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SUMMARY

A numerical model has been developed for the 2D simulation of free surface flows or, more generally speaking,
moving interface ones. The bulk fluids on both sides of the interface are taken into account in simulating the
incompressible laminar flow state. In the case of heat transfer the whole system, i.e. walls as well as possible
obstacles, is considered. This model is based on finite element analysis with an Eulerian approach and an
unstructured fixed mesh. A special technique to localize the interface allows its temporal evolution through this
mesh. Several numerical examples are presented to demonstrate the capabilities of the model.# 1997 by John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Some people call flows with moving boundaries free surface flows, others call them moving interface
flows. This distinction is made when one or both media on either side of the interface are considered.
Determining the interface position in the course of time is one of the main difficulties of these studies.
It is, however, advisable to qualify the difficulty level according to the nature of the flow. We can
basically outline two types of problems:

1. In the first type, only one parameter, such as height according to a reference plane, can define
the interface without ambiguity. We can quote, as an example, maritime and fluvial hydraulic
engineering in the environmental sector;

2. In the second type, such as in shaping processes of metals, the geometrical complexity of the
interface as well as its evolution requires a more sophisticated treatment.

Our study deals with the second type of problem, for which we have developed a numerical model.
This model is based on the finite element method. It was initially developed for modelling the filling
of casting moulds,1 however, as we show herein, the method can be applied more widely. As a
thorough bibliographic review can be found in Reference 12, we will only cite in this article the
works directly associated with the present study.

First we present the strategy adopted to locate the interface, considering its dominating influence
on the structure of the developed model. The total model is then described from the mathematical
formulation of the problem to the spatial and temporal discretization. We finally present some
examples to assess the model performance as well as a comprehensive simulation example of the
filling of a casting mould.
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2. FRONT TRACKING

2.1. Principle of method

The treatment of a problem with a moving boundary, or more generally a moving interface, can be
carried out according to a Lagrangian, Eulerian or mixed formulation, leading to very different
numerical models.

Finite element analysis, employed extensively in structure calculations, generally uses a
Lagrangian kinematics description. Each node of the mesh is associated with a particle of the
modelled material(s) and moves with it. The mesh deforms in the course of time (see Figure 1).

However, when the deformation become very large, particularly when touching and near the walls,
there is such a distortion in the mesh that singular elements can appear. A remeshing operation is then
necessary before proceeding with the computation. Thus it is a particularly efficient and accurate
approach to study shaping processes of materials with a certain stiffness, such as extrusion and
embossing. However, it rapidly becomes inappropriate, indeed impossible, to apply with less viscous
materials.

In fact, the difficulty lies in the mixed characteristics of the problem. The description of the flow
implies an Eulerian approach and the tracking of the interface a Lagrangian one. Hence, mixed
Eulerian–Lagrangian methods have been developed.3,4 Their principle is based on a mesh evolution
independent of the fluid movement, except in the proximity of the interface where both velocities
coincide (see Figure 2).

However, even this approach remains inadequate as soon as the interface becomes too complex
geometrically. Besides, it becomes ineffective when facing multiple fronts since, for example, it does
not allow a simple treatment of the coalescence phenomenon, i.e. the joining of two fronts or two
parts of the same front.

The totally Eulerian approach in which the moving interface is advected through a fixed mesh
eliminates any remeshing problem and has been developed for the finite difference method, which
can only deal with structured meshes. Here two types of methods can be distinguished: the ‘surface-
tracking’ method and the ‘volume-tracking’ one. In the first type of method a series of curves
represents the interface in a 2D model (see Figure 3(a)). These curves are based on a finite number of
points following the moving interfaces. However, it is difficult to apply this method to 3D models
because of the vast amount of data to be stored and processed. Furthermore, it still doesn’t resolve the
question of coalescence. With the second type of method one does not really follow the interface but
rather tries to determine in each cell of the mesh the volume fraction taken up by the various fluids
(see Figure 3(b)). This procedure allows the treatment of any interface configuration up to
approximately a cell in accuracy, however as complex it may be, and allows one to address the
coalescence phenomenon. Each fluid present can be identified by introducing particles without mass
as tracers.6 However, the amount of data to be stored and processes is still excessive. In the VOF
(volume-of-fluid) technique developed by Hirt and Nichols,7 the fluid presence or absence at instantt

Figure 1. Deformation of mesh in Lagrangian approach
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and point (x; y) is characterized by a scalar fieldF�x; y; t� with value zero (fluid absent) or unity (fluid
present). This field is advected by the flow and consequently satisfies the transport equation

@F

@t
�

~V �
~
HF � 0; �1�

where ~V indicates the fluid velocity. The solution of this equation gives the value of the scalar
function F at any point of the domain at each instant. The ‘filling rate’ of a mesh cell can then be
easily obtained by integrating. The VOF technique was previously introduced by Hirt and Nichols in
the finite difference SOLA algorithm described in Reference 8, using a ‘donor–acceptor’ technique9

to solve the transport equation forF.
However, if one wants to utilize the complex geometry capabilities of the finite element method,

this technique, i.e. VOF, cannot be considered as it requires the use of meshes with rectangular cells.
Unfortunately, the finite element method, like any interpolation-based method, has difficulty in
modelling the propagation of a discontinuity accurately. To overcome this difficulty, Thompson10

introduced the pseudoconcentration method (PCM) to follow an interface between two immiscible
fluids. The functionF then varies continuously between two extreme values; the points whereF takes
an index valueFc gives the interface position (see Figure 4(a)).

