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ABSTRACT 

Reckhow, K.H. and Chapra, S.C., 1983. Confirmation of water quality models. Ecol. 
Modelling, 20:113-133. 

Water quality simulation models, whether descriptive or predictive, must undergo con- 
firmatory analyses if inferences drawn from the models are to be meaningful. Current 
practices in the confirmation of simulation models are examined and criticized from this 
perspective. In particular, labeling this process "verification" or "validation" (truth) proba- 
bly contributes to the often inadequate efforts, since these states are unattainable. The 
evaluation of scientific hypotheses, or water quality simulation models, may proceed accord- 
ing to inductive logic, the hypothetico-deductive approach, or perhaps according to a 
falsification criterion. The result of successful testing is at best confirmation or corroboration, 
which is not truth but rather measured consistency with empirical evidence. On this basis a 
number of statistical tests are suggested for model confirmation. The major difficulty to 
overcome, before confirmation becomes meaningful, is the generally inadequate data for 
establishing rigorous statistical tests. 

INTRODUCTION 

Mathematical model development begins with the conceptualization of 
the functions and relationships of the characteristics of the issue or system 
under study and proceeds with specification of the mathematical relation- 
ships, estimation of the model parameters, and validation of the model as a 
reliable representation. The process may be iterative. All steps are im- 
portant; the validation step, however, may be the most important because it 
provides confirmation (or lack thereof) that the conduct of the other steps 
resulted in a reliable model. Ironically, validation is also the step that is most 
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often inadequately conducted in water resource model development. 
In fact, validation, or the ascertainment of truth, is inconsistent with the 

logic of scientific research. As Anscombe (1967) notes, "The word valid 
would be better dropped from the statistical vocabulary. The only real 
validation of a statistical analysis, or of any scientific enquiry, is confirma- 
tion by independent observations." The testing of scientific models may be 
considered an inductive process, which means that even with true premises, 
we can at best assign high probability to the correctness of the model. 
Philosophers of science have long debated the appropriate criteria for the 
effectiveness of arguments of this nature, considering characteristics such as 
the severity of tests and the goodness-of-fit. 

How can this be translated into statistical terms for practical applications? 
Generalization of verifying criteria is possible only to a limited extent; 
beyond that, issue-specific criteria must be determined. Still, guidelines may 
be proposed for the composition of tests that are rigorous and for the 
selection of goodness-of-fit tests and acceptance levels. Both model develop- 
ers and model users should benefit from careful consideration and applica- 
tion of criteria for model confirmation. 

These issues are not only of academic interest. In the past 15 years, a 
number of water quality simulation models have been developed and then 
promoted as predictive methods to aid in the management of environmental 
quality. In most cases, however, these models have not been subjected to a 
rigorous validation or confirmation. Therefore, the model user often has no 
assurance that the model will yield reliable and informative predictions. This 
has potentially serious consequences, since the inadequately confirmed plan- 
ning model may lead to the implementation of economically inefficient or 
socially unacceptable water quality management plans. It is the purpose of 
this paper to outline some philosophical and statistical issues relevant to the 
problem of confirmation, and then to recommend appropriate applications 
of statistical confirmatory criteria. 

P H I L O S O P H Y  A N D  S C I E N T I F I C  C O N F I R M A T I O N  

Until the 1950s, virtually all scientists and philosophers of science viewed 
the advancement of science and the scientific method as endeavors dominated 
by empiricism and logic. The empiricism of Hume and the deductive logic of 
Russell and Whitehead formed the basis for the approaches of the logical 
positivist and, later, the logical empiricist. In particular, the logical empiri- 
cists have enjoyed widespread support during the twentieth century. 

Logical empiricism (see Hempel, 1965) is based on the presupposition that 
observations and logic advance scientific knowledge. For example, when a 
scientific hypothesis (model) is proposed under logical empiricism, observa- 



115 

tions of relevant phenomena are acquired, and inductive or deductive logic is 
used to determine the degree of confirmational support. Inductive argu- 
ments, we may recall, cannot strictly be proven as true, but can at best be 
assigned a high likelihood of being correct. In statistical inference, inductive 
arguments are often associated with reasoning from the specific to the 
general. Deductive logic (reasoning from the general to the specific), on the 
other hand, must yield true conclusions if the premises are true and the 
arguments are valid. 

