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ABSTRACT 

We consider a population of individuals which can be distributed in different equiva- 

lence classes. These classes are gathered in groups so that intragroup transformations are 

much more frequent than intergroup ones. We study linear systems in general, illustrated by 

the example of coupled individual and population levels. Then, we study nonlinear systems 

with the example of coupled population and ecosystem levels. We give methods to derive 

the dynamical equations for the different levels and to calculate interlevel coupling terms. 

We compare the coupling effects in the linear and in the nonlinear case. 

1. INTRODUCTION 

In ecology, one distinguishes generally three levels of organization: the 
individual level, the population level, and the ecosystem level. There are 
different models for each level of organization. At the individual level, the 
chosen variables can be the number of animals in a given state: hunting, 
resting, hiding, and so on. At the population level, one can choose the 
number of animals having a certain age: Leslie’s model or the thermodynami- 
cal Demetrius model [l-5]. At the ecosystem level, one usually chooses the 
numbers of animals of species, as in the Lotka-Volterra model or the 
thermodynamical Kerner model [7-91. The purpose of this work is to try to 
establish connections between these different levels of organization. 

The problem is double. First of all, it is necessary to use methods which 
permit one to obtain the equations of the population level from the knowl- 
edge of equations which have been chosen at the individual level, or similarly 
to obtain dynamical equations at the ecosystem level from the knowledge of 
equations chosen at the population level. Secondly, one can obtain coupling 
terms between these different levels of organization which permit one to 
study the interactions: the influences of one level of organization on another 
level. 
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We believe that one should calculate the dynamical equations relative to 
each level and the interlevel coupling terms instead of choosing phenomeno- 
logical equations at each level and phenomenological coupling terms. Indeed, 
the equations for a collective level are entirely determined by the equations 
for a more microscopic level. In choosing phenomenological equations for 
different levels, one may turn out to have chosen incompatible equations. 

In general, the problem is rather difficult, and the separation between 
these three levels is not always possible. For this reason, in this paper, we 
have chosen to study specific systems, which can be called hierarchically 
organized systems, corresponding to weakly coupled levels. For instance, the 
probabilities per unit time for a change of state are assumed to be much 
larger than the probabilities for a change of age class. This assumption leads 
to nearly independent equations at the individual level and at the population 
level. Similarly, we assume that the probabilities for a change of age class are 
much larger than the corresponding terms associated with the prey-predator 
process. This assumption leads also to nearly independent equations at the 
population level and at the ecosystem level, In both cases, we nevertheless get 
interlevel coupling terms, small enough to result in nearly independent 
equations at each level, but giving rise to interactions between the different 
levels. 

First of all, in Section 2, we study the general case of linear systems, 
illustrated by an example of the individual level coupled to the population 
level. In this section, we use a quite similar formalism to that of linear 
transformation systems [IO- 1 I]. We then study the case of nonlinear systems, 
particularly with the example of coupled population and ecosystem levels. 
The models are essentially based on the Leslie model or on the Demetrius 
model for the population level and on the Lotka-Volterra model for the 
ecosystem level. We particularly discuss the effects of the interactions be- 
tween the levels of organization, and we compare the results in linear and in 

nonlinear models. 

2. HIERARCHICALLY ORGANIZED LINEAR SYSTEMS 

To begin with, we assume that the elements can be distributed in different 
equivalence classes E,. Then Nj is the number of elements belonging to the 
equivalence class E, , and n is the total number of classes. In linear systems of 
transformations, the equations for the time dependence of the populations N, 
are 

kj = xaj,Ni, 
’ dNj . 

where Nj = 7, t the time. 
I 

The air are time independent and define a n X n matrix A. The entry a ji 
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corresponds to the transformation of elements from the class E, to the class 

4 
The previous equations can also be written 

{IL> = A{N>, 

{N)=(ljT,& ,...) Ijm), 

(N)= (N,,Nz,...,N,). 