In fact, this notion of pseudoconcentration function can be extended11 to any continuous and
monotonic scalar fieldF on the domain with the index value taken on the interface (see Figure 4(b)).

2.2. Cursor concept

The model we have developed is based on the front-tracking technique just described. The problem
therefore lies in the solution of the transport equation (1) for a scalar functionF initially linear on its
domain, but with requirements a little different from the usual ones for a transport problem. Indeed,
the accuracy of the computation ofF is a crucial parameter only in the neighbourhood of the
prescribed valueFc for the interface. Outside this zone, all we have to respect is thatF never
degenerates to the point of crossing again theFc-value and rendering problematic the identification of
the interface. Of course, a sufficient condition is to preserve the uniqueness character ofF during the
transport.

Figure 2. Deformation of mesh in mixed Eulerian–Lagrangian approach

Figure 3. Front tracking in Eulerian approach: (a) line segment method; (b) volume fraction method
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The exact solution of equation (1) can be determined wit the use of characteristics. Indeed, the
solution at time stept � Dt is given by

F�~x; t � Dt� � F� ~X �t�; t�; �1a�

where ~X �t� is the solution of the differential equation defining the characteristic lines,

d ~X

dt
�

~V � ~X �t�; t�; t4t4 t � Dt; �1b�

subject to the final condition~X �t � Dt� � ~x.
The analytic solution of the problem can therefore be obtained if one is able to solve the

differential equation (1a) exactly. However, this last is non-linear as soon as the velocity field is
space-dependent. In this case it is solved up to a given accuracy, whatever the numerical method
employed. The idea of a cursor is then to prevent all pollution coming from the transport ofF in the
region not concerned with the interface evolution. To this end, the resolution of equation (1) is
restricted to a narrow band of elements framing the interface and displaying with it at each time step:
the cursor (Figure 5).

As illustration, consider the transport of a vertical interface in the 2D convergent=divergent
channel of Figure 6(a).

In the context of a 1D model, with an average velocityU �x� deduced from the incompressibility
condition (Figure 6b), equation (1b) can be solved analytically. Starting at timet with an ideal

Figure 4. (a) Pseudoconcentration function; (b) generalization

Figure 5. Sketch of interface and its computational cursor in flow domain
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F-profile of shapeF�x; t� � 1 ÿ x;Fc � 0 being the prescribed value for the interface, the solution
provided by (1a) and (1b) for time step�t; t � Dt� is

F�x; t � Dt� �

1 ÿ
aL

a ÿ b
� x ÿ

aL

a ÿ b

� �2

� 2DtU �0�
aL

a ÿ b

" #s

if a > b;

1 ÿ
aL

a ÿ b
ÿ x ÿ

aL

a ÿ b

� �2

� 2DtU �0�
aL

a ÿ b

" #s

if a < b:

8

>
>
>
>
>
<

>
>
>
>
>
:

Note that in order to ensure a real solution for all points in the domain�0;L�, the time step valueDt
has to respect in the divergent case�b > a� the stability criterionDt4 aL=U �0��b ÿ a�. When a
becomes very small, the Lagrangian approach by characteristics can therefore lead to very small time
step values, penalizing from the point of view of computational efficiency. This illustrates the
limitations of this type of approach for flows presenting some abrupt expansion and, more generally,
a separation zone.

In that case the uniqueness of the solution of equation (1b) is no longer ensured. The Eulerian
approach on the other hand deals with the solution of the transport equation (1) via a time
discretization scheme. We consider for example the explicit Euler scheme which leads to the linear
equation

F�x; t � Dt� � F�x; t� ÿ DtU �x�
@F

@x

�

�

�

�

�x;t�

;

since its solution is obvious:

F�x; t � Dt� � 1 ÿ x � DtU �0�
aL

aL � �b ÿ a�x
:

This solution is plotted in Figure 7 after the first time step and is compared with the analytic one
given by the Lagrangian approach in the convergent case�L � 10; a � 11; b � 1� with an inlet
velocity of U�0� � 1 and a time step valueDt � 1.

One notes immediately that for this value of the time step the transport is correctly represented near
the interface. On the other hand, it is very badly taken into account near the exit, even making a false
interface appear. Thus we see the usefulness of the cursor, which allows the elimination of this zone
from the domain of interest when the interface is located near the entrance of the duct.

From a physical point of view, since the scalar fieldF is purely advected by the flow, its initial
distribution is simply translated along the characteristic lines as long as the velocity field is uniform.
However, if gradients appear in the velocity field, the initial distribution undergoes in addition to that
translation a distortion whose amplitude depends on the velocity gradients. Therefore the basic idea
of the cursor consists of restricting the front advection problem to its minimal part around the

Figure 6. Transport of interface in converging channel: (a) domain; (b) velocity onx-axis
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interface in order to reduce this distortion. In doing this, the narrower the cursor across the
characteristic lines around the interface is, the more the velocity variations on that stripe are reduced
and the more the distortion of theF-profile is reduced.

From the numerical point of view the error introduced by the explicit Euler scheme can be
analyzed in seeking which approximations this scheme comes down to using in equations (1a) and
(1b). To this end we can expand the left-hand side of (1a) in a Taylor series at pointx, with
D ~X � ~x ÿ ~X �t�:

F�~x; t � Dt� � F�~x ÿ D ~X ; t� � F�~x; t� ÿ DXi
@F

@xi

�

�

�

�

�x;t�

�

DXiDXj

2
@

2F

@xi@xj

�

�

�

�

�x;t�

� � � � :

The explicit Euler scheme is obtained from this expansion restricted to first order and with the
approximationD ~X � Dt ~V �~x; t� of the solution of equation (1b). Note that the second-order Taylor–
Galerkin scheme TG2 advocated by Lewiset al.12 can be deduced from the same approximation of
Dx but with the expansion extended to second order. However, in the setting of our example these two
schemes are identical, since at initial timet the F-field is linear. Thus, the use of a second-order
scheme indeed improves the accuracy with which the field is transported, but it does not permit one to
overcome the problem of a possible false interface.