Logical empiricists are divided on the importance and appropriate appli- 
cations of deduction and induction in science. For example, under the 
hypothetico-deductive approach (Kyburg, 1970), a scientific hypothesis is 
proposed and criteria that can be tested are deduced logically. The scientist 
then must be concerned with constructing rigorous tests which, depending 
on rigor and the results of testing, confer a degree of confirmation upon the 
hypothesis. When competing hypotheses are offered, philosophers have 
recommended acceptance of the simplest one that is consistent with the 
empirical evidence, possibly because it is most probable (Kyburg, 1970). 

Inductive logic, on the other hand, is important in a class of problems 
concerned with statistical explanation (Salmon, 1971). Scientists and philos- 
ophers who subscribe to this approach argue that there are many scientific 
analyses in which the information content of the conclusion exceeds that of 
the premises. In those circumstances, inductive logic is appropriate, and we, 
at best, can assign high probability to the conclusion based on the premises. 
Alternatively, using reasoning similar to Bayes' Theorem we may state that 
the degree of confirmation, or the probability of a hypothesis [P(H)], is 
conditional on the available empirical evidence (E): 

p(VlIE ) = / ' ( n ,  E) 
P(E) (1) 

In contrast, Edwards (1972) advocates a likelihood interpretation (without 
Bayes' Theorem) for the support provided to a hypothesis from a set of data; 
Rosenkrantz (1977), however, takes a strictly Bayesian view and conditional- 
izes this likelihood with an often information-less prior. 

Popper (1968) has proposed a variation on the hypothetico-deductive 
approach that has undergo a variety of interpretations since its introduction 
(Brown, 1977). Popper rejects the notion that induction should be called 
logic, since the nature of induction is to support a conclusion that contains 
more information than the premises. Therefore, if we accept the logical 
empiricist view that science is based on logic, then deductive logic is 
necessary. Consistent with the hypothetico-deductivists, Popper requires the 
deduction of observational consequences of a scientific hypothesis; but in a 
break from previous thought, he bases scientific knowledge on a criterion of 
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falsification rather than confirmation. This means, according to Popper, that 
scientific statements are distinguished, not by the fact that they can be 
confirmed by observation, but rather by the fact that they can be falsified by 
observation. Popper believes that candidate hypotheses should be subjected 
to severe tests, and from among the successful hypotheses, the one that is 
deemed most falsifiable is the one that should tentatively be accepted. 
Although this may at first seem counter-intuitive, it is reasonable since, 
following the application of severe tests, the hypothesis that was most likely 
to be falsified yet survived is the hypothesis receiving the greatest empirical 
support. Popper would then say that this highly falsifiable hypothesis had 
been corroborated through the application of rigorous tests. Like confirma- 
tion, corroboration has a vague quantitative meaning, associated with the 
severity of the applied tests and the degree of test success. 

Finally, to complete this discussion of the philosophy and methods of 
science, we must consider the thinking of some philosophers during the past 
30 years (see Kuhn, 1970; or Brown, 1977). Specifically, it has been sug- 
gested that the logical empiricist notion of observation and logic, as being 
fundamental  to scientific research, biases our view of science. When these 
presuppositions are eliminated, other criteria may become important,  such as 
the consensus of opinion of the scientific community  (Brown, 1977). Under  
one view of this new philosophy, most scientific research is "normal  science" 
(Kuhn, 1970), in which the existing theoretical framework determines the 
research and the nature of the scientific inferences drawn from the observa- 
tions. In contrast to normal science, scientific "revolutions" change the basic 
theoretical framework. These ideas represent an important new philosophical 
view of the conduct of science. Without rejecting this view, however, we may 
justifiably consider logical empiricism as the dominant  theoretical frame- 
work at present. This means that methods proposed for the testing of 
mathematical  models must draw their support from the philosophy and 
methods of the logical empiricists. 

