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Abstract 

This paper describes the results of runoff modelling for nine catchments of the Upper Murray Basin (Basin 401) of the Murray- 
Darling Drainage Division (MDDD), Australia. The work aimed firstly to provide adequate models for long-term streamflow prediction 
in nine catchments of this Basin feeding the Hume and Dartmouth reservoirs. The development and testing of flow forecasting 
algorithms for operational management by the Murray-Darling Basin Commission was another purpose of the work reported here. 

The conceptual lumped parameter rainfall-runoff model IHACRES (Jakeman et al., 1990, 1993; Jakeman and Hornberger, 1993) 
was selected as the modelling tool for streamflow prediction in the catchments. 

The conceptual rainfall-runoff model IHACRES (with a snow melt/formation module in snow-affected catchments) and a self- 
adaptive linear filtering approach for the IHACRES residuals were combined and applied for forecasting daily streamflow in the 
Upper Murray Basin catchments. Different orders of AutoRegressive Integrated Moving Average (ARIMA) models for the residuals 
were considered in order to select the most appropriate forecasting algorithm. Linear filtering of the conceptual model residuals 
provides considerable improvement in forecasting for both low and high values of streamflow for developing the operational 
streamflow forecast system. © 1997 Elsevier Science Ltd. 

Keywords: Streamflow modelling; operational streamflow forecasting; ARIMA algorithm 

1. Introduct ion  

1.1. Background  

Overton and Meadows  (1976) define three basic 
categories o f  streamflow forecasting methods based 
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upon: (1) regression analysis, (2) time series analysis 
and (3) flow frequency analysis. The regression-type 
analysis uses an optimisation procedure where a causal 
model  is structured as a linear or slightly non-linear 
approximation. Least squares (or modified least 
squares) regression serves as a tool for this approxi- 
mation of  modelled values against empirical data. 
Al though not strictly a regression model,  the I H A C R E S  
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model can be classified as belonging to this type 
of method. 

Time series analysis, applied in the present work for 
operational streamflow forecasting, "analyses a continu- 
ous time series of runoff and draws an inference as to 
the underlying generating mechanism" (Overton and 
Meadows, 1976). A comprehensive review of the litera- 
ture on applications of time series analysis techniques 
in hydrology is out of the scope of the present work 
but several publications must be mentioned here. Two 
classical monographs are specially devoted to the prob- 
lem of time series analysis (Box and Jenkins, 1976; 
Bras and Rodriguez-Iturbe, 1985) where a detailed 
description of the ARIMA algorithm used in this work 
can be found. 

Frequency analysis is entirely probabilistic, and is 
usually used for catchments where streamflow data 
are continuously recorded but no rainfall records are 
available. Primarily it is applied in order to evaluate 
the probabilities of extreme flow values, both high 
and low. 

The self-adapting model applied to flash flood fore- 
casting is described in a range of publications (Wood, 
1989; Georgakakos, 1987). An approach combining a 
deterministic seven-parameter model SM2 with 
ARIMA was applied by Jamieson et al. (1972). The 
residual variance of the composite model was signifi- 
cantly less than that attainable by using the determin- 
istic model only. A similar methodology to that here 
was suggested by Brath and Rosso (1993). The main 
difference between their approach and the method 
applied here is that in our approach, calibration of the 
conceptual model is made once in a two-year period, 
then its parameters are considered unchanging for the 
period of observation. The linear filtering algorithm is 
then applied to the model residuals. In Brath and Rosso 
(1993), the stochastic algorithm was applied solely. 

Whereas ARIMA modelling considers the streamflow 
time series solely in order to provide the optimal 
forecast, some linear filtering algorithms analyse the 
time series of the precipitation and streamflow together. 
The filtering of input precipitation data using an 
ARMAX modification of the ARIMA method is 
described, for example, in Karlsson and Yakowitz 
(1987). The ARMAX (X means the use of eXogenous 
variables, precipitation, for instance) algorithm is a 
compromise between prediction techniques based on a 
deterministic relation of streamflow with rainfall input 
(affected by errors of measurement), and ARIMA mod- 
els applied solely, where no information on precipi- 
tation is used. 

More sophisticated techniques for streamflow fore- 
casting are based on Kalman filtering (Kalman, 1960). 
An example of the application of this technique can 
be found in Sen (1991), where orthogonal Walsh series, 
used for describing the periodic component, were com- 
bined with the Kalman filter. This method was applied 
to the prediction of monthly flow for two catchments 

in Turkey and the United States and for monthly 
rainfall prediction in Saudi Arabia. The Kalman filter 
technique is used in the European Flood Forecasting 
Operational Real-Time System (EFFORTS), widely 
applied to water resource management in Europe and 
worldwide (Todini, 1996). This method is based on 
two linear, interactive Kalman filters, one in the space 
of the state vector and another in the space of the para- 
meters. 

