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Abstract—A new cubic equation of state for pure fluids is presented in this work. The new equation requires the
critical temperature and pressure, as well as two additional parameters to characterize each particular fluid. These
parameters have been evaluated by minimizing deviations in saturated liquid densities while simultaneously
satisfying the equality of fugacities along the saturation curve. Thus, good predictions of volumetric properties in
the liquid region are obtained, while accuracy in vapour-liquid equilibrium calculations is maintained. Parameters
for polar as well as nonpolar fluids are presented in this paper. In the case of nonpolar fluids, the two parameters
required can be correlated with the acentric factor. No such relationship with independently measured quantities
could be found for polar fluids. It is shown that the new equation reproduces many of the good features of the
Soave and Peng-Robinson equations of state for nonpolar fluids, whilst overcoming some of the limitations of
these equations for polar fluids. Applications of the equation of state to the correlation of phase equilibria are
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demonstrated.

INTRODUCTION

Since the time of van der Waals, many equations of state
have been proposed for the representation of the volu-
metric properties of pure liquids, These equations have
ranged in complexity from simple expressions containing
two or three constants to complicated forms containing
more than fifty constants. Although the many-constant
equations have been utilized for precise representation
of volumetric data, they are not generally preferred for
phase equilibuium calculations and in process simulation
studies, partly because they require excessive computer
time and partly because it is difficult to obtain general-
“ized forms of these equations suitable for mixture cal-
culations. In many situations, therefore, the use of sim-
ple cubic equations of state represents a satisfactory
compromise between accuracy and speed of com-
putation.

Probably the most successful cubic equations for
phase equilibuium calculations have been those proposed
by Soave[1] and Peng and Robinson[2]. Both the Soave
(RKS) and the Peng-Robinson (PR) equations assume a
particular (fixed) value of the critical compressibility
factor and, as a result, the predicted densities of the
saturated liquids and the predicted critical volumes differ
considerably from their experimental values (especially
for substances whose critical compressibilities are
significantly different from the values assumed by these
equations). Fuller(3] and, more recently, Schmidt and
Wenzel[4] among others, introduced a substance depen-
dent critical compressibility which allowed them to ac-

* Author to whom correspondence should be addressed.

curately reproduce the experimental saturated liquid
volume at a particular temperature. Schmidt and
Wenzel[4], in particular showed that the optimum value
of this substance dependent critical compressibility was
not, in general, equal to the experimental critical com-
pressibility of the fluid of interest.

The present work is an extension of the works of
Soave, Peng and Robinson and of Schmidt and Wenzel.
The equation of state proposed here uses, in addition to
the critical temperature 7, and critical pressure P,, two
substance dependent parameters [ and F as input
parameters. For non-polar fluids, these parameters can
be related to the acentric factor w, so that with suitable
assumptions, the equation reduces to those of Soave,
Peng and Robinson and Schmidt and Wenzel. The new
equation thus reproduces many of the good features of
these three equations and, in addition, it can be applied
to polar fluids such as water, ammonia and the alcohols.
The extension of the equation to mixtures is also
demonstrated below.

THE NEW EQUATION OF STATE
The equation of state proposed in this work has the
following form:
-RT _ a[T]
P—v—b o(v+ b)Y+ c(v—b) )

where R is the universal gas constant, “a” is a function
of temperature and b and c are constants. The form of
the cubic equation chosen is not new, similar forms
having been chosen earlier by Harmens[5] and
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Mollerup{6] among others. By making certain assump-
tions, two well-known cubic equations of state can be
obtained from eqn (1). When ¢ = b, eqn (1) reduces to
the Peng-Robinson expression and when ¢ =0, it
reduces to the Redlich-Kwong or Soave equations.

Acceptable prediction of both low and high pressure
behavior requires at the very least that the critical com-
pressibility factor implied by the equation of state be
treated as an empirical parameter, different in general
from the experimental value of Z,[7-9]. It is also well-
known that the predicted value of the critical com-
pressibility factor (denoted by £, below) is not an im-
portant indicator of the overall performance of any
equation of state[10]. For these reasons, the new equa-
tion of state was constrained to satisfy the following
conditions:

(), -0 ®
(%), -0 o
Ble-r. @

Instead of letting . have a value equal to the experi-
mental value of the critical compressibility factor, an
arbitrary value was chosen. Thus, . was treated as an
empirical parameter, our treatment so far being identical
to that of Schmidt and Wenzel [4]. It should be noted that
if . =0.3074, egn (1), together with constraints (2) and
(3), reduces to the Peng-Robinson equation. Similarly, if
£.=0.3333, eqn. (1) reduces to the Soave or Redlich-
Kwong equations.
Application of constraints (2-4) to eqn. () yields:

a[T1=Q.(R*T2IP.) a[Tgl )
b = Qu(RTIP) ®
¢ =0:(RT/Pe) M
where
=1-3¢ ®

Q. =302 +3(1-20)0, + 0,7+ 1-3% 9
and (), is the smallest positive root[4] of the cubic:

O+ Q3000 +3020, - 12 =0 (10)
For a[Tr], we chose the same function of reduced
temperature as that used by Soave and Peng and Robin-
son. It is given by:

a=[1+F(1- T")P (1
Both Soave and Peng and Robinsen correlated the slope
F to the acentric factor @ of a substance. Recently,
Grabowski and Daubert[11] found that eqa (11) failed to

give accurate results for hydrogen and they recommend:
a=C,exp(—CTx). (12)