We are going to consider a hierarchically organized system, i.e., the classes 
can be gathered in 6! groups. CY is an index for the group: a = 1,. . . , @. ?%a is 
the number of classes belonging to group a. Tbe total number of classes n 

can be expressed as follows: 

n=C”Jt,. 
a 

This grouping of classes is introduced in order to reflect a hierarchy in the 
transformations between the elements of the system, i.e., we consider a 
system in which the intragroup transformations are frequent in comparison 
with the intergroup transformations. This means that the coefficients a,, for a 
pair of classes i and j belonging to the same group (Y are always much larger 
than the coefficients uk, for a pair of classes k and I belonging to different 
groups OL and j3, i.e., 

IQ/l -=C IQ 

In order to indicate to which group a a class belongs, we now label its 
population with two indices i and a: a is the index of the group, i the index 
of the class belonging to this group. N,, is thus the population of the class Ei, 

belonging to group 0~. Thus, i varies from 1 to %,. Each group is now 
characterized by its own set of population numbers (NJ: 

(NJ= (Ni,,Nzo,...,N~t~a). 

Now, let us rewrite the dynamical equations for the populations (N,} by 
separating intragroup transformations and intergroup transformations: 

&, = C ai&, + C C ailapNls. (1) 

jEa @#Cl /‘E/3 

-M 

intragroup (a) intergroup (01, fl) 

transformations transformations 

The notation j E (Y means that the class E,oI belongs to the group (Y. More 
simply, we can write the equations in the following way: 

@‘a> = A,CN,J+ c 4&@. (2) 
p*a 
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FIG. 2. The matrix A is decomposed into d intragroup matrices A, relating to 

intragroup (a) transformations, and &’ - & intergroup matrices A mB relating to intergroup 

((I and /3) transformations. 
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FIG. 3. For a strong hierarchy, all the intergroup matrices Aa are equal to zero. All 
the groups are independent of each other. 
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A, are intragroup transformation matrices, and aija are the corresponding 
coefficients for the transformation from the class Ejn to the class E,,. A,, are 
intergroup transformation matrices (Figures 1 and 2), and ailaa are the 
corresponding coefficients for the transformation from the class Els to the 
class E,,. 

In the case where the intergroup transformations are very rare compared 
to the intragroup transformations, we can neglect the matrices Aa8 and the 
groups of classes are independent of each other. In this approximation to the 
total hierarchy, the matrix A is given by the Figure 3 and the time depen- 
dence of (NJ is obtained as follows: 

3. 

as 

COLLECTIVE TRANSFORMATIONS AND INTERNAL 
TRANSFORMATIONS 

Now, let us define a collective variable N,, associated with each group (Y, 
the average population of the group cx: 

Let us define a relative or internal population nirr as the difference between 
the real population Nji, and the average population Iv,: 

n ,11 = Ni, - N,. 

From the previous definitions, we get the following relations: 

(6) 

Nio, = %a + n,,. (7) 

%l 
C n;,= 2 h,,=O. (8) 

i=l i=l 

+t us consider the time dependence of the average populations. To calculate 
N,, let us add the ‘XL, equations &_, of group Q: 
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Let us replace N,, by its expression (7) and use the relation (8): 

275 

= C C aija(N,+nja)+ C C C aj,@3(Ng+n,p). (10) 

By a suitable regrouping of terms, (10) becomes 

(11) 

with 

a,*= C C aijn and 4s = C C ailaS. 

4. SLOW-VARYING COLLECTIVE POPULATIONS AND 
FAST-VARYING RELATIVE POPULATIONS 

In many cases, we can make a supplementary assumption (12) saying that 
the intragroup transformations are not responsible for the variations of the 
average populations Iv,. We are going to give examples of this assumption 
further on. 

For any group (r, let 

(12) 
i j 

The internal transformations can change the distribution of the elements in 
the different classes Ei,, but they don’t modify the average populations Fe. 
Only intergroup transformations can then modify the average populations 
N,. The assumption (12), when it can be made, is very useful because it leads 
to a hierarchy in time associated with the hierarchy in the transformations. 
Indeed (12) allows us to rewrite (11) as follows: 

On the other hand, using the hierarchy assumption (4), we can neglect the 
intergroup transformations in comparison with the intragroup ones in the 
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equations (l), which can be approximated by 
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(14) 

Thus, the equations for the average populations (13) are entirely governed by 
intergroup transformations, while the equations (14) for the real populations 
are nearly entirely governed by intragroup transformations. Comparing (13) 
and (14), and using the hierarchy assumption (4), we see that Na, varies very 
slowly in time in comparison with Nii,. Only intergroup transformations are 
responsible for the variation in time of the average populations N,, and as 
they are much rarer than internal transformations governing the variation of 
Ni,, we have 