Another new technique widely used for streamflow 
forecasting is the Nearest Neighbouring Method 
(NNM). The NNM, closely related to techniques of 
non-linear dynamics, has been developing quickly in 
the last decade (Olason and Watt, 1986; Mack and 
Rosenblatt, 1979; Yakowitz, 1987; Yakowitz and 
Karlsson, 1987; Galeati, 1990). This method is based 
on the assumption that the streamflow time series is 
an output of a deterministic dynamic system with 
stochastic noise. Kember and Flower (1993) reported 
that the NNM provides improvement in forecasting 
compared with the ARIMA model. 

In conclusion, it should be explicitly stated that the 
ARIMA algorithm was chosen among other filtering 
methods because, for a modest investment, it provides 
an effective combination with deterministic predictions 
of streamflow (using the IHACRES model here). 

1.2. The Upper Murray Basin description 

The Upper Murray Basin is located in the south- 
eastern part of the MDDD and covers 15,300 km 2 of 
territory in the states of Victoria (the Mitta-Mitta River 
catchment and the left bank of the Murray River with 
a total area of 10,000 km 2) and New South Wales 
(Fig. 1). River flows are regulated by Hume and 
Dartmouth reservoirs operated by the Murray-Darling 
Basin Commission (MDBC). The right bank of the 
Murray catchment belongs to the New South Wales 
part of the Basin. The largest water contributors in 
this area are the right side of the Upper Murray River 
at Biggara (1165 km 2) and the Tooma River catchment 
at Pine Grove (1819 km2). These two catchments drain 
the western slopes of the Snowy Mountains which is 
the highest region in Australia (Mt Kosciusko, 2228 
m AHD). The outlet of an inter-basin water transfer, 
via the Snowy Mountains Hydroelectric Scheme, with 
580,000 ML mean annual transfer, is located in this 
part of the Basin. The Jingellic Creek catchment is 
located in the north of the New South Wales part of 
the Basin. 

The climatology of this Basin is also very heterogen- 
ous and topography strongly influences the spatial vari- 
ations in the climate. Average annual precipitation 
reduces with decreasing elevation from more than 2400 
mm per year in Mt Bogong on the border with the 
Kiewa Basin to about 700 mm in the northem part of 
the Basin along the Murray River. Snow provides a 
considerable amount of water to the Basin. The large 



S. Yu. Schreider et al./Algorithm for streamflow forecasting 95 

p v  / 
/ 

/ . .- , . .  J 

\ 

I 
I 

71.9 

Mount 

195 

D a m  

I 
\ 

\ 
\ 

~ . J  

/-, / \ 

60 I\ 
\ 

Mitta 

82024• 

~82047 

401220 

231 

\ , /  
\ / 

\ 
o lO 2o z o ~  \ / 
, , , , \ J  

Tumbarumba ) 442 

4Ol o1~ I Jingellic 
\ 

"13 

40120a 

Lake Dartmouth 

217 

Biggara 

/, 
/ 

/ 
/ 

/ 
/ 

/ 
J[Mt Kosciusko 

/ 532 
:::::::~:::::::: 
>:.:.:<.:.x.: 
. . . - .- . . . - .- . . . .  

-:-:-:-:-f:-:-: 
!!!!!!!!!!!!!!!~ 
: . : . : . : , : . : . : . : . :  

. . . . . . . . . . . . . . . . .  

. : . : . : . : . : . : . : . : .  

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  

::::::::::::::::: 
,x.:,:+:+:. 
:!:!:!:!:!:!:!:!:  

l : i : ! :! :! :! :! :! :!  r ,- , . , , . , . . . . , , ,  

( - - J  

ie Bridge I " ~  "7 j~//  
/ /  475 

/ f 
83025//  

/ 

475 
~ i  ilil Mean average discharge (thousands of Mt~) 

4012030 Number of stream gauging station 
82011• Number of meteorological station 

[__ _L]__ ,~ 

Fig. 1. River network, meteorological and discharge stations for the catchments under consideration in the Upper Murray Basin. 
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flows in October are attributed to melting snow in its 
high area. 

About 80% of the area of the Upper Murray Basin 
is forested, although all the major valleys which lie in 
its north have been cleared for agriculture (Water 
Victoria, 1989). Water use in this basin is small (4830 
ML per year on average). However, it is one of the 
major contributors of water resources in the MDDD. 

The streamflow information for the nine catchments 
selected for analysis here are used by the MDBC for 
calculating inlet flows to the Hume and Dartmouth 
reservoirs. The mean annual discharge and areas of 
these catchments are presented in Table 1. 

approach developed by Whetton et al. (1996) for mod- 
elling snow melt/accumulation on a monthly timestep. 
The main advantage of the suggested approach is that 
it does not require any additional input data except 
daily temperature and precipitation, which is especially 
useful for modelling of snow processes in regions with 
a lack of regular snow observations. 