A similar function was recommended by Heyen[12]
a=exp[C1- T (13)

We have used both eqns (13) and eqn (11) in our equation
of state, although it should be noted that eqn (13) con-
tains one more constant than eqn (11). For the 38 sub-
stances studied in this work, we found that eqn (13)
offered no advantages over eqn (11). We therefore
recommend the use of eqn (11), with F being treated as
an empirical parameter. The equation proposed by us
therefore contains two parameters £, and F, in addition to
Te and P,

EVALUATION OF [, AND F

The following trial and error procedure was adopted
for evaluating £, and F. Initially, {, was set equal to
0.307 or 1.1Z. whichever value being closer to the
experimental critical compressibility Z.. Using eqns (8-
10), values of Q,, (1, and (). were then calculated. Using
these values of Q,, (1, and {), a value of ¢ was obtained
at each temperature along the saturation curve such that
the equilibrium condition:

14

was satisfied at each point. (The expression for the
fugacity is given in the Appendix). F was then calculated
by a least squares fit of eqn (11), The following sum was
minimized:

§= 8 {01+ P8 - aumt (15

fi=1-Te"” (16)
Where Ty, is the value of Ty at the ith data point and
Qexp,i 15 the value of ¢ which satisfies eqn (14) at that
point.

The condition for a minimum of eqn (15) leads to a
cubic equation in F which can be solved analytically and
the smallest positive root was taken in the subsequent
calculations. Using the values if Q,, ,, Q. and F,
saturated liquid densities were calculated and compared
with experimental values obtained from the literature,
the average absolute deviation at the chosen value of .
being noted. The value of 7. was then changed by 0.001
and new values of {,, (0, {}. and F were obtained by
solving eqns (8)-(11). The average absolute deviation in
saturated liquid densities was obtained and noted. This
procedure was repeated until a minimum occurred in the
value of the average absolute deviation. After the first
iteration, it became clear whether the value of £, should
be increased or decreased.

The optium values of /, and F correspond to the
minimum deviation in saturated liquid densities and the
equilibrium condition of equality of fugacities. The pro-
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posed equation using optimum values of {, and F is
therefore expected to give good predictions of liquid
phase densities and vapor-tiquid equilibria (Schmidt and
Wenzel adopted a very similar approach, except {.'and
eqn (11) for nonpolar fluids were determined from a
single vapor pressure and density point. They did not
extend their procedure to polar fluids such as water and the
alcohols or to long molecules such as eicosane). Optimum
values of ¢, and F for 38 pure fluids (including polar
substances) are given in Table 1. Experimental saturation
pressures and saturated liquid densities were used to
obtain {. and F. References to all the data used can be
found in Ref. [15].

PURE FLUID CALCULATIONS
The proposed equation of state was used to calculate
densities, vapor pressures, enthalpy departures and
entropy departures of pure fluids. Calculated values were
compared with experimental values (when available) and
with values obtained using other equations of state.

Densities

Saturated liquid and vapor densities for the 38 com-
ponents studied in this work were calculated using the
new equation, the Peng-Robinson equation, the Heyen
equation, the Redlich-Kwong equation and the
BWRS[13] equation. Average absolute deviations in
these properties are given in Tables 2 and 3.

The new equation gives lower average deviations in
both the vapor and liquid phases than the P-R equation.
For polar components and heavy hydrocarbons, the new
equation gave consistently better predictions than the
P-R equation and the R-K eguation. Deviations between
experimental and calculated saturated liquid densities are
plotted against reduced temperature for n-eicosane and
ammonia in Figs. 1 and 2. Except in the region close to
the critical point, the new equation gives accurate pre-
dictions of saturated liquid densities.

Agreement in the critical region (0.9 < T < 1.0) can be
improved if {. is assumed to be a linear function of
temperature in this region. The value of {. changes from
the calculated value {.' to the experimental value Z, as
Tx changes from 09 to 1.0, so that no additional
parameters are required if a linear function of tem-
perature is assumed. Thus, for 0.9 < Tz <1.0

L' = L= WL — Z (TR —09). an
According to this equation, £,'= Z, when Tg = 1.0, so
that the experimental value of the critical compressibility
is reproduced. This resulted in improvement in the
average deviations in saturated liquid densities from
11.56% to 3.04%, although the average absolute deviation
in saturated vapor densities increased from 2.32% to
§.37%. No cubic equation gives accurate predictions of
both these properties in the critical region[4]. Accuracy
in the representation of saturated liquid densities in the

Table 1. Parameters of the new equation of state constants F, C, 5 correspond to egns (11) and (13)

No. Component 4 e F c n
1 Argen 0.328 0.450751 0.524130 C.82527%
2 Nitrogen 0.329 0.516798 0.6735€7 0.805BCS
3 Oxygen 0,327 0.4B87035 0.5u5%390 0,03518¢C
& Methane 0.324 0.u53336 0.52632u C.e0uE70
5 Ethane 0.317 0.5615¢7 0.708265 0.800010
& Ethylene 0.318 0.55U3€9 0.6L223¢ 0.8E89410C
7 Propane 0.317 0.6480u48 0.763276 C.BLGEEE
8 Propylene 0.324 0.661305 0.75073¢ C.838305
9 Acetylene 0.310 0.66L179 0.659607 1.C13775

10 n~Butane D.309 0.87838% 0.83171% C.Blegul

11 i-Butane D.315 0.683133 0.775632 C.8o6128

12 l-Butene 0.31%5 0.696423 0.742573 0.95838%

13 n-FPentane 0,308 0.746:7¢ 0.851204 Q.BB228C

1L i-Pentane 0.314 0.741095 0.85uE07 0.