In fact, the idea of focusing the front tracking on the interface neighbourhood is implicitly included
in the initial PCM of Thompson.10 Indeed, the pseudoconcentration function admits gradients only
near the interface and is flat (zero gradient) outside this region. However, one can expect that this
shape will not be conserved during the computation owing to the numerical scheme. Moreover,
numerical oscillations in the vicinity of the slope discontinuity could be generated.13 The cursor
concept is a convenient way to overcome these difficulties since it restricts the computation to non-
zero-gradient regions.

2.3. Cursor update

In an Eulerian approach the initial mesh stretches on the whole fluid flow domain. Nevertheless,
only few elements of this initial mesh that overlie the interesting regions of the front advection
problem are selected to make up the cursor (see Figure 8(a)). Therefore the computation domain of
interest for this problem is restricted to the cursor. After the new front position has been identified

Figure 7. Advection ofF-field in converging channel
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(see Figure 8(b)), the update of the cursor with respect to this position consists of a two-stage
sequence (see Figure 8(c)).

1. Select as previously mentioned the elements that make up the cursor; that is, where requested,
discard useless upwind elements and add new ones in the downwind direction. The cursor width
is defined through the minimum and maximum values ofF, which must be specified. Since for
an interface one can encounter segments moving forwards and others backwards, or moving
forwards at one time step and backwards at another one, a symmetric cursor with respect to the
interface is provided. Typically in our applications we use a cursor about five elements wide.

2. Initialize the nodes of elements entering the cursor and where theF-function has not yet been
computed during the previous time step. Recall that this last aspect has to be considered in our
model since the standard finite element space discretization yields a central scheme.

This initialization procedure consists of extending the functionF�x; y; t� along the characteristic lines
going down those nodes, according to the initial slope.

2.4. Control of mass conservation

With the front-tracking strategy previously described, based on a pseudoconcentration function,
the conservation of mass of all real fluids is not ensured. To illustrate this point, consider for example
the reattachment of two portions of the same interface. With our model this phenomenon can be
simulated only up to the level of the element size. As the interface moves, the value of theF-function
becomes greater than the index valueFc at all nodes encountered during this displacement. When all
nodes of an element have theirF-value greater thanFc, this element is seen as a filled element. It
follows that the model is not able to distinguish between a filled element and one that is crossed twice
by the interface. In this way, mass could be artificially created or lost.

In some applications, mass conservation can be a priority. For these cases we have developed a
control procedure based on a global mass balance for the system. The quantity of each fluid in the
domain (deduced from the scalar fieldF) must be consistent with the mass fluxes at the inlet and
outlet boundaries. If this balance is not satisfied, a correction of the interface position is carried out by
slightly modifying the index valueFc. This control procedure results in a spreading over the whole
interface of the errors introduced in some specific regions of it. When the mesh used is coherent with
the complexity of the flow pattern, the correction needed forFc and consequently the change in the
interface position are almost very small. In this case the mass conservation control procedure
influences only slightly the front tracking. However, it eliminates the accumulation in time of mass
deficit or gain.

Finally, the complete procedure of interface localization is achieved according to the algorithm in
Figure 8(d).

Figure 8(a)–(c)
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3. NUMERICAL MODEL

3.1. Transport equation of the interface

The above strategy to localize the interface (or interfaces if there are multiple fronts) is based on the
transport of a scalar fieldF. Mathematically speaking, the first-order hyperbolic equation (1)
describes the purely convective transport ofF. In a 2D Cartesian co-ordinate system it is

@F

@t
� U

@F

@x
� V

@F

@y
� 0; �2�

whereU andV are respectively thex- andy-component of the velocity vector~V .
This equation has to be solved at each time step on the variable domainDF corresponding to the

cursor with a Dirichlet boundary condition on the inlet boundary. The initial value of the functionF is
specified on the cursor and is a linearly decreasing function of space. As the slope has been fixed, this
distribution is obtained by associating the also fixed index valueFc with the initial position of the
interface.

3.2. Equations governing fluid flow

In theory it is only necessary to know the velocity of the points on the interface in order to transport
it. This knowledge is acquired by determining the flow of one of the fluids present. In this case the
interface is considered as a surface free from any dynamic action of the fluid on the other side of the
interface. However, in many situations this action cannot be neglected, e.g. flows in confined media
(e.g. filling of moulds in the casting industry) where the walls strongly influence the flow of the
various fluids. The resulting excess pressure or recirculation areas then play an important role in the
interface evolution, no matter what side they occur on.

That is why in the model we have developed we determine the flow of all fluids present, i.e. we are
considering a two-fluid system. On the macroscopic scale the variation in the physical properties is
very rapid and corresponds to a discontinuity when passing the interface. Nevertheless, the numerical
model cannot represent the interface exactly since it crosses elements of the mesh. In fact, in the
proximity of the interface we can identify three regions with different material properties. The first
two correspond to the elements occupied only by one or the other of the two fluids, while the third
corresponds to the band of elements crossed by the interface (transition elements), to which we assign
specific properties. These properties are the average of the properties of the two fluids situated on

Figure 8(d). Interface localization algorithm
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either side. The result is a diffuse representation of the interface since the mesh is coarse. As far as the
viscosity assigned to the transition elements is concerned, a value slightly larger than the average is
generally necessary to stabilize the interface (i.e. damping of surface waves). This artificial increase
in the viscosity in a way replaces the stabilizing effect of the surface tension which has been
neglected in the present model. Note that in such an approach where we take into account the
wholeness of the materials located on both sides of the interface, no additional boundary condition
has to be imposed on the interface.