The major model-fit criterion used in the present 
work is the model efficiency statistic E, or proportion 
of observed streamflow explained by the model, and 
is defined by the formula: 

E = 1 - • ( Y i  - Y l ) 2 1 ~ ( Y i  - Y . . . .  ) 2 ,  

1.3. The mode l  

A general description of the IHACRES model can 
be found in Jakeman et al. (1990) and Jakeman and 
Homberger (1993). The description of the particular 
model structure applied here was provided in Schreider 
et al. (1996a). The IHACRES rainfall-runoff model is 
a dynamic lumped parameter model consisting of two 
modules: a non-linear loss module which transforms 
measured rainfall to excess rainfall; and a linear mod- 
ule defined as a recursive relation at time step k (daily 
here) for modelled streamflow Yk, calculated as a linear 
combination of its antecedent values and excess rain- 
fall. A more detailed description of the linear module 
of the IHACRES model is given in Section 4.2. 

The non-linear loss module allows one to take into 
account the effect of antecedent weather conditions on 
the current status of catchment storage wetness index 
sk and vegetation conditions, and evapotranspiration 
effects, in order to calculate the excess rainfall from 
the measured precipitation taking into account infor- 
mation on current temperature values. 

The snow melt/accumulation module described in 
Schreider et al. (1996c) for modelling daily processes 
is based on modification of  the empirical degree-day 

where Yi is the daily observed streamflow, Yl is the 
daily modelled streamflow and y . . . .  is the long-term 
mean value of observed streamflow. The closer the 
efficiency value is to one, the better the fit provided 
by the model (Nash and Sutcliffe, 1970). 

2. Results of runoff modelling for the snow-free 
catchments 

The Tallangatta and Cudgewa Creek catchments 
were considered as snow free. Tallangatta Creek was 
modelled using the streamflow data from McCallums 
gauging station (401220) for the period 1976-90 and 
the Bullioh station (401218) for the period 1954-75; 
precipitation data were from the meteorological station 
at Tallangatta (82047). The streamflow data for 
Cudgewa Creek were taken from the station at Berrin- 
gama (401208) and precipitation from the station at 
Corryong (82011). Temperature data for both catch- 
ments were taken from the Corryong station. These 
two catchments were calibrated on 10 (practically) non- 
overlapping calibration periods (CPs), each of two 
years. Successful calibrations, with E > 0.700, were 
obtained for five CPs for Tallangatta Creek and three 

Table 1 
Characteristics of modelled catchments in the Upper Murray Basin and meteorological stations used (Fig. 1) 

Streamgauge River and station Mean annual Area 
station number location discharge (km 2) 

(ML) 

Meteorological stations 
(precipitation/temperature) 

401203 Mitta-Mitta River at 475,000 1 5 3 3  83025/83023 
Hinnomunjie 
Tallangatta Creek at McCallums 71,900 
Cudgewa Creek at Berringama 102,000 
Murray River at Biggara 532,000 
Gibbo River at Gibbo 135,000 
Snowy Creek at Granite Flat 195,000 
Jingellic Creek at Jingellic 66,000 
Tooma River at Pine Grove 442,000 
Big River U/S of Joker Creek 231,000 

401220 464 82047/82011 
401208 350 82011/82011 
401012 1 1 6 5  82035/82011 
401217 389 82018/82011 
401210 407 82068/82011 
401013 328 82024/82011 
401014 1 8 1 9  82060/82011 
401216 356 83023/83023 
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Table 2 
Model efficiency values E for calibration of the IHACRES 
model for the Tallangatta and Cudgewa Creeks catchments 

Catchment and Tallangatta Cudgewa 
station number Creek Creek 
CP 401220 401208 

1 0.789 - 
25/02/72-24/02/74 
2 0.837 - 
24/02/74-23/02/76 
3 - 0.768 
4/03/76-3/03/78 
5 0.903 0.872 
10/12/79-9/12/81 
6 0.858 - 
9/12/81-8/12/83 
8 0.809 0.840 
28/12/85-17/12/87 

- denotes model diverged (E < 0.700). 

CPs for Cudgewa Creek (see Table 2). The model 
efficiency statistics for the best calibration periods were 
0.903 for Tallangatta Creek and 0.872 for Cudgewa 
Creek. A simulation (or validation) test was performed. 
That is, the values of  the parameters ~'w, f,  c, in the 
non-linear module and the coefficients in the linear 
module of  the IHACRES model, optimised during the 
calibration runs, were used for modelling the stream- 
flow using the rainfall and temperature series for the 
whole period where continuous records of  temperature, 
precipitation and streamflow were available. The 
efficiency statistics obtained for these two catchments 
for the simulation test were 0.611 and 0.638, respect- 
ively. 