15 n-Hexane 0.30% 0.801€05 0.868581 G.¢

16 n-Heptane 0.30% 0.86885€ 0.8908%u 0.¢

17 n-Octane 0.301 C.91BSuu 1.0575390 o.

8 ¢ n-Nonane 0.301 0.982750 1.247160 0.7

19 n-Decane 0.297 1.02181¢ 1.29974] C.

20 n-Undecane 0.287 1.080u16 1.29107¢9 C.

21 n-Dodecane 0.284 1.115585 1.8392556 G.

22 a-Tridecane D.28% 1.17949B2 1.319388 0.

23 n-Tetradecans 0.291 1.188785 1.427823 o

24 n-Heptadecane 0.282 1.29705% 1.35u358 0,8356E%

25 n-Octadecane 0.276 1.276058 1.538739 0.791235

26 n-Eicosane 0.277 1.408671 1.741225 0.76525¢8

27 Carbon dioxide 0.309 0.707727 0.8658L7 0.8160B0

28 Carbon monoxide 0.328 0.535060 0.6782€0 0.798145

29 Sulfur-dioxide 0.307 0.75486¢ 0. 87106 CLETLTHS

30 Hydrogen-sulfide 0.320 0.58316% 0.B55553 D.E€£0085

31 Water Q.269 0.6B9B03 0.9874686 ¢, E8C0ZEC

32 Ammonia 0.282 0.627090 1.425580 0.41B73C

33 Benzene 0.310 0.704657 C.BBOE33 0¢.78750C

34 Methanol 0.272 0.972708 0.939465 1.064885

35 Ethanol 0.300 1.230385 1.221152 1.001250

36 Propan-1-cl 0.303 1.241347 1.806248 0.E204ES

37 Butan-1l-ol 0.304 1.199787 3.50381u 0.29B255

38 Pentan-1-ol 0.311 1. 242855 2.814893 0.384015%
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Table 2. Comparison of saturated liquid densities

