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Abstract-A new cubic equation of state for pure fluids is presented in this work. The new equation requires the 
critical temperature and pressure, as well as two additional parameters to characterize each particular fluid. These 
parameters have been evaluated by minimizing deviations in saturated liquid densities while simultaneously 
satisfying the equality of fugacities along the saturation curve. Thus, good predictions of volumetric properties in 
the liquid region are obtained, while accuracy in vapour-liquid equilibrium calculations is maintained. Parameters 
for polar as well as nonpolar fluids are presented in this paper. In the case of nonpolar fluids, the two parameters 
required can be correlated with the acentric factor. No such relationship with independently measured quantities 
could be found for polar fluids. It is shown that the new equation reproduces many of the good features of the 
Soave and Peng-Robinson equations of state for nonpolar fluids, whilst overcoming some of the limitations of 
these equations for polar fluids. Applications of the equation of state to the correlation of phase equilibria are 
demonstrated. 

INTRODUCTION 

Since the time of van der Waals, many equations of state 
have been proposed for the representation of the volu- 

metric properties of pure liquids. These equations have 
ranged in complexity from simple expressions containing 
two or three constants to complicated forms containing 
more than fifty constants. Although the many-constant 
equations have been utilized for precise representation 
of volumetric data, they are not generally preferred far 
phase equilibuium calculations and in process simulation 
studies, partly because they require excessive computer 
time and partly because it is difficult to obtain general- 
ized forms of these equations suitable for mixture cal- 
culations. In many situations, therefore, the use of sim- 
ple cubic equations of state represents a satisfactory 
compromise between accuracy and speed of com- 
putation. 

Probably the most successful cubic equations for 
phase equilibuium calculations have been those proposed 
by Soave[l] and Peng and Robinson[2]. Both the Soave 
(RKS) and the Peng-Robinson (PR) equations assume a 
particular (fixed) value of the critical compressibility 
factor and, as a result, the predicted densities of the 
saturated liquids and the predicted critical volumes differ 
considerably from their experimental values (especially 
for substances whose critical compressibilities are 
significantly different from the values assumed by these 
equations). Fuller131 and, more recently, Schmidt and 
Wenzel[4] among others, introduced a substance depen- 
dent critical compressibility which allowed them to ac- 
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curately reproduce the experimental saturated liquid 
volume at a particular temperature. Schmidt and 
Wenzel(41, in particular showed that the optimum value 
of this substance dependent critical compressibility was 
not, in general, equal to the experimental critical com- 
pressibility of the fluid of interest. 

The present work is an extension of the works of 
Soave, Peng and Robinson and of Schmidt and Wenzel. 
The equation of state proposed here uses, in addition to 
the critical temperature T, and critical pressure PC, two 
substance dependent parameters J and F as input 
parameters. For non-polar fluids, these parameters can 
be related to the acentric factor o, so that with suitable 
assumptions, the equation reduces to those of Soave, 
Peng and Robinson and Schmidt and Wenzel. The new 
equation thus reproduces many of the good features of 
these three equations and, in addition, it can be applied 
to polar fluids such as water, ammonia and the alcohols. 
The extension of the equation to mixtures is also 
demonstrated below. 

THENEWEQUATlONOFSI'ATE 
The equation of state proposed in this work has the 

following form: 

p=RT_ U[U 
u-6 U(u+b)tC(u-6) (1) 

where R is the universal gas constant, “II” is a function 
of temperature and b and c are constants. The form of 
the cubic equation chosen is not new, similar forms 
having been chosen earlier by Harmens[5] and 
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Mollerup[6] among others. By making certain assump- 
tions, two well-known cubic equations of state can be 
obtained from eqn (1). When c = b, eqn (1) reduces to 
the Peng-Robinson expression and when c =O, it 
reduces to the Redlich-Kwong or Soave equations. 

Acceptable prediction of both low and high pressure 
behavior requires at the very least that the critical com- 
pressibility factor implied by the equation of state be 
treated as an empirical parameter, different in general 
from the experimental value of Z,[7-91. It is also well- 
known that the predicted value of the critical com- 
pressibility factor (denoted by lc below) is not an im- 
portant indicator of the overall performance of any 
equation of state[lOl. For these reasons, the new equa- 
tion of state was constrained to satisfy the following 
conditions: 

JP ( > av 1; 

=o 

C?P ( ) TP To 
=o 

p,v,_ 
RT,- L 

(3) 

(4) 

Instead of letting & have a value equal to the experi- 
mental value of the critical compressibility factor, an 
arbitrary value was chosen. Thus, & was treated as an 
empirical parameter, our treatment so far being identical 
to that of Schmidt and Wenzel[4]. It should be noted that 
if & = 0.3074, eqn (1). together with constraints (2) and 
(3), reduces to the Peng-Robinson equation, Similarly, if 
[= = 0.3333, eqn. (1) reduces to the Soave or Redlich- 
Kwong equations. 