Independent  of the preference we may have for a particular logical 
empiricist approach for evaluating scientific hypotheses, there are consisten- 
cies among the approaches that the scientist should note well. Without 
doubt, tests must be rigorous. This means that the hypothesis should be 
subjected to conditions that are most likely to identify its weaknesses or 
falsity. Mathematical simulation models must be tested with data that reflect 
conditions that are noticeably different from the calibration conditions; 
without this, there is no assurance that the model is anything more than a 
descriptor of a unique set of conditions (i.e., those representing the calibra- 
tion state). To assess the degree of confirmation or corroboration that a 
hypothesis or model should enjoy, a statistical goodness-of-fit criterion is 
necessary. Finally, the modeler should prepare a set of candidate model 
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formulations and then base the model choice, in part, on the relative 
performance of the models on statistical tests and on consistency with 
theoretical system behavior. Comparison of rival mode l s /hypo theses  is an 
important  step in the testing of scientific hypotheses. 

The severity of the tests employed is often dependent  on the intended use 
of the hypothesis or model. For example, the user normally faces a risk 
associated with the application of an incorrect model and a cost associated 
with testing candidate models. A cos t / r i sk  trade-off determines the ap- 
propriate level of test severity. Likewise, the statistical criterion is use-depen- 
dent. Specifically, it is noted below that the needs of a particular application 
generally deterrrfine the best criteria for assessing statistical goodness-of-fit. 

S O M E  P R A C T I C A L  ISSUES 

The selection of a statistical test for the confirmation of a mathematical 
model may be facilitated through consideration of the following issues: 

1. What  characteristics of the prediction are of interest to the modeler? 
The answer may be one or more of: mean values, variability, extreme values, 
all predicted values, and so forth. If one of the limited, specific responses is 
given, then the test statistical criterion should focus on that specific feature. 

2. Is it intended that the model be primarily descriptive (identifying 
hypothesized cause-effect  relationships) or primarily predictive? Different 
statistical tests are appropriate in each case. 

3. What is the criterion for successful confirmation? In statistical in- 
ference, mean square error is often adopted, although many statistical tests 
(e.g. nonparametric  methods) do employ other error criteria. In some situa- 
tions, a decision theoretic approach such as regret minimization is warranted 
(see Chernoff  and Moses, 1959). 

4. Are there any peculiar features to the model  application of concern? 
This is a "catch-all" question intended to alert the model user to the fact 
that each application is unique, and therefore the confirmation process must 
be designed on that basis. For  example: 

a. When prediction and observation uncertainty are considered, are all 
error terms quantified? It should be noted that model  specification error is 
rarely estimated for water quality simulation models. This means that the 
corresponding prediction error is underestimated. Omission or mis-specifi- 
cation of any pred ic t ion /observa t ion  error terms will influence model 
confirmation. 
b. Are the assumptions behind any of the statistical tests violated? In 
particular, since time series or spatial series of data are often examined in 
model confirmation, autocorrelation may be a problem. When the validity 
of the statistical procedures is sensitive to a violated assumption (as is 
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generally true for the assumption of independence), then some modifica- 
tions or alternatives must be considered. 

CONFIRMATION OF SIMULATION MODELS: LITERATURE REVIEW 

Although there have been few, if any, rigorous attempts at confirmation of 
a water quality simulation model, this is not because of a complete lack of 
attention to this issue in the recent literature. General discussions on the 
importance of model confirmation, or on confirmation as a step in simula- 
tion model development, are noteworthy in this regard (Van Horn, 1969; 
Naylor and Finger, 1971; Mihram, 1973; Davis et al., 1976; Caswell, 1977). 
In addition, the Environmental Protection Agency recently sponsored a 
workshop on this topic (Hydroscience, 1980). Unfortunately, the discussion 
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Fig. 1. An example of a comparison of observations with predictions for a water quality 
simulation model.  
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groups convened as part of this workshop generally offered a mixed or mild 
endorsement of rigorous statistical confirmatory criteria. While some of the 
papers presented at this workshop contained strongly-worded statements on 
the importance of confirmation (e.g. Velz) or presented statistical criteria for 
confirmation (e.g. Thomann, or Chi and Thomas), the workshop missed an 
opportunity to produce and to promulgate a set of confirmatory guidelines 
necessary for proper model development. 