This is true for any class Eia of any group (Y. It can also be written 

(1% 

(16) 

The internal motion lh,J is large compared to the average population motion 
INal. The average populations Na are slow-varying variables compared to the 
internal fast-varying populations n,,. The internal distribution of the ele- 
ments in the classes E,, belonging to the same group a! fluctuates rapidly, 
while the average populations & vary relatively slowly. Finally, we get the 
coupled equations for the average population dynamics and for the relative 
population dynamics: 

(17) 

(18) 
J’ E ‘C 

In the equations (1 S), we neglect the intragroup transformations and also the 
term - No, which can be called the inertia term. 

5. THERMODYNAMICAL TREATMENT OF RELATIVE 
VARIABLES 

The hierarchy in time can be used in order to reduce the number of 
variables considerably by carrying out a thermodynamical treatment of the 
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internal variables nru in each group (r. The internal fast-varying variables nra 
vary so rapidly with respect to the average populations N, that for each 
interval At corresponding to a small variation of the average populations, we 
can assume statistical equilibrium for all the internal variables ni,. 

Such thermodynamical treatments can be carried out [4,7,8]. In particular, 
one can obtain probability densities for linear systems [4,7,8]. In the case 
where there exists constants of the motion, one can use the Gibbs distribution 
for a canonical ensemble (see Appendix). 

The thermodynamical treatment of the relative variables allows us to 
forget the internal dynamic and to replace the relative variables nrn directly 
by their time averages (n iol) in the equations (17) for the average popula- 
tions: 

To get the previous equations, one must multiply (17) by the densities p and 
integrate over the whole space of the relative populations nia. 

The purpose of such a thermodynamical treatment of the internal var- 
iables nia is to reduce considerably the number of calculations. From n 

equations (l), we only obtain & equations (19). The distribution of the 
elements in the classes E,, fluctuates rapidly, but for long enough intervals 
At, we are not interested in each instantaneous distribution but only in the 
average distribution in time. In the equations (19), ( nrs) is calculated for 
each interval lasting At, and the densities p must be renormalized for new 
values of N,. 

6. COUPLED INDIVIDUAL AND POPULATION LEVELS 

The elements are animals belonging to the same species. These animals 
have different ages i and can be in different states S. These states correspond 
to hunting, hiding, sleeping, searching for food, sexual activity, and so on. %, 
is the number of possible states S for an animal with age i. Let us denote by 
N,; the number of animals which are in a state S with the age i, and Esi the 
corresponding equivalence class. The GJL, classes Esi constitute a group of 
classes, which we call age class i. The total number of classes E,, is given by 
the relation 

a 
n= C %, (20) 

i=l 

where @ is the number of age-classes. 
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Let us choose the following dynamical equations for fiSi: 
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(21) _ _ 
j*i f 

b- 
intragroup intergroup 

transformations tralE.fomlations 

a Sri relates to a transformation from state r to state S for an animal with age 

i. asl, j relates to a transformation from state t with agej to state r with age i. 

The hierarchy in the transformation signifies that the animals often 
change state (r + S in i), while they relatively rarely change age class (i + j). 

The corresponding relation to (4) is 

(22) 

In the present case, the hierarchy in the transformations leads to a hierarchy 
in time. Indeed, we must have a supplementary relation saying that when an 
animal changes state in the same age class i, it does not increase the number 
of animals with age i: 

(23) 

Let us define average populations q and relative population nSi as in (5) 
and (6). The general results obtained for linear systems give us the time 
dependence of the population number of age class i, ui: 

and 

(25) 
j*i S f 

If we choose all the a: /9Lj equal to zero except the terms in aTj (or mj) and 

in a:+ 1.i (or b,), we get finally the well-known form 

where 

{i4}=A*{u}+{C}, (26) 

{ic}= (ti,,ti* ,...) ice), 

(u>= (U19U*,...,Q), (27) 

(C)e (G,C*,...,CQ,). 
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A* is the transition matrix, like the one in the discrete Lotka model due to 
Leslie [4] (see Figure 4): 

ml m2 * ma 
h 0 0 

0 . . 
A*=. . . . . . 