Application of constraints (2-4) to eqn. (I) yields: 

aVl =fI,(R’T,2/P,) dTR1 (3 

b = &(RT,/PJ (6) 

c = D,(RTc/Pc) (71 

where 
&=I-3j, (8) 

n, =3{;t3(1-2yC)n,tn,‘t1-3& (9) 

and 0, is the smallest positive root[4] of the cubic: 

ah’ •t (2 - 3[c)&2 t 35,2& - k’ = 0 (10) 

For a[TR], we chose the same function of reduced 
temperature as that used by Soave and Peng and Robin- 
son. It is given by: 

u = [I + F( 1 - T,“2)]2. (111 

Both Soave and Peng and Robinson correlated the slope 
F to the acentric factor o of a substance. Recently, 
Grahowski and Daubert[ll] found that eqd (II) failed to 

give accurate results for hydrogen and they recommend: 

(2 = C, exp (-CzTR). (12) 

A similar function was recommended by Heyen[ 121 

a =exp[C(l -TR”)]. (13) 

We have used both eqns (13) and eqn (11) in our equation 
of state, although it should be noted that eqn (13) con- 
tains one more constant than eqn (11). For the 38 sub- 
stances studied in this work, we found that eqn (13) 
offered no advantages over eqn (11). We therefore 
recommend the use of eqn (ll), with F being treated as 
an empirical parameter. The equation proposed by us 
therefore contains two parameters & and F, in addition to 
T, and PC. 

EVALUATION OF &AND F 

The following trial and error procedure was adopted 
for evaluating & and F. Initially, & was set equal to 
0.307 or l.lZc, whichever value being closer to the 
experimenta critical compressibility Z,. Using eqns (8- 
lo), values of a., &., and R, were then calculated. Using 
these values of !‘I,, f& and n,, a value of a was obtained 
at each temperature along the saturation curve such that 
the equilibrium condition: 

fL”=f” (14) 

was satisfied at each point. (The expression for the 
fugacity is given in the Appendix). F was then calculated 
by a least squares fit of eqn (1 I). The following sum was 
minimized: 

pi = I - TR,i”2 (16) 

Where TR.i is the value of TR at the ith data point and 
(I,,~,; is the value of a which satisfies eqn (14) at that 
point. 

The condition for a minimum of eqn (15) leads to a 
cubic equation in F which can be solved analytically and 
the smallest positive root was taken in the subsequent 
calculations. Using the values if R,, fib, fl, and F, 
saturated liquid densities were calculated and compared 
with experimental values obtained from the literature, 
the average absolute deviation at the chosen value of L 
being noted. The value of & was then changed by 0.001 
and new values of O,, fib, & and F were obtained by 
solving eqns (8)-(11). The average absolute deviation in 
saturated liquid densities was obtained and noted. This 
procedure was repeated until a minimum occurred in the 
value of the average absolute deviation. After the first 
iteration, it became clear whether the value of & should 
be increased or decreased. 

The optium values of & and F correspond to the 
minimum deviation in saturated liquid densities and the 
equilibrium condition of equality of fugacities. The pro- 
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The new equation gives lower average deviations in posed equation using optimum values of & and F is 
therefore expected to give good predictions of liquid 
phase densities and vapor-Iiquid equilibria (Schmidt and 
Wenzel adopted a very similar approach, except Z;*and 
eqn (11) for nonpolar fluids were determined from a 
single vapor pressure and density point. They did not 
extend their procedure to polar fluids such as water and the 
alcohols or to long molecules such as eicosane). Optimum 
values of & and F for 38 pure fluids (including polar 
substances) are given in Table 1. Experimental saturation 
pressures and saturated liquid densities were used to 
obtain & and F. References to all the data used can be 
found in Ref. [IS]. 

both the vapor and liquid phases than the P-R equation. 
For polar components and heavy hydrocarbons, the new 
equation gave consistently better predictions than the 
P-R equation and the R-K equation. Deviations between 
experimental and calculated saturated liquid densities are 
plotted against reduced temperature for n-eicosane and 
ammonia in Figs. I and 2. Except in the region close to 
the critical point, the new equation gives accurate pre- 
dictions of saturated liquid densities. 

Agreement in the critical region (0.9 < TR < 1.0) can be 
improved if & is assumed to be a linear function of 
temperature in this region. The value of & changes from 
the calculated value &’ to the experimental value Z, as 
TR changes from 0.9 to 1.0, so that no additional 
parameters ate required if a linear function of tem- 
perature is assumed. Thus, for 0.9 < TR < 1.0 

PUBE FLUtD CALCULATIONS 

The proposed equation of state was used to calculate 
densities, vapor pressures, enthalpy departures and 
entropy departures of pure fluids. Calculated values were 
compared with experimental values (when available) and 
with values obtained using other equations of state. 