Despite claims by some that statistical confirmatory criteria should gener- 
ally not be recommended because of the unique demands of each model 
application, there are in fact statistical tests that may be adapted to virtually 
any situation. A number of researchers (Mihram, 1973; Shaeffer, 1980; 
Thomann, 1980, Thomann and Segna, 1980; Thomann and Winfield, 1976) 
have suggested various statistics that are useful for model confirmation. 
Thomann's work, in particular, stands out as one of the few statistical 
statements on confirmation that are specific to water quality simulation 
models. In the field of simulation modeling in hydrology, James and Burges 
(1981) have prepared a useful practical guide to model selection and calibra- 
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tion. Many of the statistical tests that they propose and apply to calibration 
are equally applicable for confirmation. In further support of the argument 
against those reluctant to adopt statistical confirmatory criteria, consider the 
alternative. Figures 1-3 were selected from water quality simulation litera- 
ture as examples of current practice in prediction/observation comparison 
or model "validation." Commenting on Fig. 1, the authors described the 
prediction/observation match as "good." Ignoring this debatable judgment 
on the fit, we may still question any conclusion on model fit in the absence 
of statistical tests (which are clearly possible with these quantitative mea- 
sures). Figures 2 and 3 are specifically labelled as "verification" plots, yet 
there is again no statistical goodness-of-fit criterion. In Fig. 3, the authors 
take the commendable step of displaying a shaded region for the observa- 
tions. Regrettably, this region is so large that it may detract from meaningful 
confirmation by preventing model discrimination. A shaded observation 
region in conjunction with a time series for central tendency would be a 
more useful representation of the observations. 

Several investigators (Meyer, 1971; Miller, 1974; Miller et al., 1976; 
Hornberger and Spear, 1980; 1981; Spear and Hornberger, 1980; Majkowski 
et al., 1981) have advocated the use of sensitivity analysis for the confirma- 
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tion and evaluation of simulation models. It is clear that a measure of the 
importance and error levels of model terms can be helpful during model 
development and can also provide some insight into the confirmation 
process. Gardner  et al. (1981) caution that the standard form of sensitivity 
analysis (partial derivative with respect to the parameter of concern) may 
result in a misleading approximation of effect when nonlinearity and param- 
eter covariance are large. In contrast, Hornberger  and Spear (1980, 1981) 
avoid this problem by using Monte Carlo simulation in their sensitivity 
analyses. Factorial methods from experimental design can also be useful in 
simulation model studies of single variable and interaction effects. Sensitiv- 
ity analysis, then, does not yield a measure of model confirmation, but  it can 
provide information that is extremely useful in model testing and develop- 
ment. 

Several studies (Beck, 1980; Fedra, 1980; 1981; Fedra et al., 1980) at the 
International Institute for Applied Systems Analysis have examined issues in 
the development,  calibration, confirmation, and prediction of water quality 
simulation models. Sensitivity analysis and Monte  Carlo simulation have 
been used to examine the impact of error terms on the prediction error. 
Among the strong conclusions apparent from this work (and from examina- 
tion of Fig. 1) is that data are often inadequate for effective calibration and 
confirmation of mathematic models. This situation clearly limits the degree 
to which we may apply statistical confirmatory criteria and ultimately affects 
the reliability of planning models and methods. 

STATISTICAL METHODS FOR CONFIRMATION 

Several statistical methods may be found useful for assessing the degree of 
confirmation of a mathematical model. Some of the more common tech- 

TABLE I 

Statistical methods for confirmation 

1. Deterministic Modeling 2. Stochastic Modeling 

(a) measures of error 
(b) t-test 
(c) Mann-Whitney-Wilcoxon test 
(d) regression 
(e) cross-correlation 
(f) graphical comparisons--box plots 

(a) 

(b) 

deterministic method for 
particular percentile 
probability density function 
"slices" 

(i) chi square test 
(ii) Kolmogorov Smirnov test 

(iii) comparison of moments 
(iv) graphical comparisons--box plots 
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niques are listed in Table I. Before selecting a technique (or, for that matter, 
before acquiring data for model development), the investigator should con- 
sider the issues presented in previous sections of this chapter. For  example, it 
is likely that model applications are primarily concerned with only certain 
features of the model. It is appropriate, then, for confirmation to focus on 
those features of concern. In addition, statistical assumptions must be 
considered. Common assumptions include normality, homogeneity of vari- 
ance, and independence. Many procedures are robust  to mild violations of 
the first two assumptions, but  not to lack of independence. Transformations 
may often be applied to achieve approximate normality or to stabilize 
variance, while some robust  and nonparametric procedures mentioned below 
may be useful under non-normality. 