Finally, as all the fluids present are assumed incompressible, the flow can be determined by the
solution of the Navier–Stokes equations with mechanical properties specific to each region previously
described (densityra and dynamic viscosityma, where a different indexa is associated with each
region). In a 2D model these equations take the following form in a Cartesian co-ordinate system
(x; y):

ra
@U

@t
� U

@U

@x
� V

@U

@y

� �

� ÿ

@P

@x
� ma

@
2U

@x2
�

@
2U

@y2

� �

� f vol
x ; �3�

ra
@V

@t
� U

@V

@x
� V

@V

@y

� �

� ÿ

@P

@y
� ma

@
2V

@x2
�

@
2V

@y2

� �

� f vol
y ; �4�

@U

@x
�

@V

@y
� 0; �5�

where t represents time,U and V represent the velocity components with respect tox and y
respectively,f vol

x and f vol
y are the components of the body force andP is the pressure.

3.3. Equation governing heat transfer

A study of heat transfer can be performed on all the whole fluids present since the velocity field for
each of them is known; heat transfer in the solid parts of the system, such as the walls of a mould, can
also be studied. The introduction of empirical exchange coefficients can thus be avoided at the
internal walls of the system as well as on the moving interface. To study heat transfer, we must solve
the heat equation in a domain whose regions have different thermal properties (specific heatCpa

and
thermal conductivityka). In a 2D Cartesian co-ordinate system (x; y) this equation takes the form

raCpa

@T

@t
� U

@T

@x
� V

@T

@y

� �

� ka
@

2T

@x2
�

@
2T

@y2

� �

; �6�

whereT indicates the temperature.
Note that in those regions occupied by solid materials (considered to have constant shape) the

energy equation is just the transient heat conduction equation since the convection terms are zero. As
for the region corresponding to the element band crossed by the interface, we assign thermal
properties which are the average of the properties of the two fluids on both sides. From a thermal
point of view it is also a diffuse representation of the interface whose accuracy is governed by the
element size.

3.4. Solution strategy

The three problems we have just described are strongly coupled as illustrated in Figure 9.
The interface position and its physical properties can play a crucial role in both fluid mechanics

and heat transfer problems. Conversely, the velocity field must be known to locate the interface and
to study heat transfer. The temperature field can only influence the flow if the physical properties are
temperature-dependent. In particular, a local change in density can induce natural convection; to take
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this phenomenon into account, we have chosen simplified Boussinesq modelling in which the density
variation is considered only in the body force of the Navier–Stokes equations. Thus, if gravity is the
only body force, the expression of this force is taken to be

~f vol
� ra�1 ÿ ba�T ÿ T0��~g; �7�

where ba is the coefficient of volume expansion of fluida; ra is its density at the reference
temperatureT0 and ~g is the gravity vector. Presently the model does not consider any other
temperature variation in other physical properties.

The traditional finite element method consists of solving the three problems simultaneously, i.e.
with the explicit consideration of the coupling in the system. However, our previous CFD experience
using the finite element method14 led us to revise this strategy. Indeed, in addition to the problem of
fluid mechanics, there are generally several transport problems (heat, concentration, turbulence, etc.).
Segregated computation of each problem is advantageous for numerical efficiency, since it leads to a
sequence of systems of reduced size, and for the development as well. Each problem is solved
independently with the best-adapted numerical scheme. The coupling between the problems must
then be taken into account with a coupling algorithm such as the famous SIMPLE procedure in finite
differences and finite volumes.15 In the present study this leads to the algorithm of Figure 10 where
each problem is solved only once at each time step.

The system to be solved for each problem is generated according to the usual techniques used in
the finite element method;16 that is, an integral formulation of the problem is discretized spatially
according to a finite element approximation and temporally according to the first-order implicit Euler
scheme.

Figure 9. Schematic diagram of various interactions between the three physical problems

Figure 10. Solution algorithm
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3.5. Finite element model of interface advection

The weighted residual method applied to the transport equation (2) of the interface leads to the
integral form

IF �

�

DF

dF
@F

@t
� U

@F

@x
� V

@F

@y

� �

ds � 0 �8�

on the domainDF associated with the cursor for an arbitrary admissible test functiondF�x; y�.
For the spatial discretization we have selected the Lagrangian triangular isoparametric element

with three nodes. The approximation of the admissible functionsF�x; y; t� anddF�x; y� is therefore
piecewise linear and continuous onDF, sufficient for the integral formIF to exist. Denoting byfi the
shape functions associated with this discretization, the approximation by the admissible functions on
the domainDF is

F�x; y; t� �
P
NF

i�1
fi�x; y�Fi�t�; dF�x; y� �

P
NF

i�1
fi�x; y�dFi; �9�

whereFi�t� and dFi are the values at instantt taken by the functionsF and dF at nodei and NF

indicates the total number of nodes in the cursor.
The introduction of this approximation in the integral formIF leads to the system of ordinary

differential equations

�MF
�f

_Fgt � �KF
�fFgt � f0g; �10�

where theNF nodal valuesFi�t� as well as their temporal derivatives_Fi�t� have been organized into
the vectorsfFgt and f _Fgt respectively. The matrices�MF