New EQ.
No. t_ T BWRS
of T e fLTr‘] Hey en  P-R R-K AAT
“omponent Points Range AAD (%) AAD (%) AAD (%)  AAD (%) AAD (%) (%)
irgon 34 0.556-0.9881 u,27 2.u45 1.80 B.72 5.06 -
Jitrogen 32 0.50)-6.883 4,10 2,32 1.20 B8.88 4.7¢6 -
xygen 36 0.530-0.883 4.30 2.37 1.98 8.1¢6 5,74 -
Jethane 32 0.524=-0.876 4.59 3.03 1.52 7.66 5,72 0.5¢C
Zthane 28 0.563-0.982 6.25 3.63 2.85 7.12 13.32 0.0¢
2thylene 24 0.550-0.983 4.82 2.72 1.46 6.07 11.7¢ -
>ropane 33 0.570-0.984 5.58 2.86 1.63 5.98 lu.51 0.2:
>ropylene 27 0.568-0.974 4,35 2.27 5.99 7.17 Q.97 -
Yoetylene 21 0,624-0.972 4,91 1.83 2,40 5,30 24.91 -
1-Butane 28 0.627-0.380 5.57 3.39 2.26 5.61 19.36 Q0.1%
i-Butane 29 0.578-0.980 2.29 2.61 3.82 3.u0 15.64 -
l-Butene 26 ¢.651-0.966 3.80 1.45 1.19 u,52 1£.88 -
n-Pentane 30 0.638-0.981 3,%¢ 3.11 5.22 L.00 20.12 0.0¢
i-Pentane 21 0.579-0.965 4,83 2,24 1,92 5.u43 23.6& -
n-Hexane 32 0.613-0.974 3.11 2.24 0.62 3.22 24,02 .17
n-Heptane 23 0.637-0.987 u, by 2.04 3,23 L.68 25.5¢ 0.1%
a-0¢tane 23 0.586-0.972 3.91 1.34 3.96 6.55 31.u40 -
n-Nonane 27 0.525-0.760 0.53 0.53 - 3.62 - -
a-Decane 27 0.536-0.771 0.62 0.62 - 5.8% -
n-Undecane 27 0.545-0.781 0.63 0.63 - 5.81 - -
o-Dodecane 27 0.576-0.790 0.70 0.70 - 747 - -
n-Tridecane 27 0.563-0.799 0.70 0.70 2.41 6.81 - -
n-Tetradecane 27 0.569-0.806 0.76 0.76 1.11 8.95 - -
n-Heptadecane 27 0.592-0.837 .94 0.94 1.7 14.82 - -
n-Octadecane 27 0.598-0.839 1.07 1.07 - 18.89 - -
n-Eicosane 27 0.615-0.850 1.04 1.04 - 18.u2 - -
Carbon dioxide 4y 0.712-0.987 4, u8 1.78 5.70 5.22 23.00 -
Carbon menoxide 21 0.542-0.960 3.81 2.10 2.70 8.u8 4.97 -
Sulfur dioxide 33 0.593-0.989 4.u46 1.71 1.70 L.u9 35,14 -
Hydrogen sulfide 29 0.564%-0.982 3,47 1.57 0.83 5.84 10.29 -
Water 29 0.5u46-0.978 3.99 1.57 2.69 26,33 6u.88 -
Ammonia 22 0.698-0,986 321 2,44 6.19 15.90 L5.83 -
Benzene 39 0.553-0.988 3.87 1.69 0.77 4,05 20.9% -
Methanol 22 0.568-0.695 0.51 0.51 0,55 20.05 - -
Ethanol 26 0.575-0.719 0.51 0.51 0.%6 y.33 - -
Propan-1-ol 30 0.536-0.726 0.66 0.66 7.09 3,06 - -
Butan-l-e¢l 23 0.609-0.730 0,28 0.28 10,08 2.18 - -
Pentan-1-ol 30 0.542-0,736 0.53 0.53 7.11 1.32 - -
Overall Average (%) 2.94 1.69 2.98 7,75 20.07
Table 3. Comparison of saturated vapor densities
New EQ.
* '
Cc - ;c x:c- f[TrJ Heyen F-R R-X BWRS
Component AAD (%)  AAD (%) AAD (%) AAD (%) AAD (%) ARD (%)
Argon 0.3 1.15 4,32 1.42 C.33 -
Nitrogen 0.55 1.32 3.32 1.20 0.75 -
Oxygen 0.70 1.23 3.58 0.91 D. 34 -
Methane g.ge 1.50 4.20 1.66 0.51 0.58
Ethane Q.98 2.12 k.03 1.38 1.97 0.20
Ethylene Q.71 1.60 3.72 1.0u 1.70 -
Propane 0.80 2,22 4,03 1.23 2.91 0.22
Propylene 2.43 2.71 3.10 1.68 3.91 -
Acetylene 2.0¢ 2.11 2.86 1.87 5.05 -
n-Butane 0.73 1.82 3.98 0.78 3.23 Q.15
i-Butane 1.30 2.30 4.39 1.73 1.30 -
1-Butene l.s1 2.31 L.B4 1.71 2.65 -
n-Pentane 0.59 1.78 5.27 0.62 3.30 Q.14
i-Pentane 0.88 1.99 4.0l 1.13 1.97 -
n-Hexane 0.87 1.70 3.u8 0.88 4.10 -
n-Heptane C.&7 1.32 3.54 0.63 3.54 -
n-Octane 2..¢ 3.08 3.8% 2.86 4.62 -
Carbon dioxide G.7 2.13 £.20 2.00 4.53 -
Carbor. monoxide 3.%3 3,24 3.39 3.45 4.1u4 -
Sulfur diexide 1.0 2.00 3.70 1.11 5.11 -
Hydrogen sulfide 2.58 3.38 6.37 3,38 1.27 -
Water 1.2¢ 2.36 4.u7 3,78 7.11 -
Ammonia L,oug .00 3.64 €6.81 11.31 -
Benzere 2.18 3.27 4.80 2.23 4,21 -
Overall -
averape (%) 1,48 2.1u 414 1.89 3.35 0.26
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Fig. 1. Comparisons of calculated and experimental saturated
liquid densities of r-eicosane.
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Fig. 2. Comparisons of calculated and experimental saturated
liquid densities of ammeonia.

critical region always leads to a loss of accuracy in the
representation of saturated vapor densities and vice
versa. Nevertheless, the use of eqn (17), represents a
good compromise,

Overall, the eleven constant BWRS equation gives
excellent predictions of both saturated liquid and vapor
densities. However, the use of this equation is restricted
to normal alkanes from methane to n-octane, for which
the equation of state constants have been reported[12].

Densities in regions other than the saturation region
have also been calculated. Overall, predictions using the
new equation are better than those obtained using other
cubic equations of state (Average deviations of 2.4%
compared with 3.3% for the PR equation for 3175 data
points including available data for methane through n-
decane).

Vapor pressures
The vapor pressures of pure fluids were calculated by
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the simultaneous solution of the following equations:
Pt=p¥=p (18)
f-=f 19

where L and V refer to the liquid and vapor, respectively.
Except for n-propanol, n-butanol and n-pentanol, the
overall average deviation between calculated and
experimental vapor pressure for the 38 substances was
found to be 0.86%. For the three alcohols, the deviations
were of the order of 5%.

Enthalpy and entropy departures

Enthalpy and entropy departures for saturated liquids
calculated from the new equation were compared with
values calculated using the BWRS equation for 8 light
hydrocarbons. The BWRS equation predicts the enthalpy
and entropy departures for these fluids within experi-
mental error (deviations less than 1%). Values from the
new equation compare very favorably with the BWRS
equation for these fluids, as shown in Table 4.