Densities 
Saturated liquid and vapor densities for the 38 com- 

ponents studied in this work were calculated using the 
new equation, the Peng-Robinson equation, the Heyen 
equation, the Redlich-Kwong equation and the 
BWRS 114 equation. Average absolute deviations in 
these properties are given in Tables 2 and 3. 

ie’=k-IO(L-Z,)(TR-0.9). (17) 

According to this equation. &’ = Z, when TR = 1.0, so 
that the experimental value of the critical compressibility 
is reproduced. This resulted in improvement in the 
average deviations in saturated liquid densities from 
11.56% to 3&i%, although the average absolute deviation 
in saturated vapor densities increased from 2.32% to 
5.37%. No cubic equation gives accurate predictions of 
both these properties in the critical region[41. Accuracy 
in the representation of saturated liquid densities in the 

Table 1, Parameters of the new equation of state constants F, C, 1 correspond to eqns (11) and (13) 

lb 
17 
16 
19 
20 
21 
22 
23 
211 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

38 

Nikgen 
oxygen 
Merhane 
Lrhane 
Ethvlene 

Carbon dioxide 
Carbon monoxide 
Sulfur-dioxide 
nydrogen-sulfid‘ 
Wafer 
Ammonia 
Benzene 
Methanol 

0.328 0.450751 
0.329 0.516798 
0.327 O.L167035 
0.324 0.455336 
0.317 0.561567 
0.318 0.55U369 
0.317 0.64804Q 
0.324 0.6613C!5 
Cl.310 O.bb11179 
0.309 0.67838? 
0.315 0.683133 
0.315 O.bq6423 
0.306 0.7't6~i70 
0.314 0.741095 
0.305 0.801E05 
0.30: 0.86@858 
0.301 0.9185U 
O.3Cl 0.982750 
Cl.297 1.021910 
0.297 1.OBWlb 
0.294 1.115585 
0.29' I.179982 
0.291 1.188785 
0.283 1.297054 
0.276 1.276058 
0.277 1."09b71 
0.309 0.707727 
0.328 0.53506C 
0.307 0.754966 
0.320 0.583165 
0.2bO 0.689803 
0.282 0.62709P 
0.310 Cl.704657 
0.272 0.972708 
0.3po 1.230395 
0.303 1.241347 
Cl.304 1:1997e7 
0.311 1.242855 

0.524130 
0.673567 
0.5ri5990 
0.52632” 

0.708265 
0.64223fI 
0.76327b 
0.750730 
O.b59b02 
0.831715 
0.77563: 
0.7112573 
0.851904 
0.854607 

1.2Q9.74: 

l-29107” 
1.339255 
1.31938$ 

1.427823 
1.354358 
1.53673? 
1.741225 
0.865W 
0.678260 
0.8714Pb 
o.es5551 
0.=*7%6 
1.425500 
0.880633 
0.939455 
1.221152 
1.80624s 
3.503ElU 
2.811893 
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Table 2. Comparison of saturated liquid densities 

:omponent 

NO. 
Of 

Points 

Tr 
Range 

&Lane 
:thane 

:thylene 

'r0pa"e 

=ropyle"e 

kG?tyl.?ne 

I-Butane 

i-Butane 
l-B”tell-2 

I-PSlta”e 

i-Pentane 

,vHexane 

n-Heptane 

n-octane 

n-ND"ane 

o-Decane 
"-U"deCa"e 

n-~odecane 

"-Widecane 

n-Tetradecane 

n-Heptadecane 

n-Octadecane 

n-Cicosane 

Carbon dioxide 

Carbon monoxide 

Sulfur dioxide 

Rydrogen sulfide 

water 

Ammonia 
Benzene 

Hethanal 

Ethanol 

Propan-l-01 

Butan-l-al 

Pentan-l-cl 

34 0.556-0.981 

32 0.501-0.983 

36 0.530-0.983 
32 0.524-0.976 

28 0.563-0.982 

24 0.550-0.983 
33 0.570-0.984 

27 0.563-O.Q7& 

21 0.62U-0.972 

28 0.627-0.960 

29 0.578-0.980 

26 0.651-0.966 

30 0.638-0.981 

21 0.579-0.965 

32 0.613-0.97u 

23 0.637-0.987 

23 0.586-0.977 

27 0.525.0.7bO 

27 0.536~0.771 
27 0.545-0.781 

27 0.576-0.790 

27 0.563-0.799 

27 0.569-0.806 

21 0.592-0.832 

27 0.598-0.839 

27 0.615-0.850 

44 0.712-0.987 

21 0.542-0.960 
33 0.593-0.989 

29 0.561-0.982 

29 0.546~,J.Q78 

22 0.698-0.986 

39 0.553-0.988 

22 0.588-0.695 

26 0.575-0.719 

30 0.536-0:1x 

23 0.609-0.730 

30 0.542-0.736 

New EC!. 