Violation of the independence assumption poses more difficult problems. 
Predictions and observations in water quality simulation are often time 
series, and autocorrelation may be present in one or both of these series. In a 
dependent  (autocorrelated) series, the information content is less than in an 
equivalent-length, independent series, because each data point, to some 
degree, is redundant  with respect to the preceding point. This means that 
confidence intervals and significance tests that falsely assume independence 
will be overly optimistic, i.e. the intervals will be too small. 

For  a single data series xi, the autocorrelation coefficient for lag k is 
defined as: 

covar [ x ,  , x ~ + k ] (2)  
rk= S(Xi)S(X,+k) 

where covar is a covariance and s is a standard deviation. When predictions 
and observations are compared, the Durb in -Wat son  test may be used to 
examine the residuals for autocorrelation (see Wonnacot t  and Wonnacott ,  
1981). However,  as Wonnacot t  and Wonnacot t  note (page 232), the estimate 
of autocorrelation from residuals tends to be low. In fact, Lenton et al. 
(1973) observe that the small sample sizes usually found in water resources 
can cause large estimation errors for the autocorrelation coefficient. 

Fortunately,  when autocorrelation is found and quantified, there are some 
steps that can then be taken to permit application of many of the standard 
statistical tests. Yevjevich (1972) presents several relationships for calculat- 
ing the effective sample size, which is the size of an independent series that 
contains the same amount  of information as contained in the autocorrelated 
series. For  example, in the Common situation when the lag one autocorrela- 
tion coefficient is positive and the first-order Markov model is appropriate, 
the effective sample size N(e )  is: 

N (  e ) = N (  1 -  r 1 ) (31 
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where N is the actual sample size. 
A less efficient but computationally easy alternative to N(e) is to use or to 

aggregate data covering intervals greater than the period of autocorrelation 
influence. For example, weekly data may exhibit autocorrelation, but monthly 
data may not; therefore, confine the analysis to monthly data. 

A particularly useful method for time series confirmation is cross-correla- 
tion of the prediction and observation series. Here, too, autocorrelation is 
important, but methods have been developed to address the problem. 
Yevjevich (1972) presents an equation from Bartlett (1935) for the effective 
sample size in two autocorrelated series: 

N 
N ( e ) =  1 -  2r i ( x ) r i ( y  ) + .. .  + 2rk (X)rk (y  ) (4) 

where r,(x) is the lag i autocorrelation for series x, and r,(y)  is the lag i 
autocorrelation for series y. N(e )  then may be used in the significance test 
for the cross-correlation coefficient. Note that N(e) equals N if one of the 
two series contains no autocorrelation. 

An alternative solution to autocorrelation in cross-correlation analysis is 
prewhitening (Box and Jenkins, 1976; McCleary and Hay, 1980). Under this 
procedure, the Box-Jenkins methods are used to transform each series into a 
white noise process. Cross-correlation analysis is then performed on the two 
white noise series. 

To summarize this discussion on autocorrelation, considerable attention 
has been devoted to this topic because of the impact of lack of independence 
on statistical tests of significance. Further, even those water quality simula- 
tion model studies that have employed statistical confirmatory criteria--for 
example, Thomann and Segna, 1980--have neglected autocorrelation in 
situations where it is probably present. Since "data generated by dynamic 
simulation (models) are usually highly correlated" (Naylor, 1971) and since 
time series of natural phenomena may also be correlated, the attention paid 
to autocorrelation seems appropriate. 