� and �KF
� are given by

MF
ij �

�

DF

fifj ds; KF
ij �

�

DF

fi U
@fj

@x
� V

@fj

@y

� �

ds: �11�

Utilizing implicit Euler time integration leads finally to the following algebraic system at each time
step:

��MF
� � Dt�KF

��fFgt � �MF
�fFgtÿDt: �12�

3.6. Finite element model of heat transfer problem

The weighted residual method applied to the energy equation (6) leads to the integral form

IT �

�

DT

raCpa
dT

@T

@t
� U

@T

@x
� V

@T

@y

� �

ds �

�

DT

ka
@dT

@x

@T

@x
�

@dT

@y

@T

@y

� �

ds ÿ

�

@DT

kadT
@T

@n
dl � 0

�13�

on the domainDT of this problem for an arbitrary admissible test functiondT�x; y�. Note that the
diffusion terms have been integrated by parts, making an integral appear on the domain boundary
@DT with outer normal~n. When considering only isothermal or adiabatic boundary conditions, this
boundary integral cancels itself. For the spatial discretization we have selected the same element as
previously mentioned forF. The approximation by admissible functions on the domainDT is

T �x; y; t� �
P
NT

i�1
fi�x; y�Ti�t�; dT �x; y� �

P
NT

i�1
fi�x; y�dTi; �14�
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whereTi�t� anddTi are the values taken by the functionsT anddT at nodei and instantt. NT indicates
the total number of nodes of the mesh used for this problem.

With implicit Euler time integration the algebraic system to be solved at each time step is written
finally as

��MT
� � Dt�KT

��fTgt � �MT
�fTgtÿDt; �15�

with matrices�MT
� and �KT

� defined by

MT
ij �

�

DT

raCpa
fifj ds; �16�
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�

DT
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@y

� �

ds �
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DT
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@fj
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�

@fi

@y

@fj

@y

� �

ds: �17�

Note that boundary conditions other than isothermal or adiabatic ones can be specified easily by
considering specific boundary elements (convection, radiation, etc.).17

3.7. Finite element model of flow problem

The weighted residual method applied to the equation system (3)–(5) describing the flow leads to
the integral form

Iv �

�

Dv

dU ra
@U

@t
� U

@U

@x
� V

@U

@y

� �

�
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@x
ÿ f vol

x

� �

ds

�

�

Dv

dV ra
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� U

@V
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� V
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� �

�
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ÿ f vol

y

� �

ds

�

�

D
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@x
�

@V

@y
ÿ

P

l

� �

ds �

�

Dv

ma
@dU

@x

@U

@x
�

@dU

@y

@U

@y
�

@dV

@x

@V

@x
�

@dV
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@V

@y

� �

ds

ÿ

�

@Dv

ma dUn
@Un

@n
� dUtg

@Utg

@n

� �

dl � 0

on the domainDV for arbitrary admissible test functionsdU�x; y�; dV �x; y� and dP�x; y�. The
diffusion terms have been integrated by parts, making an integral appear on the boundary@Dv of the
domainDv. The velocity is expressed as in a normal componentUn and a tangential componentUtg at
the boundary@DV, while ~n indicates the outer normal. This boundary integral does not appear for
homogeneous Dirichlet or Neumann boundary conditions. In general it allows us to take into account
the wall shear stress through the introduction of a specific boundary element.1

Note also that we resort to a penalty formulation of the incompressibility constraint,18 i.e. the
continuity equation is replaced by

@U

@x
�

@V

@y
ÿ

P

l
� 0; �5a�

wherel is the penalty coefficient�l � 108
�.

The spatial discretization is a bit more complicated than those of both the previous problems.
Indeed, an approximation that is identical for velocities and pressure leads to an unstable numerical
scheme. This problem of incompatibility between an approximation spaces of velocities and pressure
is expressed mathematically by a stability condition ‘inf-sup’.19–21 The six-node triangular element
(see Figure 11) originally developed by Bercovier and Pironneau22 satisfies this criterion. It provides
a linear approximation of pressure on the whole element and a linear approximation of velocities on
each of the four three-node triangles within the element. We have selected it for our model because of
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its numerical efficiency. Indeed, as for the three-node triangular element used for the temperature
field and interface evolution, it does not require any Gaussian numerical integration. In fact, this
element can be regarded as a macroelement made up of four three-node triangular elements identical
with those used for the functionF and the temperatureT. However, the middle nodes must be
positioned absolutely in the centre of the three sides. The pressure can then be eliminated from these
three nodes by demanding a linear approximation on each side. This results in a linear approximation
on the whole macroelement T6 (see Figure 11).

Shape functions associated with the velocity approximation are consequently the same as for the
functionF and the temperatureT. Denoting byci the shape functions for pressure, the approximation
by admissible functions on the domainDV is then defined by

U �x; y; t� �
P
Nv

i�1
fi�x; y�Ui�t�; dU�x; y� �

P
Nv

i�1
fi�x; y�dUi; �19�

V �x; y; t� �
P
Nv

i�1
fi�x; y�Vi�t�; dV �x; y� �

P
Nv

i�1
fi�x; y�dVi; �20�

P�x; y; t� �
P
Np

i�1
ci�x; y�Pi�t�; dP�x; y� �

P
Np

i�1
ci�x; y�dPi; �21�

whereNV andNP indicate the number of nodes for velocities and pressure respectively.
With implicit Euler temporal discretization the algebraic system to be solved at each time step is

finally
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where

�M � �

�MU
� �0� �0�

�0� �MV
� �0�
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5; �K� �
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�
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� �KPV