The Jingellic Creek catchment was considered as 
snow free to a first approximation. It was modelled 
using, as an input, precipitation records from the single 
meteorological station at Koetong (82024). Streamflow 
data were taken from station 401013 at Jingellic. Tem- 
perature data were also taken from the Corryong 
station. This catchment was calibrated on eight practi- 
cally non-overlapping calibration periods, each of two 
years. Calibrations, with efficiency coefficients E > 
0.700, were obtained for three CPs (see Table 3). The 

Table 3 
Model efficiency values E for calibration of the IHACRES 
model for the Jingellic Creek catchment 

CP Model efficiency E 

5 0.709 
20/12/79-19/12/81 
7 0.703 
19/12/83-18/12/85 
8 0.797 
28/12/85-26/12/87 

calibration results obtained on CP 8 are shown in Fig. 
2. The divergence of the model on the other CPs is 
related to defects in streamflow records of  gauging 
station N 401013. Jingellic Creek is an ephemeral river. 
This is an explanation for the long-term simulation test 
providing poor results (E = 0.533). The selected struc- 
ture of  the IHACRES model cannot approximate 
streamfiow when the flow in this creek reaches zero. 
However, such periods are relatively short for this 
catchment and its calibration, using a version of the 
model extended to ephemeral rivers (Ye et al., 1995), 
does not seem justified. 

3. Results of runoff modelling for the snow- 
affected catchments 

Model calibration for the snow affected Mitta-Mitta 
catchment was described in Schreider et al. (1996c). 
The base meteorological stations 83025 at Omeo and 
83023 at Mt Beauty were selected for precipitation 
and temperature, respectively. Successful calibrations 
were obtained and the calibration results, in terms of 
model efficiency, are summarised in Table 4. The 
simulation results are summarised in Table 5. The 
results described above show that the IHACRES model, 
applied to the snow-affected catchments and combined 
with the snow melt/accumulation module, provides a 
fit of  the model to the observed data of  about the same 
quality as this model (without this module) applied in 
snow-free basins; cf. Schreider et al. (1996a,b) where 
the results of  the IHACRES application to the practi- 
cally snow-free Goulburn and Ovens Basins are 
described. 

Model calibration for the snow-affected catchments 
of  the Upper Murray at Biggara, Gibbo River and 
Snowy Creek was performed with daily time series of: 

(1) the equivalent precipitation, estimated by the snow 
melt/accumulation module (Nariel Creek meteoro- 
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Fig. 2. Observed (solid line), modelled (dashed line) stream- 
flow (cumecs) for CP 8 (1986-1987) for the Jingellic 
Creek catchment. 
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Table 4 
Model efficiency values E for calibration of the IHACRES 
snow-runoff model for the" Mitta-Mitta catchment 

Catchment and station The Mitta-Mitta 
number River 
CP 401203 

1 0.827 
4/02/66-3/02/68 

2 
5/01/68-4/01/70 

3 0.718 
23/02/70-22/02/72 

4 0.848 
24/03/72-23/03/74 

5 
14/03/74-13/03/76 

6 0.727 
2/02/76-1/02/78 

7 
2/02/78-1/02/80 

8 0.859 
11/02/80-10/02/82 
9 0.910 
10/02/82-9/02/84 

- denotes model diverged for this calibration period (E < 0.700). 

Table 5 
Simulation statistics with nine two-year calibrated models 
over the whole period of observation (1965-1985) for the 
Mitta-Mitta catchment: E and bias (mean daily error in 
cumecs). Bold values denote the best selected model 

Catchment and station The Mitta-Mitta River 
number 401203 
Model number E/bias 

1 0.627/0.13 
2 
3 0.649/-0.76 
4 0.669/0.50 
5 
6 
7 
8 0.605/4.13 
9 0.681/0,87 

- denotes model diverged for this calibration period (cf. Table 4). 

logical station 82035 was selected as the basis for 
the Upper Murray catchment, the Gibbo River Park 
station 82018 for the Gibbo River and the Mitta- 
Mitta Forestry station 82068 for Snowy Creek); 

(2) temperature, interpolated for each grid cell of  the 
catchment and then integrated over this catchment 
(Corryong meteorological station 82011 was selec- 
ted as the basis for the whole region under 
consideration); and 

(3) streamflow during the period 1973-1987. 

The period 1973-1987 was divided into seven CPs, 

each with a duration of two years. The selected CPs 
do not overlap substantially, with the one exception of 
CP 7 for the Gibbo River because of lack of streamflow 
data after 30 June 1986. Successful calibrations were 
obtained and the calibration results, in terms of model 
efficiency, are summarised in Table 6. 