Following consideration of these application-specific and statistical issues 
that help to determine the model terms and statistical methods to be 
involved in confirmation, the investigator is likely to employ one or more of 
the techniques listed in Table I. Graphical examination of data sets or series 
is usually a necessary part of any statistical analysis, and it certainly can be 
helpful in model confirmation. However, it is not listed in Table I because of 
concern that confirmation will begin and end with a graphical study and 
thus not advance beyond Fig. 1-3 mentioned above. 

One view of model output and, hence, confirmation approaches, leads to 
the separate groupings of deterministic and stochastic modeling. Most water 
quality simulation models are deterministic, and this limits the set of 
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available statistical methods. The trend toward error analysis in modeling is 
important  for model confirmation, although difficulties in the estimation of 
model  error may restrict the confirmation study. Some of the methods listed 
in Table I under deterministic modeling use aggregated data (prediction and 
observation samples), and some of the methods are appropriate for data 
series. Under  "measures  of error," we may include various weighting func- 
tions for the difference between the predictions and the observations. For 
example, the relative error is: 

IXob - Xpredl 
relative error = 

Xobs 

Another  alternative, the squared error, is: 

squared error = (Xob s -- Xpred )2 

( 5 )  

(6) 

In each case, the average value (e.g., mean square error) is the appropriate 
form for expressing these error terms. 

However,  to assess the degree of confirmation (beyond a relative compari- 
son of models), we need to use a test of statistical significance such as the 
t - t e s t  (parametric) or the M a n n - W h i t n e y - W i l c o x o n  test (nonparametric). 
Both tests require assumptions of independent identically-distributed (i.i.d.) 
observations, but  the t - tes t  adds a normality assumption. While the t-test is 
fairly robust  to violations of the normality assumption (Box et al., 1978), 
neither test is robust  to violation of independence. 

The t - tes t  is conducted from Student 's t distribution, which, for a null 
hypothesis of no difference between the mean of the observations (~ob~) and 
the mean of the predictions ( '~pred) '  is expressed as: 

"~obs -- "~pred 
t - ( 7 )  

Sdi f/VrH 

where Sdi f is the standard deviation of the paired differences (Xob s -- Xpreg), 
and n is the number  of (Xob,~ - Xpred ) pairs. 

The nonparametric alternative to the t - tes t  is the M a n n - W h i t n e y  or 
Wilcoxon test. This procedure, which may be preferred under certain condi- 
tions of nonnormality, although perhaps not strongly so (see Box et al., 
1978), is based on the relative ranks achieved when the data are ordered. 
Both the t - tes t  and the Mann-Whi tney  test are clearly described in Snede- 
cor and Cochran (1967). 

A second set of related statistical methods useful for model confirmation 
are regression and correlation. Here, the method chosen would be used to 
relate one data series to another, and thus autocorrelation is again a 
problem. Following analysis and adjustment (if necessary) for autocorrela- 
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tion, the investigator may regress the predictions on the observations. The fit 
may be assessed through the standard error statistic, or perhaps using the 
reliability index proposed by Leggett and Williams (1981). This index 
reflects on a plot of predictions vs. observations, the angle between the 1 : 1 
line (line of best fit), and a line through each data point from the origin. 
Cross-correlation (see Davis, 1973) is calculated in a manner  similar to that 
for the Pearson product moment  correlation. Davis (1973) provides a test 
statistic for assessing the significance of the cross-correlation coefficient 
between two series. Remember  that it is important  to adhere to the assump- 
tions behind the statistical methods; failure to do this under certain condi- 
tions can lead to faulty inferences concerning confirmation. 

The final method presented here for deterministic model confirmation 
(from a by no means exhaustive list of options in Table I) is the box plot 
(McGill et al., 1978; Reckhow, 1980). The box plot is an extremely informa- 
tive method for graphing one or more sets of data for the purpose of 
comparing order statistics. For each data set, the plot displays the median, 
the relative statistical significance of the median, the interquartile range, and 
the minimum and maximum points (see Fig. 4). With aggregated (non-series) 
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data, the box plot yields perhaps the best visual comparison of two or more 
data sets. A detailed example illustrating box plot construction and several 
applications is presented in Reckhow and Chapra (1983). McGill et al. 
(1978) and Reckhow (1980) also describe the construction and interpretation 
of box plots. 