SC = cc c; = ftTFl Hey en BWRI 
P-R R-K AA1 

AAD (8) AAD (8) AAD' (%) AAD (%) AA? ($1 C%! 

4.27 2.45 

4.10 2.32 

4.30 2.31 

4.59 3.03 

6.95 3.63 

4.82 2.72 

5.58 2.M 

4.35 2.27 

4.91 1.83 

5.57 3.39 

2.29 2.61 

3.80 1.45 

3.Ub 3.11 

4.83 2.24 

3.11 2.2" 
4.44 2.04 

3.31 1.34 

0.53 0.53 

0.62 0.62 

0.63 0.63 

0.70 0.70 

0.70 0.70 

0.76 0.76 

0.94 0.94 

1.07 1.07 

1.04 1.04 

4.48 1.78 

3.81 2.10 

11.46 1.71 

3.47 1.57 

3.99 1.57 

3.21 2.4'1 

3.87 1.69 

0.51 0.51 

0.51 0.51 

0.66 0.66 

0.28 0.28 

0.53 0.53 

1.80 

1.20 
1.99 

1.52 

2.65 

1.46 

1.63 

5.99 

2.lto 

2.26 
3.82 

1.19 

1.22 

1.Q1 

0.62 

3.23 

3.9E 

8.77 5.Ob 

8.88 4.7E 

8.16 5.74 

7.66 5.72 
7.12 13.32 

6.07 II.79 

5.98 14.51 
7.17 a,?7 

5.30 21.91 

5.61 19.36 

3.UO 15.64 

4.52 lE.EB 

4.00 20.1? 
5.43 23.M 

3.12 2U~O? 

4.60 29.56 

2.41 

1.11 

1.76 

5.70 

2.70 
1.70 

0.83 

2.69 
6.14 

0.77 

0.55 

0.96 

7.09 

10.09 

7.17 

6.55 31.40 

3.62 

5.Ri - 

5.81 - 
7.u7 

6.81 

8.95 

14.62 - 

18.89 

18.42 

5.22 23.30 

8.48 LI.97 

4.49 35.lU 

5.84 10.29 

26.33 64.86 
15.90 4i.83 

4*05 20.95 

20.05 

4.33 - 

3.06 - 

2.18 
1.32 - 

Table 3. Comparison of saturated vapor densities 

New EQ. 

component 

LC = 5 C'= f[T ] 

AA" (;, :A, c%f 
Heye" P-R R-K BURS 
AAD (%) AAD ($1 AAD ($1 AAD (%) 

Argon 0.36 

Nitrogen 0.55 

Oxygen 0.70 
Methane O.E8 
Ethane 0.99 
Erhylene 0.71 

Propane 0.8C 

Propylene 2.43 

Acetylene 2.Or 
n-Butane 0.'3 
i-Butane 1.30 
1LButen.e l.kl 
n-Fentane O.iQ 
i-Fentane O.bG 
n-Hexane 3.87 
n-Heptane C.67 

"-Octane 2.LE 

Carbon dioxide 0.71 

Carbon monoxide 3.;1 
Sulfur dioxide 1.34 
Hydrogen sulfide 2.58 
water 1.26 
Alnonia k.iiO 
Ber.zere 2.:e 

1.15 

1.32 
1.23 
1.50 

2.12 

1.60 

2.;2 

2.71 

2.11 

1.62 

2.30 

2.31 

1.78 
1.99 

1.70 

1.32 

3.08 
2.13 

3.24 
i.fi" 

3.36 
2.36 

?.(IC 

3.27 

4.32 1."2 

3.32 1.20 

3.58 0.91 

4.20 1.66 
4.03 1.38 

3.72 1.04 

4.03 1.23 
3.10 1.68 

2.86 1.87 

3.98 0.78 
4.39 1.73 

U.84 1.71 
5.27 0.62 

".Cl 1.13 

3.ua 0.88 
1.54 0.63 

3.85 2.86 

E.iD 2.00 

3.39 3.lr5 

3.73 1.11 

6.37 3.38 
4.47 3.76 

3.64 6.81 

4.80 7.23 

0.33 

0.75 
0.44 

0.51 0.58 

1.97 0.20 

average ( t 1 1.44 2.14 4.14 1.89 3.35 0.26 
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Fig. 1. Comparisons of calculated and experimental saturated 
liquid densities of a-eicosane. 
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Fig. 2. Comparisons of calculated and experimental saturated 
liquid densities of ammonia. 

critical region always leads to a loss of accuracy in the 
representation of saturated vapor densities and vice 
versa. Nevertheless, the use of eqn (17), represents a 
good compromise. 