In order to check the consistency of the results 
obtained, simulation runs were performed over the 10- 
year period 1977-1987 with one of the calibrated 
models for each catchment. The efficiency coefficients 
E and mean daily bias for these simulation tests are 
shown in Table 7. 

Model calibration for the snow-affected catchments 
of  the Tooma River at Pine Grove and the Big River 
upstream of Joker Creek was performed with daily 
time series of: 

(1) the equivalent precipitation, estimated by the snow 
melt/accumulation module (Towong Upper 
meteorological station N 82060 was selected as the 
basis for the Tooma River and Mt Beauty station 
83023 for the Big River); 

(2) temperature, interpolated for each grid cell of the 
catchment and then integrated over this catchment 
(Corryong meteorological station 82011 was selec- 
ted as the basis for the Tooma River catchment 
and the Mt Beauty station 83023 for the Big 
River); and 

(3) streamflow during the period 1973-1987 for Tooma 
River and 1965-1985 for Big River. 

For the Tooma River, the period 1973-1987 was 
divided into seven CPs, each with a duration of two 
years. The selected CPs do not overlap substantially. 
Successful calibrations were obtained for five of  seven 
CPs and the calibration results, in terms of model 
efficiency, are summarised in Table 8. 

The Big River is a tributary of the Mitta-Mitta 
catchment. Its watershed is located in the north-westem 
part of  the Mitta-Mitta catchment. The period 1965- 
1985, when meteorological data were available, was 
subdivided into nine non-overlapping calibration per- 
iods each of two years, the same as for the Mitta- 
Mitta River. Successful calibrations were obtained for 
six of  the nine CPs and the calibration results are 
summarised in Table 9. Figure 3 shows the calibration 
results for this catchment obtained for the CP 1 
(4/02/1966-3/02/1968). 

In order to check the consistency of the results 
obtained, simulation runs were performed. For the 
Tooma River it was accomplished over the 14-year 
period 1973-1987 for each of five models with cali- 
bration efficiencies greater then 0.700. For two models, 
calibrated on CP numbers 2 and 4, the simulation 
results provided efficiencies higher than 0.650. The 
efficiency coefficients E and mean daily bias for these 
simulation tests are shown in Table 10. A simulation 
test for the Big River was performed over the 20-year 
period, 1965-1984, for every model obtained. The 
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Table 6 
Model efficiency values E for calibration of the IHACRES snow-runoff model for the Upper Murray, Gibbo River and Snowy 
Creek catchments 

Catchment and station number The Upper Murray River The Gibbo River Snowy Creek 
CP 401012 401217 401210 

1 - 0.799 0.741 
01/01/73-31/12/74 

2 - 0.710 - 
01/01/75-31/12/76 

3 - - - 
06/01/77-06/01/79 

4 0.810 0.850 0.792 
420/11/78-19/11/80 

5 0.852 0.892 0.792 
01/01/81-22/12/82 

6 - 0.801 - 
13/01/83-12/01/85 

7* 0.792 0.773 0.856 
13/01/85-13/01/87 

- denotes model diverged (E < 0.700). 
"19/10/84-30/06/86 for the Gibbo River. 

Table 7 
Simulation results for the Upper Murray, Gibbo and Snowy catchments over the 10-year period from 01/01/1977 

Number of CP 
where the model Bias (mean daily 
was calibrated absolute error) 

Catchment (Table 6) Efficiency E cumecs/day 

Murray River at Biggara 7 

Gibbo River at Gibbo 4 

Snowy Creek at Granite Flat 5 

0.649 0.37 

0.692 0.63 

0.729 0.06 

Table 8 
Model efficiency values E for calibration of the IHACRES 
snow-runoff model for the Tooma River 

Catchment and 
station number Model efficiency 
CP E 

1 0.703 
01/01/73-31/12/74 

2 
01/01/75-31/12/76 0.782 

3 
06/01/77-06/01/79 

4 
20/11/78-19/11/80 0.702 

5 
01/01/81-22/12/82 0.803 

6 
13/01/83-12/01/85 

7 
13/01/85-13/01/87 0.773 

- denotes model diverged (E < 0.700). 

eff ic iency coeff icients  and bias for  that ca tchment  are 
shown in Table  11. The s imula t ion  results  o f  the two- 
year  period,  1966-1967,  for the mode l  ca l ibra ted  on 
CP 5 (14/03/1974-13/03/1976) ,  are presented  in Fig.  4. 