Before examining some statistical options for confirming stochastic mod- 
els, consider one of the important practical issues that the model developer 
must face with a multivariate deterministic model. Specifically, the model 
developer may have calculated a confirmation statistic (e.g., a cross-correla- 
tion coefficient) for each variable in the model a n d / o r  for certain features of 
the model such as extreme values. How might these confirmatory statistics 
be aggregated into a single confirmation measure? 

First, the modeler must realize that to aggregate statistics and to make the 
confirmation decision on the basis of a single measure means the loss of 
potentially valuable model evaluation information. If this loss is acceptable, 
then the modeler must decide on an aggregation scheme for the individual 
confirmation statistics, for example, for the cross-correlation coefficients. 
This decision should be based on the relative importance of the model 
characteristics (e.g., model variables) for which confirmation statistics are 
available. The confirmation statistics then are aggregated using weights 
reflecting this importance. For example, if chlorophyll and dissolved oxygen 
are deemed most important in an aquatic ecosystem model, then the con- 
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Fig. 5. A compar i son  of a h is togram with a probabi l i ty  densi ty funct ion for the chi-square 

test. 
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firmatory statistics for these two variables should receive the highest weights. 
The final confirmation measure is a weighted sum of, for example, cross-cor- 
relation coefficients: 

Con firmation Measure = Y~ w ( x ) r ( x ) (8) 

where x is the model characteristic (variable), w is the weight reflecting the 
importance of x, and r is the cross-correlation confirmation statistic for x. 
The particular scheme presented above is merely meant  to suggest one 
option for aggregating statistics; others are certainly possible. 

Less common,  at present, than the deterministic simulation model, the 
stochastic model is nonetheless important,  and is quite amenable to a 
number  of statistical confirmatory approaches. In fact, all the methods 
discussed above for the deterministic model are appropriate for a number  of 
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features (e.g. the time stream of mean values) of the three-dimensional 
prediction and observation surfaces. In addition, we can take a two-dimen- 
sional slice of these three-dimensional distributions. Several statistical good- 
ness-of-fit tests listed in Table I can then be employed. 

The chi-square test (Fig. 5) and the Kolmogorov-Smirnov test (Fig. 6) 
yield test statistics based on the comparison of two distributions. The 
chi-square statistic, X 2, is calculated as the sum: 

X 2 E ( F / i ' ° b s - -  Y/i'pred)2 = (9) 
i F/i,°bs 

where ni,ob s is the number  of observations in cell i, and ni,pred is the number  
of predictions in cell i. The chi-square test is conducted from the probabili ty 
density function (pdf); each pdf  is divided into a number of cells from which 
the chi-square counts are made. The somewhat arbitrary nature of the pdf  
division can unfortunately affect the results of the test. Benjamin and 
Cornell (1970) provide an excellent discussion of the merits of the chi-square 
test, as well as a table of chi-square statistics for the significance of the test. 

The Kolmogorov-Smirnov  test is perhaps preferable to the chi-square test 
because it is based on the cumulative distribution function (cdf). This 
removes the arbitrariness and investigator influence, because cells are not 
required; rather, the data are ordered and the deviations of the order 
statistics are examined. In Fig. 6, the fit of a model is examined and the 
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goodness-of-fit is portrayed graphically with the Kolmogorov-Smirnov sta- 
tistic. 

Either of these methods may be used when the data are arranged in 
histogram or cumulative distribution form. Test statistics are available to 
assess the degree of confirmation. Benjamin and Cornell (1970) present a 
superb discussion on these goodness-of-fit methods for probability models. 

Other statistics or procedures may certainly be considered to support 
model confirmation. The comparison of moments,  particularly higher mo- 
ments, can be useful in some situations (see Benjamin and Cornell, 1970). In 
addition, the box plot is quite effective for examining and displaying 
differences between distributions. 