0 . . . 0 be-1 0 

The terms mi relate to the birth process, and the terms bj to the age process. 
We have supplementary terms C,. A term aSI,, signifies that an animal with 
age i in a state t which corresponds to sexual activity gives birth to a young 
animal with age 1 in a state S, and could be taken independent of S. A term 
uSrr(,_ ,) corresponds to the aging process and signifies that animals with age 
i - 1 become older and move to the following age class i. These last terms can 
be assumed independent of S and t, because the aging process is regular. 

In these conditions, we get similar equations to (19): 

{ic} = A*(u)+{(C)}. (28) 

Here ( Ci) are time averages corresponding to the terms C, obtained by 
replacing n,j with their time average relative populations ( n,j). The terms 
(C,) in the relations (28) couple the population dynamics and the individual 
dynamics. Let us now study particularly these coupling effects in the linear 
case. 

7. COUPLING BETWEEN POPULATION AND INDIVIDUAL 
LEVELS IN THE LINEAR CASE 

Let us imagine a variation of the average values (C). For instance, the 
coefficients a sri governing the changes of state in the same age class i can 
depend on external parameters or environmental parameters $k, k = 1,. . . , K, 
where K is the number of external parameters. The equation (18) for the 
relative population numbers nsi can be written 

Over the year, the environment varies. The environmental parameters +k 
are time dependent. The time averages (n,,) and the coefficients (C,) vary 
slowly with the coefficients $J~( t). The variation of the +k is very slow 
compared to the time of internal equilibration in each age class i, i.e., we 
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have for any (S, i) and k 

Let us look at the effects of this slow variation of the coefficients (C,) on the 
level of the population. We return to the equations (28): 

(ti>=A*(u}+((C)}. (28) 

Let us eliminate the terms (C, ) and find a new basis in which we simply have 

{zi*} = A*{U*), (31) 

{u*> = {u>+{u}. (32) 

Here (u) is a vector which is simply given by 

to> = w-‘m). (33) 

Thus, the effect of a modification of the constant ((C)} is a change of origin 
(a translation) for the vector (u}, but no change in the matrix elements A*. 
For instance, if we use a statistical model at the level of the population, such 
as the Demetrius model, we get no change in the matrix A*. The free energy 
is unchanged, but we must translate the equilibrium population numbers u,. 

In order to get a change in the matrix elements, it is necessary to consider 
nonlinear terms in the dynamical equations (21). 

8. COUPLING BETWEEN POPULATION AND INDIVIDUAL 
LEVELS IN THE NONLINEAR CASE 

Let us choose the following nonlinear equations for ks, instead of (21): 

&T, = k,tNli t- C C Ck,“t,NrtNt, 
j r t 

L 
Y 

/ 

I = changes of states in the 

same age class i 

+ a,- IU,- I + c CaS:lkNqNt,. 
/.k r,f 

\ v i 
II = changes of age class 

(34) 

The changes of states of an animal (nonlinear term I) result here from 
meetings between animals. An animal in state r belonging to age 
class i meets another animal in state t belonging to age classj. The result 
of this meeting is a change of state of the animals, putting the first animal in 
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state S (but always in age class i) and the second one in state S’ (but always 
in age class j). The linear term ksi Nsi indicates that in absence of meetings, 
the animal spontaneously chooses some states rather than others. We have a 
kind of chemistry of changes of states. Term II corresponds to exchange 
between the age classes. The terms cli_ ,u,_ , correspond to the aging process. 
The last term corresponds to the birth process. A male (a female) in state r 

belonging to age class j meets a female (a male) in state t belonging to age 
class k, and the female gives birth to young animals in age class 1: uzjk = 0 

except for i = 1. 
We assume here that the population is always composed of half males and 

half females. In the last term, relating to the birth process, we must use the 
populations N,/2 and Nrk/2. The coefficient a is already contained in a:>k. 