Overall, the eleven constant BWRS equation gives 
excellent predictions of both saturated liquid and vapor 
densities. However, the use of this equation is restricted 
to normal alkanes from methane to n-octane, for which 
the equation of state constants have been reportedU21. 

Densities in regions other than the saturation region 
have also been calculated. Overall, predictions using the 
new equation are better than those obtained using other 
cubic equations of state (Average deviations of 2.4% 
compared with 3.3% for the PR equation for 3175 data 
points including available data for methane through n- 
decane). 

Vapor pressures 
The vapor pressures of pure fluids were calculated by 

the simultaneous solution of the following equations: 

pL:pV=p (18) 
f”=f” (19) 

where L and V refer to the liquid and vapor, respectively. 
Except for n-propanol, n-butanol and n-pentanol, the 
overall average deviation between calculated and 
experimental vapor pressure for the 38 substances was 
found to be 0.86%. For the three alcohols, the deviations 
were of the order of 5%. 

Enthalpy and entropy departures 
Bnthalpy and entropy departures for saturated liquids 

calculated from the new equation were compared with 
values calculated using the BWRS equation for 8 light 
hydrocarbons. The BWRS equation predicts the enthalpy 
and entropy departures for these fluids within experi- 
mental error (deviations less than 1%). Values from the 
new equation compare very favorably with the BWRS 
equation for these fluids, as shown in Table 4. 

GENERALnATION OF EQUATION OF STATE 

PARAMETERS & AND F 

One way of extending the equation of state to new 
substances is to generalize the equation of state con- 
stants. In order to apply the new equation of state to 
substances not studied in this work, the values of the 
parameters & and F have been correlated with the 
acentric factor. The resulting correlations are given by 

F = 0.452413 t 1.309820 -0.295937~ (20) 
& = 0.329032 - 0.076799~ t 0.0211947~‘. (20 

However, as expected, the generalized equations apply 
to nonpolar substances only (3 parameter CSP). The 
values of F and & for water, ammonia and the alcohols 
did not lie on the curves predicted by eqns (20) and (21). 
The loss in accuracy in predicting compressibilities of 
nonpolar fluids using the generalized constants was less 
than 1% and, often, less than 0.1%. 

USE OF AN EXPONFNTIAL FUNCTION FOR a 

It has been pointed out by many authorslll-141 that 
the temperature function for q used by Soave and Peng 
and Robinson does not reproduce the correct tem- 
perature behavior of the constant “a” at high tem- 
peratures. This is mainly because the function becomes 
zero at finite TR and then starts to rise with temperature. 
The approach of real gas behavior to that of an ideal gas 
at high temperatures requires that a -0 as TR+~. 
Heyen therefore proposed eqn (13) which has the 
required characteristics but contains one additional con- 
stant. Constants C and n have been evaluated for the 38 
substances and are given in Table 1. Both eqn (11) and 
eqn (13) are plotted for methane and n-decane in Figs. 3 
and 4. The functions are almost identical upto TR = 12 
for methane and T, - 2.0 for n-decane and yield almost 
identical values of densities upto these conditions. Since 
higher temperatures are unlikely to be encountered for 
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Table 4 Enthalpy and entropy departures of saturated liquid 

No. *H AS 
of Tr Qanpr New Fq. New 69. 

S"b*t.WCe Points AAn (") AA" (58) 

Methane 37 0.524-0.476 2.11 1.07 

Ethane 28 0.563-0.9R2 2.53 1.16 

Propane 33 0.570-0.9RL 1.52 1.21 

n-Butane 28 0.627-0.980 2.41 1.2L1 

n-Pentme 30 0.635-0.181 1.70 0.92 

n-wxanc 32 0.613-0.974 2.55 1.44 

n-lteptane 23 0.637-0.987 1.53 O.R5 

n-octane 74 0.586-0.972 1.13 0.79 

Overall average (%) 2.06 1.09 

-EQN- (IO 

_-.” EQN.(f3) 

these substances (especially in phase equilibrium cal- 
culations), it appears that the use of the exponential 
function for n does not lead to much improvement (except 
for substances such as hydrogen which are normally at 
high reduced temperatures). 

COMMENTS ON THE VALUES OF 5, AND F 
d The new equation of state proposed in this work 

requires two parameters lC and F, in addition to T, and 
PC, for each pure substance. For nonpolar substances, 
however, & and F can be correlated with the acentric 
factor O, so that only three constants (T,, PC and O) are 
needed for such fluids. 

04 . , , , , , , , , 
0 10 20 For all substances considered, Z; was found to be 

REDUCED TEWERAlVRE 
greater than Z,. This was also found to be true by 
Schmidt and Wenzel using a similar equation of state. 