The results  o f  a long- te rm his tor ical  s imula t ion  for  
the Tal langat ta  and Cudge w a  Creeks  ca tchments  are 
shown in Fig. 5. This  figure i l lustrates that the s imul-  
at ion results  are reasonably  good  for  a lmos t  all per iods  
except  dur ing large flows in 1956 and 1974. The huge 
underes t imat ions  which  occurred in these years  might  
be exp la ined  by  ins t rumental  errors re la ted to per iods  
of  very  high s t reamflow (for instance,  the poor  cal i-  
bra t ion o f  the upper  part  o f  r iver  profi le  sect ions for 
re levant  s t ream gauging  stations).  Such results can be 
improved  by  fil tering o f  the residuals.  

4. Forecasting algorithms 

4.1. Structure of the forecasting algorithm 

The conceptua l  ra infa l l - runoff  mode l  I H A C R E S  and 
a se l f -adapt ive  l inear  fi l tering approach  were  combined  
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Table 9 
Model efficiency values E for calibration of the IHACRES 
snow-runoff model for the Big River catchment 

CP Model efficiency 
E 

1 0.862 
4/02/66-3/02/68 

2 
5/01/68-4/01/70 

3 
23/02/70-22/02/72 

4 
24/03/72-23/03/74 
5 0.770 
14/03/74-13/03/76 
6 0.836 
2/02/76-1/02/78 
7 0.734 
2/02/78-1/02/80 
8 0.792 
11/02/80-10/02/82 
9 0.894 
10/02/82-9/02/84 

- denotes model diverged (E < 0.700). 
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Fig. 3. Observed (solid line), modelled (dashed line) stream- 
flow (cumecs) for CP 1 (1966-1967) for the Big River catch- 
ment. 

Table 10 
Simulation results over the 14-year period from 01/01/1973 
for the Tooma River catchment. Bold values denote selec- 
ted model 

Number of 
calibration Bias (mean daily 
period Efficiency absolute error) 
(Table 8) E cumecs/day 

2 0.664 0.98 

4 0.663 3.25 

Table 11 
Simulation results over the 20-year period from 01/01/1965 
for the Big River catchment. Bold values denote selected 
model 

Number of 
calibration Bias (mean daily 
period Efficiency absolute error) 
(Table 9) E cumecs/day 

1 O.693 O.76 
5 0.709 -0.18 
6 0.648 -1.10 
7 0.646 0.47 
8 0.657 1.81 
9 0.656 0.27 

60 t - -  Observed streamflo~ 
- - ModelEed streamflow I 

50 

4O 

30-  

20-  I 

: ', 

0 
12-65 6-66 1-67 7-67 2-68 

Date 

Fig. 4. Observed (solid line), modelled (dashed line) stream- 
flow (cumecs) for the simulation test over the period 1966- 
1967 for the Big River catchment. 

and applied for forecasting daily streamflow for the 
nine catchments in the Upper Murray Basin (Table 1). 
Different types of models were considered in order to 
select the most appropriate forecasting algorithm. 

A disadvantage of rainfall-runoff models applied 
solely is that the residuals of the model are not white 
noise. The mean value of residuals of such models 
may be zero but the variance tends to change through 
time (e.g. seasonally) and residuals are strongly auto- 
correlated. 

Linear filtering can be applied in order to decompose 
the residuals into a systematic component and white 
noise. The AutoRegressive Integrated Moving Average 
(ARIMA) model was selected here as an instrument 
for filtering the residuals. 

Schematically, the model applied may be represented 
as a combination of two steps: 

(1) The deterministic conceptual model IHACRES, 
providing for each time step (daily here) k the 
modelled value of streamflow Yk, which can be 
expressed through its measured value xk as: 

xk = Yk + ~k, where ~k are the residuals. 
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Fig. 5. Historical simulation of annual streamflow for the Tallangatta and Cudgewa Creeks using the IHACRES model. 

The discrete random function ~k is strongly auto- 
correlated and its variance has seasonal fluctu- 
ations. Therefore it is logical to filter these 
residuals, or decompose them into a combination 
of systematic and white noise components. 

(2) The residuals ~k of the IHACRES model, linearly 
filtered using the ARIMA model. 

4.2. De t e rmin i s t i c  p a r t  ( I H A C R E S )  

The conceptual dynamic lumped parameter model 
IHACRES has two modules: a non-linear loss module 
which transforms measured rainfall to effective rainfall 
using the temperature data, and a linear module defined 
as a recursive relation at time step k for modelled 
streamflow Yk, computed as a linear combination of  its 
previous values and excess rainfall. The loss module 
is used to account for the effect of antecedent weather 
conditions on the current status (sx) of soil moisture 
and vegetation conditions, and evapotranspiration 
effects. The effective rainfall uk is calculated from the 
measured precipitation rk and temperature tk by formu- 
lae given in Schreider et al. (1996a). 