GENERALIZATION OF EQUATION OF STATE
PARAMETERS £, AND F
One way of extending the equation of state to new
substances is to generalize the equation of state con-
stants. In erder to apply the new equation of state to
substances not studied in this work, the values of the
parameters {. and F have been correlated with the
acentric factor. The resulting correlations are given by

F =0452413 4+ 1309820 —0.295937w?
£ =0.329032 - 0.076799w +0.0211947w”.

20)
21n

However, as expected, the generalized equations apply
to nonpolar substances only (3 parameter CSP). The
values of F and £, for water, ammonia and the alcohols
did not lie on the curves predicted by eqns (20) and (21).
The loss in accuracy in predicting compressibilities of
nonpolar fluids using the generalized constants was less
than 1% and, often, less than 0.1%.

USE OF AN EXPONENTIAL FUNCTION FOR «

It has been pointed out by many authors{11-14] that
the temperature function for a used by Soave and Peng
and Robinson does not reproduce the correct tem-
perature behavior of the constant “a” at high tem-
peratures. This is mainly because the function becomes
zero at finite Tx and then starts to rise with temperature.
The approach of real gas behavior to that of an ideal gas
at high temperatures requires that a—=0 as Tr—x.
Heyen therefore proposed eqn (13) which has the
required characteristics but contains one additional con-
stant. Constants C and n have been evaluated for the 38
substances and are given in Table 1. Both egn (11) and
eqn (13) are plotted for methane and n-decane in Figs. 3
and 4. The functions are almost identical upto Tr =12
for methane and T = 2.0 for n-decane and yield almost
identical values of densities upto these conditions. Since
higher temperatures are unlikely to be encountered for
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Table 4 Enthalpy and entropy departures of saturated liquid

No. AH AS
of T Ranpe New Fq. New Eq.
Substance Points r AAD (%) AAD (%)
Methane 32 .52u4-0.976 2.11 1.07
Ethane 28 .563-0,982 2.53 1.16
Propane 33 2 570-0.984 ?2.52 1.21
n-Butane 28 .627-0.980 2.41 1.2u
n-Pentane 30 .638-0,981 1.70 0.92
n-Hexanc 32 L613-0.974 2.55 1.u4
n-Heptane 23 .637-0,987 1.53 0.85
n-Octane 24 .586-0.972 1.13 0.79
Overall average (%) 2.086 1.09
these substances (especially in phase equilibrium cal-
144 ——Ean ‘(”)) culations), it appears that the use of the exponential
-~ EQN.(13

T T T T T

20

REDUCED TBMPERATURE

Fig. 3. « as a function of the reduced temperature for methane.

—gaN. (1)
16) - -~ EGN.(13)

ﬁ—é — T

g 10
REDUCED TEMPERATURE

Fig. 4. a as a function of the reduced temperature for n-decane.

function for & does not lead to much improvement {except
for substances such as hydrogen which are normally at
high reduced temperatures).

COMMENTS ON THE VALUES OF ¢, AND F

The new equation of state proposed in this work
requires two parameters . and F, m addition to 7. and
P., for each pure substance. For nonpolar substances,
however, {. and F can be correlated with the acentric
factor w, so that only three constants (7T, P, and w) are
needed for such fluids.

For all substances considered, {. was found to be
greater than Z. This was also found to be true by
Schmidt and Wenzel using a similar equation of state.
For light nonpolar substance (w =0, ¢, = 0.329), the new
equation is comparable to the S-R-K equation and for
components whose acentric factors are close to 0.3 (0 =
0.3, {. =0.307) the proposed equation is comparable to
the P-R equation. Thus, characteristics of both the SRK
and PR equation are implicit in the new equation.
However, the application of the new equation extends to
heavy hydrocarbons (upto n-eicosane) and polar sub-
stances.

EXTENSION TO MIXTURES

Equation (1) can be used for the calculation of mixture
properties if the constants ab,c are replaced by the
mixture constants dp, by, ¢, as follows:

a4, = Z 2 XiX;;; (22)
b = 2 xib; 23)
Cm = D, Xt (249)
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The choice of this model is completely arbitrary, the only
justification being the success with which analogous
equations have been used with other equations of state
such as the Soave and the Peng-Robinson equations. It is
also possible to reduce eqn (1)} to the Soave and the
Peng-Robinson equation by setting ¢,, =0 and ¢,, = by,
respectively as in the case of pure fluids. This would not
be possible if a different mixture model (in particular, a
different combining rule for ¢,,) is used.

The cross-interaction term a; in eqn (22) evaluated
using the following mixing rule:

a; = &auay)'"” (25)
where &; is a binary interaction coefficient which must be
evaluated from experimental data. Compared with
vapor-liquid equilibrium (VLE) predictions, the sen-
sitivity of predicted bulk mixture properties such as
density and enthalpy to the value of &; is small. There-
fore it is common practice to use binary VLE data for
the determination of & values. In principle, no further
information is required to predict the properties of ter-
nary and higher systems.