Fig. 3. (I as a function of the reduced temperature for methane. For light nonpolar substance (w = 0, & = D.329), the new 
equation is comparable to the S-R-K equation and for 
components whose acentric factors are close to 0.3 (O = 
0.3, & = 0.307) the proposed equation is comparable to 
the P-R equation. Thus, characteristics of both the SRK 

- EQN.<ll) 
- - - EQN.~~~) 

and PR equation are implicit in the new equation. 
However, the application of the new equation extends lo 
heavy hydrocarbons (upto n-eicosane) and polar sub- 
stances. 

RECUCED TEMPERATURE 

Fig. 4. a as a function of the reduced temperature for n-decane. 

EXTENSION TO MXTIRES 

Equation (1) can be used for the calculation of mixture 
properties if the constants a,b,c are replaced by the 
mixture constants u,, b,, c,,, as follows: 

b, = &b, 
1 

c, = 2 xic,. 

(22) 

(23) 

(24) 
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The choice of this model is completely arbitrary, the only practice, however, this is not strictly true and .$ should 
justification being the success with which analogous be determined at conditions of interest. In our work, 
equations have been used with other equations of state values of & were obtained at a single temperature for 
such as the Soave and the Peng-Robinson equations. It is each binary pair-the temperature being carefully selec- 
also possible to reduce eqn (1) to the Soave and the ted to lie in the middle range of reported experimental 
Peng-Robinson equation by setting c, = 0 and c,,, = b, data. It should be added that the temperature depen- 
respectively as in the case of pure fluids. This would not dence of & was found to be small, and the optimum 
be possible if a different mixture model (in particular, a values of & may be used to predict VLE at other 
different combining rule for c,,,) is used. temperatures. 

The cross-interaction term a, in eqn (22) evaluated 
using the following mixing rule: VLBRESULTS 

aij = &j( lZ&) “’ (25) 

where & is a binary interaction coefficient which must be 
evaluated from experimental data. Compared with 
vapor-liquid equilibrium (VLE) predictions, the sen- 
sitivity of predicted bulk mixture properties such as 
density and enthalpy to the value of <ii is small. There- 
fore it is common practice to use binary VLE data for 
the determination of 6, values. In principle, no further 
information is required to predict the properties of ter- 
nary and higher systems. 

Optimum value of .$ had been evaluated using the 
Soave, the Peng-Robinson and the proposed equation 
and are given Table 5. The three equations were used for 
VLE calculations for 32 binary systems containing the 
light hydrocarbons, carbon dioxide and hydrogen sulfide. 
The new equation was also used for calculations involv- 
ing an additional 20 systems containing the heavy 
hydrocarbons, water and the alcohols. The results are 
shown in Table 6. 

Our results for the different groups of binary systems 
studied in this work can be summarized as follows: 

In this study, the optimum value of .$ for each binary 
pair was obtained by minimizing the absolute average 
deviation in the bubble point pressures at selected tem- 
peratures. The determination of the bubble point pres- 
sure or vapor-liquid equilibrium in general, requires that 
the following equalities be satisfied: 

(a) Light hydrocarbon binaries (upto n-decane) 

f,” = fi” (i = 1,2,. * . .m) (26) 

In general, the three equations of state correlate data 
for these systems equally well. Moreover, except for 
binaries containing methane, values of &j for these sys- 
tems were found to be close to 1.0. This is true for all 
three equations and supports Soave’s conclusion that no 
binary interaction coefficients are needed for VLE cal- 
culations involving light hydrocarbon binaries not con- 
taining methane. For systems containing methane, the 
new equation gives & values which are closer to unity 
than those obtained using the Soave or Reng-Robinson 
equations. In general, the Soave and Peng-Robinson 
equations give very similar values of & for such sys- 
tems. 

where fi denotes the fugacity of component i and the 
superscripts V and L denote the vapour and liquid 
phases respectively. An equation for the fugacity of 
component i is given in the Appendix. 

EVALUATIONOFTHEBINARYlNTERACTlONCOEFFlClEN't 

A number of criteria may be chosen for evaluating the 
optimum value of &. Among these criteria are [ Ill: 

(1) minimization of deviations in bubble point pres- 
sures; 

(2) minimization of deviations in Rash volumes. 
Grabowski and Daubert[lll used both criteria with the 

Soave equation and found that convergence problems 
were encountered with the second criterion for close- 
boiling mixtures because the correct value of 5, was 
needed in advance to “find” the hvo phase region. The 
application of the first criterion, on the other hand, 
produced no convergence problems and led to good 
results for both flash and bubble point calculations. 

In this study, the optimum value of & was obtained by 
minimizing the absolute average deviation in the pressure 
at a selected temperature for each binary mixture. The 
absolute average deviation is defined as: 

Generally, & is assumed to be independent of tem- 
perature, pressure, density and composition[ll, 16). In 

(b) CO,-light hydrocarbon, and H&light hydrocarbon 
binaries 

The optimum values of tii obtained from the three 
equations are slightly different from each other, but are 
usually in the range 0.84-0.90 for systems containing COZ 
and 0.91-l .O for systems containing H,S. 