The version of this model based on the Simple 
Refined Instrumental Variable (SRIV) technique uses 
the previous values of the modelled flow for recurrent 
estimation of its current value. An approach based 
on a least squares technique uses, for such recurrent 
relationships, the previously measured values of 

streamflow. This method is not applicable for periods 
where the measured flow is unknown but can provide 
more accurate forecasts for the periods where the 
observed data can be updated. The particular form of 
the linear module used in this work, which is based 
on a two parallel storages approximation (superposition 
of quick and slow flow recessions), is 

Yk = --alyk-1 -- azYk-z + bouk + bluk_~ (1) 

or the SRIV algorithm, where Yi is modelled stream- 
flow, and 

Yk = -a l xk - i  - a2xk_2 + bouk + bluk_l (2) 

for the so-called least squares algorithm, where xk_~ 
and Xk-z are previous measured values of flow. The 
total number of parameters in this version of 
IHACRES, including its linear and non-linear modules, 
is six. 

4.3. S tochas t i c  p a r t  ( A R I M A )  

The residuals of the model ~1,~2, " ' ' ,  ~n were con- 
sidered as the stochastic time series to be filtered. The 
ARIMA (p,d,q) model is defined by the following 
relations (Box and Jenkins, 1976; Bras and Rodriguez- 
Iturbe, 1985): 
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~b(B) ( ( l -B)  a ~k - D) = O(B) ak, 

where B is a backward shift operator such that B~k = 
~k-l, ( l - B )  a is the difference operator, D is the mean 
value of the differenced series and ~b(B), O(B) are 
the polynomial expressions for p autoregressive and q 
moving average values: 

~b(B) = 1 - q ) l  B - q~2 B 2  - . . .  - ( ~ p B  p 

O(B) = 1 - OIB - O 2  B 2  - . - .  - t~qB q 

Modelling of seasonal periodicity was excluded from 
consideration here. The sum p + q + d defines the num- 
ber of  parameters to be optimised for the stochastic 
module. 

4.4. Application of the ARIMA model 

Table 12 
The mean absolute and mean square forecast errors obtained 
for a range of ARIMA parameters and three different concep- 
tual models 

(p,d,q) SRIV Least squares 'Naive' model 

(0,0,0) 1.02; 3.58 0.82; 7.57 0.73; 5.12 
(1,0,0) 0.65; 2.34 0.85; 7.24 0.75; 5.71 
(0,0,1) 0.89; 3.13 * 0.79; 6.00 
(2,0,0) 0.69; 2.59 0.82; 6.80 0.79; 6.00 
(1,0,1) 0.74; 2.81 * * 
(1,1,0) 0.65; 2.60 1.22; 15.50 1.00; 9.80 
(0,1,1) 0.70; 2.60 * * 
(1,1,1) * * * 
(1,2,0) 0.90; 5.23 2.05; 38.42 1.46; 20.15 
(2,1,1) 0.67; 2.55 1.16; 11.88 0.99; 9.07 
(2,2,0) 0.89; 4.54 1.72; 24.49 1.32; 15.64 

Linear filtering of the residuals of  the conceptual 
model IHACRES was performed using moving win- 
dows, each with a duration of 40 days, and a 1 day 
time step. The ARIMA models were calibrated separ- 
ately on each window and the forecasts of the residuals 
for L days forward were calculated. The statistical 
significance of the approximation was controlled for 
each step using the Box-Ljung portmanteau statistic 
(McLeod, 1978). 

In order to test the forecast procedure, it was 
assumed that the rainfall for L days forward must be 
known; see Eqs (1) and (2). 

The residuals of  the SRIV and least squares versions 
of  the IHACRES conceptual model were used as inputs 
for the linear filtering algorithm. To assess how 
informative these prediction algorithms are, an 
additional test was suggested: the residuals of  the 
'naive '  forecasting algorithm, where the predicted value 
of flow is equal to the streamflow at the previous time 
step (Yk = Xk-l), were also considered to provide fore- 
casts of streamflow. 

A range of different ARIMA structures was con- 
sidered for each deterministic model (SRIV, least 
squares and 'naive ' )  to select the best forecasting 
algorithm. The values for the number of  autoregressive 
parameters p, moving average parameters q and differ- 
encing d were limited to a maximum of 2, 2 and 1, 
respectively, in order to avoid overparametrisation. 
Values (0,0,0) correspond to the conceptual model 
itself, when considered as a forecasting algorithm. 

4.5. Results and analysis 

Table 12 summarises the results of  testing the differ- 
ent (p,d,q) parameters on the two-year calibration per- 
iod (1980-1981) for Tallangatta Creek. The values of  
mean absolute and mean square errors for one day 
ahead forecasts calculated over this two-year period 
were selected as a measure of the quality of  the model 

*means model diverges. 

identification. The model was considered to fail if it 
diverged for more than 5% (35 of approximately a 
700-day period) of the windows. The best results were 
provided for ARIMA (1,0,0) and (1,1,0). Figures 6 and 
7 show the results of  SRIV IHACRES performance 
on the periods of  low and high fow,  respectively, and 
their improvements after filtering by an ARIMA pro- 
cess. 