In this study, the optimum value of &; for each binary
pair was obtained by minimizing the absolute average
deviation in the bubble point pressures at selected tem-
peratures. The determination of the bubble point pres-
sure or vapor-liquid equilibrium in general, requires that
the following equalities be satisfied:

Y =fl(i=12,....m) (26)
where f; denotes the fugacity of component i and the
superseripts V and L denote the vapour and liquid
phases respectively. An equation for the fugacity of
component / is given in the Appendix.

EVALUATION OF THE BINARY INTERACTION COEFFICIENT

A number of criteria may be chosen for evaluating the
optimum value of &; Among these criteria are [11]:

(1) minimization of deviations in bubble point pres-
sures;

(2) minimization of deviations in flash volumes.

Grabowski and Daubert[11] used both criteria with the
Soave equation and found that convergence problems
were encountered with the second criterion for close-
boiling mixtures because the correct value of & was
needed in advance to “find” the two phase region. The
application of the first criterion, on the other hand,
produced no convergence problems and led to good
results for both flash and bubble point calculations.

In this study, the optimum value of & was obtained by
minimizing the absolute average deviation in the pressure
at a selected temperature for each binary mixture. The
absolute average deviation is defined as:

m

ape=1%

1

l—ﬁ

x100.

exp

Generally, £; is assumed to be independent of tem-
perature, pressure, density and composition[11, 16]. In

practice, however, this is not strictly true and &; should
be determined at conditions of interest. In our work,
values of &; were obtained at a single temperature for
each binary pair—the temperature being carefully selec-
ted to lie in the middle range of reported experimental
data. It should be added that the temperature depen-
dence of & was found to be small, and the optimum
values of & may be used to predict VLE at other
temperatures.

VLE RESULTS

Optimum value of &; had been evaluated using the
Soave, the Peng-Robinson and the proposed equation
and are given Table 5. The three equations were used for
VLE calculations for 32 binary systems containing the
light hydrocarbons, carbon dioxide and hydrogen sulfide.
The new equation was also used for calculations involv-
ing an additional 20 systems containing the heavy
hydrocarbons, water and the alcohols. The results are
shown in Table 6,

Our results for the different groups of binary systems
studied in this work can be summarized as follows:

(a) Light hydrocarbon binaries (upto n-decane)

In general, the three equations of state correlate data
for these systems equally well. Moreover, except for
binaries containing methane, values of £; for these sys-
tems were found to be close to 1.0. This is true for all
three equations and supports Soave’s conclusion that no
binary interaction coefficients are needed for VLE cal-
culations involving light hydrocarbon binaries not con-
taining methane. For systems containing methane, the
new equation gives &; values which are closer to unity
than those obtained using the Soave or Reng-Robinson
equations. In general, the Soave and Peng-Robinson
equations give very similar values of &; for such sys-
tems.

(b) CO,-light hydrocarbon, and H,S-light hydrocarbon
binaries

The optimum values of &; obtained from the three
equations are slightly different from each other, but are
usually in the range 0.84-0.90 for systems containing CO,
and 0.91-1.0 for systems containing H,S.

(c) Light hydrocarbon-heavy hydrocarbon binaries

These systems include binaries such as methane-n-
eicosane, ethane-n-eicosane etc. Only the new equation
gave acceptable deviations in bubble point pressures for
these systems. Most of the optimum &; values were
found to lie in the range 1.0-1.08.

(d) Alcohol-water hinaries

Only the new equation of state was used to calculate
&; for these binaries. The methanol-water system could
be correlated with an optimum value of &; of 1.083 and
the ethanol-water binary could be correlated with a value
of 1.075.

Typical predicted P vs x curves for CO,-n-butane,
methane-n-gicosane and water-methanol are shown in
Figs. 5-7. Predicted P vs x curves for light hydrocarbon
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Table 5. Optimum values of & and bubble point correlation using three different equations of state