� �KP
�

2

4

3

5:

Figure 11. Finite element for computing velocity and pressure fields
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The various matrices involved in the system are defined by

MU
ij � MV

ij �

�
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rafifjds; �23�
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ds;

KPU
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@fj

@y
ds; KP

ij � ÿ

1
l

�

DV
cicj ds:

�25�

Body forces such as centrifugal, Coriolis and gravity forces also lead to a matrix contribution to
�K�. Here we have only considered a buoyancy force in which gravity has ay-component. The loading
vectors using the Boussinesq approximation are

FU
i � 0; FV

i � ÿ

�

DV

ra�1 ÿ ba�T ÿ T0��gfids: �26�

4. APPLICATIONS

4.1. Flow in a T-branch

The first example illustrates the model in the case of flow configurations with multiple interfaces. In
this study we consider two distinct interfaces at the initial instant. The flow conditions chosen within
the branch illustrates three typical stages in interface evolution:

(a) transport of distinct interfaces
(b) joining of the two interfaces
(c) formation of a common interface

The domain has the geometrical form of a T-branch (see Figure 12(a)) which is symmetrical to the
line IJ. The fluid enters the domain at sections AB and EF with perfectly identical flow conditions.
This allows one to obtain two identical flows converging towards the common outlet section
indicated by CD.

The finite element covering of the domain consists of 224 triangular elements with six nodes (see
Figure 12(b)) to which correspond 433 nodes.

Fluid flow. In this example we focus our interest on the transport and evolution of the interfaces in
the domain. Thus we assume that the flow remains independent of the interface position and steady.
Therefore it is calculated only once. The flow-driving force in this problem is a pressure gradient
imposed between the inlet sections and the outlet one. The boundary conditions selected to determine
the flow in this system are the following.

1. On the inlet sections AB and EF:P �
�P1.

2. On the outlet section CD:P �
�P2 �

�P1 ÿ
�P2 � 12 � 105 Pa�.

3. The normal velocity componentUn is set to zero on the walls BC, DE and FA.
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4. A wall shear stress defined bytp � ÿaUtg is applied to the same contours (BC, DE and FA).
The coefficient of friction is set toa � 0�01, while Utg indicates the tangential slide velocity of
the fluid.

The steady state fluid flow obtained under these conditions is presented in Figure 13.

Interface transport and localization.There are two interfaces inside the domain, symmetrically
located considering their respective inlet sections. Therefore the initial distribution of the functionF
on the computational domain is based on setting up two cursors, each one surrounding an interface:

! ÿ104 x4 ÿ 8; F�x; y; t0� � ÿ9 ÿ x
! ÿ84 x4 8; F�x; y; t0� � ÿ1
! 84 x4 10; F�x; y; t0� � ÿ9 � x

Both interfaces shall be defined at each instant of time by the same index valueFc � 0. A cursor is
automatically put around the current position of each interface. It is made up of elements of the mesh
whose nodal value of the functionF belongs to the interval�1;ÿ1�. Thus, during the first steps, both
cursors move towards one another in the domain, as also do the interfaces which they surround. As
soon as they meet each other, they constitute only one cursor which surrounds both interfaces.

A Dirichlet boundary condition is applied on inlet sections AB and EF, i.e.F�ÿ10; y; t� �
F�10; y; t� � 1. The evolution of the interface position in the flow is described in Figure 14.

4.2. Broken dam problem

A rectangular column of water in hydrostatic equilibrium is initially confined between two vertical
walls. The water column is one unit wide and two units high. It is submitted to a gravity field acting
downwards with g0 � 0�01 m s72 magnitude in order to diminish turbulence effects such as
breaking. At the beginning of the calculation the right wall (dam) is removed and water is allowed to
flow out along a dry horizontal floor.

The test case is interesting to check on the capability of the numerical model and to compare with
results reported in the literature.7,23 It also exhibits interesting physical and numerical features in the
way it raises a few questions.

Figure 13. Steady stateflow in T-branch: (a) velocity field; (b) streamlines

Figure 12. Transport of multiple interfaces: (a) geometry of problem; (b) spatial discretization of flow domain
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1. Which boundary conditions have to be imposed on the top and right parts of the computational
domain?

2. How does the air flow influence the water flow?

Numerical computations.The computational domain is extended to six times the width of the
column in the horizontal direction�04 x4 6� and twice its height in the vertical direction
�04 4y4 4�. In doing this, we wish to limit the influence of the boundary conditions acting on the
upper and right parts of the computational domain. We have performed our calculations with two
meshes built on 6161 nodes and 3000 elements for the finer one and 4641 nodes and 2250 elements
for the coarser one.

Fluid flow. The two fluids considered in this example are water (densityr1 � 1000 kg m73 and
dynamic viscosity m1 � 10ÿ3 Pa s) and air (densityr2 � 1 kg m73 and dynamic viscosity
m2 � 10ÿ5 Pa s).

Concerning the boundary conditions on the left and bottom parts of the computational domain, we
imposed the normal component of the velocity to be zero�Un � 0� and also applied the free slip
condition�@Utg=@n � 0� on these parts of the boundary. Dealing now with the upper and right parts of
the computational domain, we have experimented with two types of boundary conditions. These parts
were first considered as open boundaries and consequently we imposed the associated boundary
conditions@Un=@n � 0 and @Utg=@n � 0. In a second stage we considered these two boundaries as
walls and therefore imposed the boundary conditionsUn � 0 and @Utg=@n � 0. The pressure was
prescribed as zero at the upper right corner of the computational domain for both cases.