Table 13 illustrates how the quality of  forecast 
depends on how many days forward (L) it is provided. 
The results are illustrated for two catchments, for 
Tallangatta and Cudgewa Creeks, respectively. The 
results show that the quality of  forecast obtained by 
linear filtering of the residuals is better than the forecast 
obtained by using the conceptual model solely, for 
values of L up to 3 (the Cudgewa Creek) and 5 
(the Tallangatta Creek). The results of the forecasting 
algorithm application to all the catchments considered 
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Fig. 6. 1-day ahead forecast for a low-flow period in the 
Tallangatta Creek catchment. 



S. Yu. Schreider et al./Algorithm for streamflow forecasting 103 

50 

4O 

E 
o = 30 

o 
E 

' -  2O 
(,9 

10 

- -  Observed flow 
- - - -  SRIV model I 

~ ,  I - - - -  SRIV & ARIMA [ 

7-15-81 8-4-81 8-24-81 
Date 

Fig. 7. 1-day ahead forecast for a high-flow period in the 
Tallangatta Creek catchment. 

Table 13 
The quality of forecast obtained for the linearly filtered 
ARIMA (1,0,0) residuals of the conceptual model SRIV 
IHACRES 

L 1 2 3 4 5 

The Tallangatta 0.65 0.81 0.92 0.96 1.03 
Creek 2.34 3.27 3.35 3.47 3.58 
The Cudgewa 0.63 0.74 0.75 0.76 0.73 
Creek 2.50 2.80 2.80 2.86 2.64 

Mean absolute and mean square errors are given. 

are summarised in Table 14. The efficiency statistics 
and bias for the IHACRES model, applied solely, are 
presented for the periods specified in Sections 2 and 
3. The selection of different periods for the simulation 
test in different catchments is explained by the avail- 
ability and quality of  rainfall data at these sites. The 

combined forecasting algorithm was applied for the 
whole period of availability of  streamflow records. For 
the periods when precipitation is not recorded, it pro- 
vides forecasting values using information about 
streamflow solely. Even for such a test, comparison of 
their values illustrates the considerable improvement 
obtained after application of the linear filtering pro- 
cedure to the residuals of  the IHACRES model, even 
in the case of the Jingellic Creek catchments, where a 
problem related to its ephemeral nature exists. 

5. Discussion and conclusions 

Successful calibration of the IHACRES model was 
performed for nine catchments of  the Upper Murray 
Basin. The results described above show that the 
IHACRES model provides consistently good estimates 
of daily streamflow for the snow-free as well as for the 
snow-affected catchments in the Upper Murray Basin. 

A method for combining a conceptual rainfall-runoff 
model and a self-adaptive linear filtering approach was 
developed and applied to forecast streamflow for nine 
catchments in the Upper Murray Basin. Considerable 
improvement was achieved compared with prediction 
based on the use of  the conceptual model only: the 
errors of the forecast 3-5 days forward for the com- 
bined method are comparable with the errors of  a 
1-day forward prediction provided by the conceptual 
model only. The (1,0,0) structure of  the ARIMA algor- 
ithm was selected as the most appropriate for fore- 
casting in the region under consideration. This allows 
the use of  a combined deterministic and self-adaptive 
stochastic approach for better approximation of river 
discharge and for operational forecasting, in particular 
for reservoir management. 

Table 14 
Efficiency statistics (E) and bias for long-term simulations in all nine catchments considered. Results obtained from the 
IHACRES simulation, and IHACRES combined with an ARIMA algorithm are presented 

Station number River and station location 

IHACRES model 
IHACRES model combined 
applied solely with ARIMA (1,0,0) 
E bias E bias 

401203 
401220 
401208 
401012 
401217 
401210 
401013 
401014 
401216 

Mitta-Mitta River at Hinnomunjie 
Tallangatta Creek at McCallums 
Cudgewa Creek at Berringama 
Murray River at Biggara 
Gibbo River at Gibbo 
Snowy Creek at Granite Flat 
Jingellic Creek at Jingellic 
Tooma River at Pine Grove 
Big River U/S of Joker Creek 

0.669 0.50 0.835 -0.03 
0.611 0.35 0.807 0.04 
0.638 0.62 0.744 -0.01 
0.649 0.37 0.835 -0.25 
0.692 0.63 0.805 0.22 
0.729 0.06 0.809 0.07 
0.533 0.17 0.602 -0.01 
0.664 0.98 0.841 0.06 
0.709 -0.18 0.845 0.04 
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