E[04

Table 4. Coefficients ck for the temperature distribution in double-sine ducts with the H1 boundary condition

ck c\2b/2a

1/8 1/4 1/2 1.0 2.0 4.0 8.0

c1 [0.8732E]00 [0.7512E]00 [0.5495E]00 [0.2996E]00 [0.1346E]00 [0.4734E[01 [0.1313E[01
c2 6.5769E]00 3.0100E]00 [0.7127E[01 [0.8520E]00 [0.4890E]00 [0.1904E]00 [0.6569E[01
c3 4.6527E]01 1.0823E]01 2.6405E]00 0.7004E]00 0.1930E]00 0.3635E[01 0.4676E[02
c4 [1.1278E]01 2.4396E]00 3.3228E]00 [0.1799E]00 [3.9974E]00 [1.7176E]00 0.9722E[01
c5 1.8310E]01 8.7072E]00 4.1355E]00 1.6413E]00 0.2750E]00 0.3242E[01
c6 [2.4751E]00 [1.1314E]00 [0.4821E]00 [0.1500E]00 [0.1650E[01 [0.1140E[02
c7 [2.1496E]01 2.7688E]01 1.2282E]01 [8.3876E]00
c8 3.0337E]01 5.6138E]00 0.8640E]00 0.1917E]00
c9 [9.6999E]00 [2.3628E]00 [0.1448E]00 [0.8805E[02
c10 0.4172E]00 0.1080E]00 0.4499E[02 0.1634E[03
c11 [1.9052E]02 [8.3398E]01 6.6259E]01
c12 8.4620E]01 1.0690E]01 [0.1432E]00
c13 [1.8542E]01 [0.7378E]00 [0.3787E[01
c14 1.9433E]00 0.3134E[01 0.1088E[02
c15 [0.4314E[01 [0.5015E[03 [0.1157E[04
c16 [2.3942E]02
c17 1.0289E]01
c18 [0.3099E]00
c19 0.4969E[02
c20 [0.5127E[04
c21 0.3114E[06

distribution. With c\1 or c[1, higher maximum velocities
are obtained at the centerline of duct, relative to the peak
velocity for c\1. However, as c increases the velocity distribu-
tion tends to have an elongated profile with steeper gradients.
Relatively smaller velocity gradients exist in flows through
small aspect ratio cross sections (c]0); in fact the flow tends to
stagnate or become immovable in the corners/edges of the
duct.

Temperature profiles for fully developed flows with T and
H1 boundary conditions are graphed in Figs. 4 and 5, respec-
tively. Once again, ducts with c\0.25, 1.0, and 4.0 are con-
sidered, and the aspect ratio is seen to have a pronounced
effect on the temperature field. Reflecting the flow behavior,
higher centerline-to-wall temperature differences are obtained
in ducts with c[1 and c\1. Also, the profiles have sharper
temperature gradients in the core of the duct in comparison
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Fig. 3. Effect of aspect ratio on the velocity distribution, u/um , in
double-sine ducts

Fig. 4. Effect of aspect ratio on the temperature distribution,
(h/hb)\(Tw[T )/(Tw[Tb), for the T boundary condition in double-
sine ducts

Fig. 5. Effect of aspect ratio on the temperature distribution,
(h/hb)\(Tw[T )/(Tw[Tb), for the H1 boundary condition in double-
sine ducts

with those near the wall. This effect is more acute with the
T boundary condition; because of the constant wall temper-
ature, the fluid near the wall attains its temperature as the flow
becomes fully developed. This is clearly seen in Fig. 4, where
the temperature profiles at !

y
\0 and 1/3!

y
have a ‘‘flat’’

inflection in the wall region for c\0.25, and likewise, for
c\4.0, the profile is virtually flat with *T]0 at 2/3!

y
. With the

H1 boundary, on the other hand, the wall temperature ‘‘runs
away’’ from the fluid temperature, and much sharper wall
gradients are obtained. These, however, decrease with either
c\1 or c[1 flow cross sections.

3.2
Friction factor and Nusselt number
Given the solutions for the isothermal velocity distribution and
temperature profiles for the T and H1 boundary conditions, the
respective friction factor and Nusselt number results are listed
in Table 5. These are for fully developed laminar flows in
double-sine shaped ducts with 1/84c48. As can be seen
from the tabulation, fRe generally increases with c, going from
14.6426 for c\1/8 to 17.0669 for c\8. This represents a
change of about 16.6% in the hydraulic diameter based fRe
over the given range of duct aspect ratio. The heat transfer
performance, however, is somewhat different. Irrespective of
the thermal boundary condition, as c increases from 1/8 to 8,
Nu increases up to c\1.0 and then decreases with further
increase in c. That is, the peak Nu is obtained for a double-sine
shaped duct with an aspect ratio of unity, for both T and H1
boundary conditions. Furthermore, reflecting the appropriate
effects of the respective temeperature fields, Nu

H1
is greater

than Nu
T

for all cases. Depending upon c, the ratio (Nu
H1

/Nu
T
)

is seen to be between 1.2 to 1.4. Also given in Table 5 are the
values for (u

.!9
/um), (h

.!9
/hb)T , and (h

.!9
/hb)H1

for different c.
As indicated previously, the peak velocity and wall-to-fluid
temperature difference increases when c\1 or c[1. This is of
particular significance in process heat transfer applications,
where viscous fluids that are thermally unstable are sometimes
encountered. It would appear that ducts with aspect ratio close
to one may be more appropriate in such usages.