The initial solution of the velocity components is set to zero over the entire domain, while the
pressure satisfies the hydrostatic equilibrium.

Figure 14. Positions of interfaces at various instants
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Transport and localization of interface.The initial distribution of the functionF on the
computational domain is designed to satisfyF0�x; y� � Fc � 0 at the initial interface location. This
initial distribution is performed as: if04 y4 1 � x4 4, thenF0�x; y� � x ÿ 1, elseF0�x; y� � y ÿ 2.

Results.We have plotted in Figure 15 the location of the leading edge of the water–air interface
versus non-dimensional time�t0 � t

p

�2g0=a� from experimental results23 and from our various
numerical results.

Owing to the fact we simulate the flow of both fluids (air and water) in the whole domain, it is clear
that the boundary condition on the right part of the computational domain influences the whole flow
and consequently the interface location. One can see from Figure 15 that the second type of boundary
condition (confined domain) fits the experimental results better, except when the leading edge of the
front is getting closer and closer to the right wall. The reason comes from the fact that in the late stage
of spreading, the leading edge of the interface reaches the region where the flow moves up along the
right wall of the confined domain. Therefore it cannot spread any further as it did in the previous
stage. Nevertheless, both numerical results agree reasonably well with the experimental behaviour.

One can get a more global description of the spreading sequence in Figure 16, where a few
interface locations are drawn at selected non-dimensional times.

The amount of computational work required to get the leading edge of water atx � 4�0 is 765 min
(on a Sun Sparc 10–51) for the finer mesh but only 425 min for the coarser one.

4.3. Free surface flow with obstacle

This example is used to evaluate the action of the flow on the interface position and vice versa.
Indeed, when the fluids separated by the interface have very different physical properties (e.g. liquid
metal and air), the interface position can have a pronounced effect on the flow.

The initial interface position separating liquid metal and air in the flow domain defines the initial
configuration of the problem. The shape is vertical at a given distance from the inlet section AB (see
Figure 17(a)) and defines at this initial instant a fixed column of liquid metal.

The simulation starts when an injection velocity is imposed on the inlet section (AB) of the mould.
This velocity is imposed as a flat profile of constant magnitude over the section AB. Consequently,
during the filling phase the liquid metal is subjected to (a) an imposed flow on the inlet section (AB)
and (b) a gravity field which acts downwards perpendicular to the inlet velocity.

Figure 15. Comparison of calculated results with experimental data:3, experimental data; ——d , fine mesh with confined
domain; - - - -r , coarse mesh with confined domain; ——m , fine mesh with open boundary domain
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The mesh of the domain is composed of 689 nodes and 364 elements (312 T6 elements in the
domain and 52 elements along the solid walls; see Figure 17(b)).

Fluid flow. The two fluids are liquid cast iron (densityr1 � 6500 kg m73 and dynamic viscosity
m1 � 2 � 10ÿ2 Pa s) and air (densityr2 � 1�2 kg m73 and dynamic viscositym2 � 2 � 10ÿ5 Pa s).
The boundary conditions are as follows.

1. On AB: U � 0�1 m s71 andV� 0.
2. On BCDE and FGHA:Un � 0 andt � ÿaUtg, with a� 0�01.
3. On EF : @Un=@n � 0.
4. At F: P� 0.

The initial solution is chosen as zero for the flow variables over the entire domain.

Transport and localization of interface.The initialization of the scalar fieldF�x; y; t� is performed
over the entire domain such that the initialization value is constant outside the initial cursor position
which is between the inlet sectionsx � 0 and 0�04 m. Inside the initial cursor position the distribution
of the fieldF is

F�x; y; t0� � ÿ200x � 4 for 04 x4 0�04:

Figure 16. Interface locations at selected non-dimensional times for finer mesh: a,t�0�0 s; b,t�0�3 s; c,t�0�6 s; d,t� 0�9 s;
e, t�1�2 s; f, t�1�5 s; g,t� 1�8 s; h,t�2�1 s; i, t� 2�4 s; j, t�2�7 s

Figure 17. (a) Geometry of problem; (b) mesh of fluid flow domain
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The initial position of the interface is given asx � 0�02 with the corresponding index valueFc � 0.
This index value will define the successive interface positions in the domain.

The problem of interface transport is purely convective. Consequently, we simply impose a
Dirichlet boundary condition on the inlet section AB:

F�0; y; t� � 4 for 04 y4 0�03:

The filling simulation is obtained with 200 time steps of an implicit Euler scheme. The minimum
value of the time step isDt � 0�01 s. The successive interface positions and corresponding velocity
fields during the filling process are displayed in Figure 18.

4.4. Filling of a casting mould

In this example we present a comprehensive simulation of the filling stage of a casting mould
whose geometry is presented in Figure 19. It is an application of bottom-gated mould filling since the
liquid metal enters at the base. Cast iron is the liquid metal introduced into the mould. It gradually
displaces the air previously in the mould. The physical properties of the two fluids as well as the
properties of the sand constituting the mould walls are the following.

r1 � 6700 kg mÿ3
; r2 � 1�1 kg mÿ3

; r3 � 1500 kg mÿ3

m1 � 15 � 10ÿ3 Pa s; m2 � 1 � 10ÿ5 Pa s;
Cp1 � 800 J kgÿ1 Kÿ1

; Cp2 � 1005 J kgÿ1 Kÿ1
; Cp3 � 1000 J kgÿ1 Kÿ1

;

k1 � 33 W mÿ1 Kÿ1
; k2 � 3 � 10ÿ2 W mÿ1 Kÿ1

; k3 � 1 W mÿ1
; Kÿ1

:

Physically speaking, three zones can be distinguished in the domain. Indices 1, 2 and 3 indicate
respectively the liquid metal, air and sand (see Figure 19(a)). The domain is discretized by

(a) 1050 T6 elements in the mould, consisting of 2337 nodes
(b) 107 L3 elements on the inner sides of the mould
(c) 1222 T6 elements in the mould thickness (sand), consisting of 2288 nodes.