No. B
of Temperature Optimum £; . FQ, (1) PR S=R=K
No. System Points K BEQ. ( 1) P-R 5-R-K AP (%) AYI AP{2) Avl AP(X) Avl
1. Methane-Ethane 6 250.0 0.935 0.98% 0.99] 0.5% 0.0039 0.45  0.0046 0.65 0.0018
2. Methane-n-Butane B 211.0 1.008 0.986 1.000 8.65 0.0190 8.11 0.0i89 8.30 0.0195
3. Methane-i-Butane 7 311.0 0.986 0.976 0.977 0.43 0.0067 0.63 0.0117 0.58 0.0149
4, Methane-n-Pentane 9 273.2 ©.980 ©.959 0,964 6.16 0.0015 4.97  0.0025 5.41 0. 0021
S. Methane-n-Hexane 9 373.2 0.930 0.954% 0.952 0.88 0.0150 0,56 D0,0149 0.47 0.0073
6. Ethane-Propane 7 277.6 0.996 0.984 0,998 0.42 0.0019 0.46 0.0023 0.53 0. 0020
7. Ethane-Propylene 6 283.2 0.994 0.992 0.997 0.3% 0.00186 0.24 0.0026 0.44 0. 0040
8. Ethane-n-Butane 9 310.4 0.993  0.994 0,997 2.20 0.0093 2.19  0.0093 2.44 0.0093
9. Lthape-n-Pentane 10 311.0 1.00]1 0,994 0,938 1.02 0.0040 1.02 0.003% 1.12 0.0044
10. Ethane-n-Heptane 5 86,5 1.015 0.999 0.9599 1.31 0.0038 1.15 0.0040 1,21 0.0015
11. Ethylene-Methane 9 150.¢0 0.974 0.971 0.973 1,36 0.0047 0.97 0,0060 1,26 0.0040
12. Ethylene-Ethane 9 255.4 0.992 0.990 (.99 0,22 0. 0056 0.18 0,001 0.3} 0.0053
13. Lthylene-Propane 10 273.1 0.981  0.979 0.982 0.21 0.0020 0.32  0,001&4 0.18 0.0015
1u. Ethylene-n-Butane 7 322.0 0.938 0.932 0.930 1.37 0.0237 1.41 0.0241 1.36 0.0184
15. Propane- i-Butane 10 299.8 0.987 0.987 0.9uK 0.90 0.0075 0.96 0.0072 0.60 0.0048
16. Propane-n-Pentane 11 3561.0 0.987 0,976 0,979 0.46 0.0141 0.49  0.0144 0,51 0.0129
17. Propane- {-Pentane 10 373.2 0.979 0.978 0.980 0.63 0,0166 0.60 0,0168 0.80 0.0166
18. Propylene-Propane 9 311.0 0.970 0.993 1.000 1.51 0.0132 0.25 0.0029 0.41 0.0034
19. Propylene-1-Butene ? 294, 3 1.002 0.998 1.000 0.44 0.0021 0.18 0.0013 0.43 0.0017
20. n-Butrane-n-Decane L] 377.6 0.995 0.986 0.988 1.24 0. 0007 0.94 0.0070 1.86 0.0006
2. 1-Butene-n-Butane 9 411.0 1.003 1.00¢ 1.000 0.14 0.0161 0.39 0.0013 0.76 0.0013
22, C02‘Hethane 8 2u1.5 ©. 907 0.902 0.839 3.26 0.0145 3.19 0.0429 3.27 0.0118
23, COQVEthane 10 253.0 0.872 0.870 0.870 1.15 0. 0066 1.17 0.0070 1.18 0.0074
24. C0,-Lthylene 10 231.6 0.943  0.942 0.9u4 0.39 0.0107 0.50  0.0122 0.50 0.0095
25. Coz-Prapane 9 284.3 0.869 0.874 0.868 0.67 0.0048 0.70 0.0050 (.55 0.0045
26. Co?-n<Eutane 10 273.2 0.891 0.875 0-8R6 1.97 0.008¢4 3.81 0.0082 3.19 0.0085
27. COQ—i~Eutanc 9 311.0 a.873 0.884  0.874 1.23 0.0036 111 0.0038 0.9% 0.003%
28, C0,-n-Pentane 9 377.6 0.B6S 0.866 0.8u9 2.64 0.0270 2.70 0.0271 2.43 0.0242
29. H, g—Methane B 277.6 0.970 0.927 0.931 2,76 0.0138 3,00 0.0122 3.51 0.0129
3o0. H2S-Ethane 9 283.2 0.911 0.310 0.909 0.e7 0. 0099 0,78 0.0102 0.7¢6 0.0095
31. HoS-i-Butane 8 3ub.u 0.954  0.852 0.950 0.99 0. 0205 2.90  0.0210 0.97 0.0210
32. H?S-n-Heptane 9 311.0 0.947 0.936 0.928 3.27 0.001% 2.92 0.0020 3.27 0.0018
PO T S G R S
1 n lealc’ "lexp
tor data references, see vef. [15)

Yl refers to composition of hydrucarbon

Table 6. Values of the deviations in bubble point pressures and vapour phase mode fractions with & = 1.0 and
&i = &iope from equation (1)

:;- Temperature zij e Eii cij°Pt

No. System Points K o (D) AY1 Kiiopt 8P (%) AYL

1. Methane-propane 5 277.6 ?.65 0.0059 0.989 0.68 0.00u8
2. Methane-benzene 7 338.8 2.45  0.0064 0.991 0.92 0.0054
3. Methane-n-Eicosane S 313.2 29.26  0.0000 1.080 1.09 0.0000
4. Ethane-i-butane 8 311.8 3,57 0.0072 1.018 1.62 0.0038
S. Ethane-n-decane 8 377.6 4,81 0.0u55 1.019 0.60 0.0426
6. Ethane-n-dodecane 9 323.2 5.58  0.0009 1.016 2.26 0.0008
7. Ethane-n-Eicosane 7 333.2 41.01  0.0002 1.070 a.15 0.0000
8. Ethylene-n-dodecane 8 29B.2 2.97 0.0002 1.006 1.10 0.0000
9. Propane-be rzene 10 377.6 3.54 0.0101 0.988 1.86 0.0086
10. Propane-n-decane 7 377.6 8.63 0.0008 1.024 0.79 0.0004
11. Nitrogen-methane 10 155.4 4,22 0.0299 0.968 0.71 0.0217
12. Nitpogen-propane 6 298.2 11.00 0.0269 0.976 3.80 0.0161
13. Nitrogen-n-butane 6 3li.o0 310.83 0.01u6 0.969 a.73 0.0151
14, Nitrogen-n-heptane 5 352.6 17.4 0.0032 0.911 3.30 0.0018B
15. st-n-heptane 5 352.6 10.97 0.0027 0.956 3.ul 0.0018
16. H2S-n-decane 7 I, 3 0.62 0.0004 0,999 0.53 0.0004
17. C0?~n-decanc 7 awun,3 24, U 0.0003 0.903 2.2 n.0qa20
18 CQ-propane 8 273.2 7.11 4.0170 0,979 6.11 0.0151
19. Methanol-water 10 373.2 27.45  0.0750 1.083 1.75 0.,0081
20. Ethancl-water 10 u23.2 23.75 0.0R47 1.075 2.04 0.0213
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systems using the Soave, the Peng—Robinson and the
new equation were identical. Multicomponent predic-
tions were also found to be comparable for systems of
light hydrocarbons.