Figure 6 gives a comparison of fRe results for double-sine
shaped ducts with those for other compact channel geometries
described in Fig. 1. The results for isosceles triangular,
rhombic, and trapezoidal ducts are from analytical solutions
reported by Shah [10]. With the exception of small aspect ratio
(c\1) trapezoidal flow cross sections, friction factors in
double-sine ducts are considerably higher than those in all
other shapes considered in Fig. 6. For corrugated plate surfaces
in plate heat exchangers (Fig. 2), to a first estimate these results
suggest that triangular shaped corrugations (which would
result in rhombic channels) would be preferable in applica-
tions with pressure drop controlled limitations.

The comparisons of Nusselt number results of various
compact geometries (Fig. 1) and their variation with c are
presented in Figs. 7 and 8, respectively, for the T and H1
boundary conditions. For the T condition, along with the
present solutions for sine and double-sine ducts, the analytical
solutions for isosceles triangular channels [12], and numerical
results for rhombic [13] and trapezoidal [8] channels are
given in Fig. 7; for the H1 condition, results for the latter
three geometries are from analytical solutions [10]. For the

275



Table 5. Fully developed laminar
flow and heat transfer character-
istics in double-sine shaped ducts

c\
2b

2a

d
h

2a

u
.!9
u

m
fRe A

h
.!9
h
b BT Nu

T A
h
.!9
h
b BH1

Nu
H1

1/8 0.1576 2.2202 14.6426 2.3531 2.4412 1.8307 3.3418
1/4 0.3068 2.1629 14.7658 2.1225 2.7302 1.7595 3.5274
1/2 0.5585 2.0771 15.0527 1.8858 3.1676 1.6760 3.8059
1.0 0.8699 2.0250 15.5744 1.8243 3.4461 1.6462 4.1575
2.0 1.1048 2.0993 16.2861 1.9820 3.3163 1.7133 3.8840
4.0 1.2160 2.2431 16.8140 2.3372 2.9096 1.8468 3.6057
8.0 1.2557 2.3554 17.0669 2.7556 2.5492 1.9683 3.3500

Fig. 6. Variation of fRe with aspect ratio in double-sine ducts and
other compact channel geometries

Fig. 7. Variation of NuT with aspect ratio in double-sine ducts and
other compact channel geometries

trapezoidal cross section with T boundary condition, only
limited numerical results are given by Farhanieh and Sunden
[8]. Again, as in the case of fRe, the Nusselt numbers for
double-sine shaped channels are much higher than those for

Fig. 8. Variation of Nu
H1

with aspect ratio in double-sine ducts and
other compact channel geometries

the other geometries, for all values of c and both T and H1
boundary conditions. The only exception is the trapezoidal
shape of very small aspect ratio (c\1). An interesting feature
of these results is that the optimal (Nu/ fRe) performance
appears to be for c+1 for both boundary conditions.
Consequently, while pressure drop constraints may warrant
double-sine shapes with c\1, the heat transfer enhancement in
c+1 may, to a degree, offset this penalty.

4
Conclusions
Hydrodynamically and thermally fully developed laminar flows
in double-sine shaped straight ducts have been analyzed in this
paper. Very accurate, constant property solutions, for both
T and H1 thermal boundary conditions, are obtained by the
Galerkin function based integral method. The accuracy of the
method is verified from a comparison of present solutions for
sine ducts with other analytical results previously reported in
the literature. From the velocity and temperature distributions,
and the corresponding fRe, Nu

T
, and Nu

H1
results in double-

sine ducts of varying aspect ratios (1/84c48), the following
observations are made:

(1) Large peak velocities and wall-to-fluid temperature differ-
ences are obtained in ducts with c\1 or c[1. Compared with
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flows in c\1 channels, the velocity and temperature fields have
sharper gradients in these cases.
(2) The average wall velocity gradient, and hence the friction
factor increases with increasing c (1/8]8). However, the
Nusselt number decreases when c\1 and c[1 for both T and
H1 conditions; the peak heat transfer performance is for c+1.
Also, reflecting the thermal boundary condition effect,
NuH1

[NuT for all c.
(3) For plate heat exchanger applications where the plate
corrugations have a sinusoidal profile and hence double-sine
channels, the optimum heat transfer enhancement (nominally
considered as the ratio Nu/fRe) is found to be for c+1. For
usages controlled by *p limitations, however, smaller aspect
ratio ducts may be needed.
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