This amounts to 2380 elements and 4625 nodes (see Figure 19(b)).
We have refined the mesh on the mould sides along the shape contour which corresponds to an

intense heat exchange zone between the liquid metal and the mould (Figure 20). The fluid is
introduced into the mould at a temperature close to its melting temperature (about 1300�C), while
the mould is initially at ambient temperature (20�C). This mesh refinement is necessary to accurately
model the thermal gradient on both sides of the solid–liquid boundary. We thus propose a length ratio
between the elements on each side of this contact, considered as perfect, assuming a pure conduction
phenomenon. In this case, to express the continuity of the heat flux, the following condition must be
observed:

a1

a3

l3

l1

� �2

� 1; with a1 �
k1

r1Cp1
; a3 �

k3

r3Cp3
;

wherea1 anda3 represent the thermal diffusivities of media 1 and 3 andl1 and l3 are the lengths of
the elements in media 1 and 3 according to the directions of the thermal gradient.

A similar refinement of the mesh should be carried out in the proximity of the interface where the
same problem occurs (air is a better insulator than sand). Nevertheless, the interface displacement in
time prevents this operation when there are no solution-adaptive computational grid capabilities.
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Fluid flow. The boundary conditions are expressed in the local reference frame.

1. On AB : Un � ÿ0�25 m sÿ1 andUtg � 0.
2. On BC and DA:Un � 0 andt � ÿaUtg, with a� 0�01.
3. On CD:@Un=@n � 0.

The initial solution is chosen to be zero over the entire domain for the flow variables.

Figure 18. Interface position and corresponding velocity field
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Transport and localization of interface.Initialization of the scalar fieldF�x; y; t� is performed over
the entire domain. The initial value is set to a constant outside the initial cursor. The cursor extends
from the injection section AB to the point where the neck starts bell-mouthing. Inside this initial
cursor the initial distribution of the fieldF is

F�x; y; t0� � ÿ1000 y � 3 for 04 y4 0�006:

The initial position of the interface is given asy � 0�003 with the corresponding index value
Fc � 0. This index value will enable us to define the interface position as the mould is filled.

The interface transport problem is purely convective. That is why we only impose a Dirichlet
boundary condition on the inlet section AB:

F�x; 0; t� � 3 for 0�0154 x4 0�028:

Heat transfer.The boundary conditions are as follows:

1. On AB: T� 1300 �C.
2. On HE and FG:@T=@n � 0.
3. On EF and GH:T� 20 �C.

The initial solution of the thermal problem is constant,T0 � 20 �C, in the whole mould.
Figure 21 displays the evolution of the interface during the filling operation.
Figure 22 displays at various times the following features of the filling process:

Figure 20. Refinement of mesh in mould side proximity

Figure 19. (a) Geometry of problem; (b) mesh of studied domain
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(a) the velocity fields of the liquid cast iron and air in the mould
(b) the interface position separating the liquid cast iron which fills up the mould and air escaping

(it is superposed on the velocity field in the figures)
(c) the temperature field within the flowing fluids and in the mould walls as well.

5. CONCLUSIONS

The purpose of this numerical model is the simulation of flows with complex moving interfaces. It
takes advantage simultaneously of the geometrical discretization flexibility of a finite element
analysis and the potential of volume-tracking methods. As a matter of fact, the approach is Eulerian
and based on a fixed mesh. This avoids the problem of element distortion and therefore remeshing.
Systems including complex obstacles and shapes can be represented accurately. Furthermore, the
mesh can be refined locally in regions with large gradients. This possibility has been exploited in the
last application presented, where very intense thermal gradients had to be taken into account near the
walls.

The model efficiency is also related to the solution strategy adopted. This strategy consists of
solving flow, heat transfer and interface transport problems sequentially. It allows the creation of a
mesh for each problem and takes into account their own peculiarities (domain of definition,
refinement zone, etc.). Furthermore, numerical schemes can be chosen individually according to the
mathematical nature of the equations to be solved (hyperbolic, parabolic, non-linear, etc.).

The cursor concept has been introduced to improve the PCM front-tracking approach. It simply
consists of restricting the computational domain for the front advection problem to regions where the
scalar fieldF has non-zero gradient. In addition, a global mass conservation procedure has been
implemented. It influences very slightly the front position, providing a computational grid fitted to the
flow complexity.

Considering fluids on either side of the interface is also another important aspect of the model.
However, this aspect is mainly an advantage for flows in confined media where both fluids can
influence the interface dynamics. On the other hand, when dealing with external flows such as the
dam-breaking problem, the model efficiency could be improved by simplifying the computation of
the external fluid flow (pseudofluid).

Figure 21. Superposition of some interface positions
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Finally, a model weakness lies in the vague representation of the interface as far as physical
properties are concerned. Indeed, this difficulty is inherent in the representation of a moving interface
on a fixed mesh. However, the examples presented show that this approach provides satisfactory
results for situations where the methods based on a Lagrangian description of the interface are
ineffective.

Figure 22. Interfacee positions, velocity and temperature fields
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éléments finis tridimensionnels’,Thèse de Doctorat, Universitéde Compie`gne, 1990.
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