From a practical standpoint, the stochastic water quality simulation 
modeler probably does not have two three-dimensional distribution repre- 
senting predictions and observations, respectively. Rather, he may have a 
continuous prediction "cloud" representing one standard error around the 
central points, and either continuous point observations (Fig. 7), or discrete 
observations with error bars (Fig. 8). If the prediction error cloud does not 
include all error (is model error included?), then the error region is too small 
and "rejection" is more likely. Otherwise, the modeler for Fig. 7 could 
cross-correlate the two central time series or test the overlap of the error 
region with the observation line. For Fig. 8, the modeler could compare the 
points and regions statistically during the discrete observation times. Re- 
member  that the preferred approach involves comparison of a number  of 
candidate models. 
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In closing this discussion of statistical methods for confirmation, two 
additional model types deserve mention: cross-sectional regression models 
and descriptive (causal) models. Confirmation of cross-sectional regression 
models does not often pose the problem experienced with simulation models. 
This is particularly true if the cases studied are truly representative (e.g. a 
random sample) of the population of concern. Nonetheless, "shrinkage of 
the coefficient of multiple correlation" (Stone, 1974) between model devel- 
opment  and application data sets is to be expected. The methods of 
cross-validation (viz. calibrate on half of the data and confirm on the other 
half; if no significant difference occurs, recalibrate using all the data) and 
the jackknife are useful for both regression model confirmation and estima- 
tion of a non-shrinking standard error or correlation. Stone (1974) and 
Mosteller and Tukey (1977) discuss these methods in detail. 

To this point, the proposed statistical confirmatory methods are largely 
intended for predictive applications of models. Another important use of 
mathematical models is as descriptors of hypothesized causal relations. The 
methods presented above may also be found useful for confirming descrip- 
tive (causal) models. In addition, though, a causal confirmation process may 
be proposed. 

The causal mode confirmation procedure is based on a comparison of 
synthetic data generated from the model with actual observations. The 
statistical methods employed are path analysis (Kenny, 1979) and the 
confirmatory approaches of Joreskog for linear structural equations (J6re- 
skog and SOrbom, 1978; Kenny, 1979). The following procedure is recom- 
mended: 

1. Experimental design a n d / o r  Monto Carlo simulation are used to 
generate "data" from each model. It is important that a number of plausible 
candidate models be evaluated. 

2. The statistical tests presented in Table I may be used to compare real 
and simulated output data. 

3. Using path analysis and LISREL (JOreskog and S0rbom, 1978), con- 
struct linear structural equation models for both the real and synthetic data. 
These models are intended to represent causal behaviour, from the point of 
view of the real data and from the point of view of each candidate 
simulation model. 

4. Use the statistical tests presented in Table I to compare the real and 
synthetic structural equation models. The degree of confirmation of the 
causal model is then a measure of confirmation of the descriptive nature of 
the original simulation model. Several evaluative criteria may be posed: 
(a) What "parts"  of the model are most consistent (inconsistent) with 
observation? To what extent? 
(b) What changes might be appropriate? This suggests an iterative approach 
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alternating model development with causal confirmation analysis. 
(c) How do the models (and model subroutines) compare in performance? 
It appears likely that there are many applications of path analysis and 
confirmatory methods for structural equations in the areas of simulation 
model development and testing. 

CONCLUDING COMMENTS 

To end this discussion of the philosophy and statistics of simulation 
model confirmation, a few points deserve restating. 

1. Inadequate model confirmation increases the risks associated with the 
application of the model. Admittedly, there is a data cost and an analysis 
cost associated with model confirmation. This cost is to be compared with 
the risk resulting from the use of an unconfirmed model. 

2. If confirmation is to be meaningful: 
(a) rigorous statistical tests must be applied; and 
(b) calibration-independent data are needed. 

3. A number of plausible candidate models (or model sub-routines) should 
undergo confirmation. Comparison of the performance of the candidates 
aids the modeler in the determination of the degree of confirmation. 

Finally, it must be recognized that the proposed confirmation criteria can 
rarely be applied in practice to the extent outlined in this paper. This 
realization does not reduce the importance of these criteria. Rather, a 
confirmation goal has been proposed, and the modeler may assess the extent 
of achievement of this goal. This degree of confirmation, estimated in terms 
of test rigor, test success, and data set independence, represents a measure of 
confidence to be assigned to the model as a predictive tool. 
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