DENSITIES

Densities of five binary mixtures were calculated and
the results are shown in Table 7. Values of &; were not
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Vapor-liquid equilibria in the Co,-n-butane system at
273.2K.
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Fig. 6. Vapor-liquid equilibria in the Methane-n-eicosane system at
313.2K.
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Fig. 7. Vapor-liquid equilibria in the Methanol-water system at

373.2K.

used. Average deviations between calculated and
experimental densities were of the order of 2% and
compare favorably with deviations obtained using the
Chaudron equation(17] with six constants per com-
ponent. A major advantage of using the new equation is
that it gives accurate predictions of saturated ligquid
volumes as well as other properties of the equilibrium
phases. Earlier, we showed that the new equation is
superior to the Soave and Peng-Robinson equations in
the representation of the saturated liquid densities of
pure substances. We found that this improvement
extends to mixture saturated liquid densities as well.
Results for the n-butane-n-decane system are shown in
Fig. 8. As can be seen, the new equation is superior to
the Peng-Robinson equation.

CONCLUSION

This work demonstrates that the new equation of state
is capable of accurate and consistent predictions of the
thermodynamic properties of mixtures. The most inter-
esting feature of the new equation is its applicability to
mixtures containing heavy hydrocarbons and polar sub-
stances, and the fact that it is cubic in volume and thus
easy to handle. It can reproduce with sufficient accuracy
the liquid and vapour phase densities and vield very
accurate VLE predictions. Comparisons have shown that

Table 7. Comparison of density predictions of binary mixtures

No. Temp. Pressure

. of Range Range X, K. (1) C-H
Mixture Points ("R} (psia) AAD (V) AD (V)
Ethane- propene 174 470-858  15-10000 0.4958 2.%7 1.88
Ethane- n-pentane 152 498-820 200-10000 0.4000 3.72 3.13
Propane-n-pentare LE 619-800  20-500 {¢.248D 0.67 1.27
Propane-n-pentane 28 619-709  20-500 0.6511 0.66 0.37
Propenc-propane 268 470-858  15-10000 0.6285 1.92 1.79
st—n-pentane 123 498-800 200-10000 0.6123 2.95 2.01
OVERALL AVERACTE = 2.05 1.74

C-H Chaudron et al, [6] equation with fitted constants

CES Vol. 37, No. 3—1
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Fig. 8. Comparison of saturated liquid volumes of n-butane-n-decane mixtures at 377.6K.

for VLE calculations, the new equation is as good as the
Soave and Peng-Robinson equations for mixtures of
light hydrocarbons. For systems containing heavy
hydrocarbons and polar substances, the new equation is
superior to the Soave and Peng-Robinson equations.
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NOTATION

Constants in eqn (1)
=bPJRT,

constant in eqns (12 and (13)
fugacity

parameter required in eqn (1)
number of components
number of moles

pressure

gas constant

temperature

entropy

molar volume

total volume

mole fraction
compressibility = Po/RT

N <c ww~Smvuvs ¥Fgwsmo

Symbols
« temperature function, eqn (11)
B temperature function, eqn (16)
{c 'value of P.v/RT. calculated from egn (1)
parameter required in eqn (1)
¢ binary interaction coefficient
constants in eqns (5-7)

Subscripts

¢ ctitical value e
calc calculated value
exp experimental value

i,j component i f

j ith dafa point

R reduced value
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APPENDIX

Derived properties using the new equation of siate
Fugacity.

1n(f) Z-1-In(Z-B)+ s Z+M)

2RTN (Z+ Q

B=bPIRT

M_(b_)rﬁ"N);T

- (b+C)2 -1/2
N= [bc o ]
o-(3en)
Enthalpy departure.

¢(H—Hn)=RT(Z—1)—(Tj_;...a) [Elﬁl“ (%)]

@ = conversion factor; ¢, M, N are given above

Entropy departure.
daf 1 Z+
- m"m"(z B} 7:[21\7‘“(2+

@ = conversion factor; Q, M, N are given above

)

Fugacity of component i in a mixture.
Imn(f‘ )=-RTn@-B)+RT(;%; - -y, (g*j)

2‘2((3:32) 8 €106+ )+ b e +b)

(G2 o)

+

b+c
Q=vt—~
B=bPJRT,

B (b+c)?
d—\/bc+————4 .