(c) Light hydrocarbon-heavy hydrocarbon binaries 
These systems include binaries such as methane-n- 

eicosane, ethane-n-eicosane etc. Only the new equation 
gave acceptable deviations in bubble point pressures for 
these systems. Most of the optimum & values were 
found to lie in the range l.W.08. 

(d) Alcohol-water binaries 
Only the new equation of state was used to calculate 

tij for these binaries. The methanol-water system could 
be correlated with an optimum value of & of 1.083 and 
the ethanol-water binary could be correlated with a value 
of 1.075. 

Typical predicted P vs x curves for COz-n-butane, 
methane-n-eicosane and water-methanol are shown in 
Figs. 5-7. Predicted P vs x curves for light hydrocarbon 
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Table 5. Optimum values of & and bubble point correlation using three different equations of state 

:: 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 

6 a.15 0. “O‘b s R. 11 0.0189 
0.63 0.0117 
4.97 “.“OZI 
0.56 0.0149 

D.0023 0.46 
0.14 

9 
9 

0.41 
2.44 
1.12 
1.21 
1.26 
0.33 
0.18 
1.31 
0.60 
0.51 
0.80 
0.41 
0.43 
I.86 
0.76 
3.27 
1.18 
0.50 
0.55 
3.19 
0.99 
2.43 
3.51 
0.16 
0.97 
9.27 

2.19 
1.02 
1.15 
0.97 
0.18 
0.12 
1.41 
0.96 
0.49 
O.hO 
0.25 
0.18 
0.96 
0.39 
3.19 
I.17 
0.50 
0.70 
1.81 
1.11 
L.70 
3.00 
0.78 
0.90 
2.92 

a. 0093 
a.acoP 
0.0040 
0.0060 
II, on51 
o.cm14 
“.024L 
a.““72 
a.0144 
O.“lhR 
0.0029 
0.0013 
O.O"," 
0.0013 
Cl.0629 
O.""," 

9 
9 
8 

10 
10 0.0122 

0.0050 
0. OOBZ 
0.0038 
“.02,1 

9 
10 

9 
9 
B 
9 
8 

0.0122 
0.0102 
0.0210 
0.0020 9 

Table 6. Values of the deviations in bubble point pressures and vapour phase mode fractions with & = 1.0 and 
$ = tti, from equation (I) 

NO. 

of Temperature ‘ij = “O 'ij - 'ijapt 
AP C%) bY1 E.. 

lloPt 
AP (0 AY1 

- 

System Points K NO. 

1. 

2. 

3. 

Q. 

5. 

6. 

7. 

8. 

9. 

10. 

II. 

12. 

13. 

IU. 

15. 

16. 

17. 

18. 

19. 

Methane-propane 5 277.6 1.65 Il.0054 0.989 

Methane-benzene 7 338.8 2.45 0.006U 0.991 

Methane-n-Eicosane 5 313.2 29.26 0.0000 l.ORO 

Ethane-i-butane 8 311.8 3.57 0.0072 1.018 

Ethane-n-&cane 8 377.6 4.61 0.0455 1.019 

Ethane-n-dodecane 9 323.2 5.58 0.0009 1.016 

Ethsne-n-Eicosane 7 333.2 41.01 0.0002 1.070 

Ethylene-n-dodecane 8 298.2 7.97 0.0002 1.006 

Pmpane-bemene 10 377.6 3.5R 0.010, 0.988 

Propane-n-decan. 7 377.6 8.63 O.OOOB 1.024 

Nitrogen-methane 10 155.u 4.22 0.0299 0.968 

Nitrogen-propane 6 298.2 11.00 0.0269 0.926 

Nitrogen-n-butane 6 311.0 10.83 0.01116 0.969 

Nitrogen-n-hepfane 5 352.6 17.4 0.0032 0.911 

H2S-n-hepfane 5 352.6 10.97 0.0027 0.956 

HIS-n-decane 7 3'1 '+ . 3 0.61 0.0004 0.999 

COj-n-derans 7 W~l.3 24.74 0."(107 a.903 

CO-pr0pan.Z B 273.2 7.11 Ct.0170 0.979 

“etka”ol-Yatel. 10 373.2 27.45 0.0750 1.083 

0.60 

0.92 

1.09 

1.62 

0.60 

2.26 

9.15 

1.10 

1.86 

0.79 

0.71 

3.RO 

8.73 

3.30 

3.41 

0.53 

2.14 

6.11 

1.75 

0.0048 

o.ao54 

0.0000 

0.0038 

0.0426 

0.0008 

0.0000 

0.0000 

0.0086 

0.0004 

0.0217 

0.0161 

0.0151 

0.0018 

0.0018 

0.0004 

n.oowJ 

0.0151 

0.0081 

20. Ethanol-water 10 423.2 73.75 "."R$7 1.075 7."ll 0.0713 
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systems using the Soave, the Peng-Robinson and the 
new equation were identical. Multicomponent predic- 
tions were also found to be comparable for systems of 
light hydrocarbons. 