States r and t must correspond to sexual activity. 
We can choose the convention that at birth the young animals are equally 

distributed in the states S of the age class 1, i.e., the coefficients usik are 
independent of S and become a,, jk. The relation saying that changes of states 

in the same age class i do not increase the number of animals with age i, 
similar to (23), is 

C (ksiN,i + C Cks,;N,;X,) = 0, 
s i r,t 

(35) 

Now, the equations for the population dynamics (ic,) are 

ici=bi_,ui_, for i * 1, b, = 9Lia;, 

~CI = C CartjkNqNtk, 
(36) 

j. k r. t 

Let us replace Nrl and Nlk by their functions of uj and uk: 

ici = bi_,Ui_, for i-=1, 

irr = c m,kujuk + cmjuj + xmkuk + ct. 

j.k i k 

The previous equations can be more simply written 

(37) 

(k> =A*,.,.(u)+(u).M(u)+(C),.,., 
(38) (C>,.,.= (c,,o,o,...,o). 

M is the matrix of the mjk, and (u>- M{ u} is the 
and the vector M(u). The subscript n.1. indicates 
nonlinear case (see Figure 5). 

product of the vector (u} 
that it corresponds to the 
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The constants mJk and mj are given as follows: 

(39) 

In the case of a strong hierarchy, the variables nrk can be treated statistically 
and replaced by the time averages ( nrk). Indeed, in the hierarchical system, 
we must have the following relation saying that the coefficients k,, or ks,‘, are 
very large compared to the other parameters a, and artjk, so that we obtain 

Systems of this kind have well been studied [7,8]. It is possible to define a 
density p for these nonlinear systems; see E. H. Kerner [7, pp. 15 l- 1671. 
Then, considering times of observation long enough compared to times 
necessary to reach thermodynamical equilibrium for relative populations n r,, 
we can replace them by their time averages (nri) in the equations (38). 

In the nonlinear case, we can see that a change in the values (n,,) 
modifies not only the constant C, but also the terms mJ, and mk [see 
(39)]. The effect is not only a change of origin in the space of the populations 
u,, but also in the probabilities of birth and the matrix A*,,. . For 
instance, if we use a thermodynamical model at the level of the population, 
like L. Demetrius’, it affects the free energy. In nonlinear cases, we have 
changes of the matrix and not only of the constant terms {C} or {C},,, . 

9. COUPLING BETWEEN POPULATION AND ECOSYSTEM LEVELS 
IN THE NONLINEAR CASE 

We can imagine similar methods to couple the population level and the 

ecosystem level. Let us denote by u,, the number of animals in age class i 

belonging to species r. Here, we forget the individual levels. The dynamical 
equation for uir can be written 

i*l: id,, = k,,,‘,-,.r + c h,,J+i?J% 

W S*r j 

age process L / 
v 

prey-predator process 

i=l: ic,,= C Ca I~JsUI,‘-‘JS + CmirUir. 
S*r j 

i. 
prey-predator birth 

pKXeSS process 

(41) 
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The terms b,, relate to age-process for species r; the terms m,,, to the birth 
process coming from age class i of species r. The last terms relate to the 
prey-predator process. (Y,,~~ represents the action of the predators of species r 

with age i on the prey of species S with age j (positive case, arrjs > 0) or the 
action of the predators of species S with age j on the prey of species r with 
age i (negative case, airis -C 0). To get the collective equations for the 
ecosystem, one must add all the equations over the age classes i for a given 
species r: 

Nr = &,,. (42) 

N, is the number of animals in species r: 

The hierarchy in the interactions assumes here that the prey-predator 
coefficients are very small compared to the aging-process coefficients, i.e. 
that we have the relations 

It is clear that this is not the case for all ecosystems. Here, we study one 
ecosystem which corresponds to this assumption. In these conditions, we can 
write zii, and ri,, as follows: 

i*l: ic,, = bi_ l.rUi-l,r, 

i=l: L,, s Cmiruir. (45) 

The relation equivalent to (23) or (35) is: 

ti,, + c Iii, = 0, 
itl 

i.e., in the absence of the prey-predator process the populations N, do not 
vary. Similar methods to the ones presented in Section 8 would give N, and 

h,,, with the usual definition uir = N,/%, + nrr. 

10. MULTILEVEL SYSTEMS 

We can imagine describing a hierarchically organized three level system. 
For this, we might define the populations Nsi, of animals of species r with 
age i in state S. Then, we might choose dynamical equations for Nsir which 
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might be decomposed into three contributions: a first term would correspond 
to changes of states in the same age class, a second term to changes of age in 
the same species, and a third term to the prey-predator process. The 
hierarchy would be introduced in the probabilities of transformations, i.e., 
the changes of state would be assumed very frequent compared to age 
changes, themselves very frequent compared to prey-predator coefficients. 
The methods to get the equations on a more collective level are identical to 
those presented previously. We are not going to give the results. 