DENSITIIB 

Densities of five binary mixtures were calculated and 
the results are shown in Table 7. Values of & were not 

.a 

I 
0 .z .4 .b .8 1.0 

MOLE FRACTION 
Fig. 5. Vapor-liquid equilibria in the Co,-n-butane system at 

213.2K. 

bo 1 

I 

b 1 .4 -6 .e f-0 

HOLE FRKTtaJ 

Fig. 6. Vapor-liquid equilibria in the Methane-n-eicosane system at 
313.2K. 

.2 

a 
.2 .4 .6 .a 1.0 

Fig. 7. Vapor-liquid equilibria in the Methanol-water system at 
373.2K. 

used. Average deviations between calculated and 
experimental densities were of the order of 2% and 
compare favorably with deviations obtained using the 
Chaudron equation[17] with six constants per com- 
ponent. A major advantage of using the new equation is 
that it gives accurate predictions of saturated liquid 
volumes as well as other properties of the equilibrium 
phases. Earlier, we showed that the new equation is 
superior to the Soave and Peng-Robinson equations in 
the representation of the saturated liquid densities of 
pure substances. We found that this improvement 
extends to mixture saturated liquid densities as well. 
Results for the n-butane-n-decane system are shown in 
Fig. 8. As can be seen, the new equation is superior to 
the Peng-Robinson equation. 

CONCLUSION 

This work demonstrates that the new equation of state 
is capable of accurate and consistent predictions of the 
thermodynamic properties of mixtures. The most inter- 
esting feature of the new equation is its applicability to 
mixtures containing heavy hydrocarbons and polar sub- 
stances, and the fact that it is cubic in volume and thus 
easy to handle. It can reproduce with sufficient accuracy 
the liquid and vapour phase densities and yield very 
accurate VLE predictions. Comparisons have shown that 

Table 7. Comparison of density predictions of binary mixtures 

Ethawpropene 174 4X-858 15-10000 0.49% 2.n 1.88 

Ethamn-pentam 152 498-920 200-10000 o.ao00 3.72 3.1, 

Prqmr-n-pcntanc 41 619-B"" *o-i00 O.IbBO 0.67 1.27 

Pmyne-n-pntane 28 Cm-709 *O-scI" 0.6511 ".hh 0.37 

Propene.propane 268 470-858 15-10000 0.6289 1.92 1.79 

H2S-n-pentane 123 498-800 zoo-1OOOC 0.6123 2.95 2.01 

CES Vol. 37,~o. 1-1 
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-15 .20 

MLUllE ( MS IWO?) 

Fig. 8. Comparison of saturated liquid volumes of n-butane-n-decane mixtures at 377.6K. 

for VLE calculations, the new equation is as good as the Subscripts 
Soave and Peng-Robinson equations for mixtures of c critical value 
light hydrocarbons. For systems containing heavy talc calculated value 
hydrocarbons and polar substances, the new equation is 
superior to the Soave and Peng-Robinson equations. 

exp experimental value 
i, j component i, j 

j ith data point 
Acknowkdgement-NCP thanks the Science Research Council for 
the award of a Studentship for the duration of this project. _ 

R reduced value 

a, 6, c 
B 
C 

f 
F 
rn 

;: 
R 
T 
S 

; 

2 

Constants in eqn (I) 
= bP,lRT, 
constant in eqns (12 and (13) 
fugacity 
parameter required in eqn (1) 
number of components 
number of moles 
pressure 
gas constant 
temperature 
entropy 
molar volume 
total volume 
mole fraction 
compressibility = Pu/RT 

NOTATION 

Symbols 

a” 
ic 

temperature function, eqn (11) 
temperature function, eqn (16) 

* value of P,u,/RT, calculated from e 
parameter required in eqn (1) 

binary interaction coefficient 
constants in eqns (5-7) 
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APPENW 
Derived properties using the new equation of state 

Fugacity. 

Entropy departure, 

B = bPIRT 

hf= (+J)& 

N= bc+q]-“* 
1 

Q= (?+!$)A 

Enthalpy departure. 

rp(H-H”)-RT(Z-I)-(TV-..a) [&ln($$)] 

p = conversion factor; Q, M, N are given above 

cp = conversion factor; Q, M, N are given above 

Fugacity of component i in a mkture. 

RTln($)=-RTln(Z-B)+RT($)-ph(@) 

+w+a{c,(3b+c)+b,(3c+b)} 2@-d ) 8d’ ’ 

X~n(~)+*) 

Q=“+b+c 
2 

B = bP,IRT, 

d= &,c+!!!..$$ 