It must be noticed that in this case the number of indices can become 
important. For instance, we might consider coefficients ~y,,~,~s, related to the 
action of predator r with age i in a state S on prey t with age j in a state S’, 
or reciprocally. The model could be simplified by only considering interac- 
tions between consecutive levels, i.e. ecosystem-population couplings and 
population-individual couplings. The chosen time of observation, ‘&, must 
permit one to treat the individual level thermodynamically if T0 is large 
compared to the characteristic time scale for individual interactions. If ?a is 
also large compared to the characteristic time scale for the aging process, we 
can realize a thermodynamical treatment of the population level. The 
hierarchy in the transformations leads to a hierarchy in time, and it permits 
one to reduce considerably the number of variables by thermodynamical 
treatments, by the choice of a suitable time of observation ?&. 

11. CONCLUSION 

The systems studied here are special systems, i.e. hierarchically organized 
systems. The interest in studying them is double. Firstly, these systems are 
complex systems, but nevertheless one can study them in a rather detailed 
way. Indeed, the hierarchical properties lead to separations between collec- 
tive slow-varying variables and internal fast-varying ones. The system is 
divided into many subsystems corresponding to sets of variables associated 
to very different scales of parameters and of time. This allows, for instance, 
an important reduction of the calculations. By replacing internal fast-varying 
variables with their time averages, one can forget the internal dynamics, 
which is replaced by a Gibbs ensemble, and get a few equations governing 
the collective dynamics relative to the smallest possible number of collective 
variables. Secondly, many authors have noticed the fact that many 
complex systems in nature are hiera.rchicalIy structured [12-191. J. Bok and 
G. Toulouse explain this spontaneous hierarchical organization in many 
systems by a principle of least difficulty [ 161. Complex systems spontaneously 
self-organize in a hierarchical way to minimize the number of individual 
interactions (because the intergroup interactions can be neglected). This 
paper gives a supplementary contribution to the study of these not so 
complex, and fairly common, systems. 
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In some cases, there exists a constant of motion G, associated with each 
group LY. For linear systems, we assume that G, is linear in the population 
numbers Ni,: 

G, = c bi,N,, = constant. 
ica 

The b,, are time independent parameters. The existence of such constants of 
the motion is very interesting in linear systems because it permits us to define 
a Gibbs distribution p, for a subspace of each group (Y defined by a set s, of 
only n o1 classes Eln (n (I < St,) which create a canonical ensemble. pa is a 
function of the populations N,,, i corresponds to the n, classes [7], and 

p, = pose-G-/e-, 

where 0, is the “temperature” for the group cr, and pea is a constant of 
normalization: 

The integral is calculated by integrating over each Ni, from 0 to + co. The 
product pJI dNi, gives the probability of finding the classes E,, with their 
population numbers between Ni, and N,, + dN,,, i E s,. 

In the case of slow-varying average populations, we can cut up the time 
into inter@ At, corresponding to small variations of the average popula- 
tions (i.e., N, At s 0), but large compared to the time variation of the internal 
variables (i.e., iz,, A t * 0). In this case, the Gibbs distribution can be ex- 
pressed in terms of with the relative or internal variables nia alone, for times 
between t and t + At: 

with 

I 

C bianio 

P, = pA,exp - 
i 

8 
0 

The probability of finding the relative variable n,, between n,, and 
nra + dni, is thus given by pJ, dnj,. The average value of the relative 
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variable nrn, denoted (nra), is given by 

The integration is done for each relative population from -N, to +co. 
For instance, in the example of coupled individual population levels, 

P. AUGER 

treated in Section 6, one can get a constant of the motion. If we assume that 
for each kind of activity associated with each state S, the animal spends a 
certain energy per unit time bs,, then we can calculate the average energy Ei 
spent per unit time by an animal in age class i at time t as follows: 

E,=+s,&,, 
I s 

Gi = N,E,. 

G, can be assumed to stay quite constant over long enough intervals At, 
correzponding nevertheless to negligible variation of the average populations 

N,(N,At=O). 

I would like to thank Mrs. E. Thureau and Mrs. L. Leschot for their help in 

the presentation of this work. 
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