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Abstract. In this paper, an example of the application of the homogenization approach (asymptot-
ic expansion technique) to predict the effective diffusion coefficient for an equivalent continuum,
together with the experimental verification of the theoretical results is presented. The experimental
setup was constructed for the measurements of diffusion in a model periodic porous medium made
of Plexiglas. The computer program using the FEM was elaborated to solve the local boundary value
problem for a period and to calculate the effective diffusion coefficient. The comparison between
the theory and the experiment indicates good agreement between the numerical and experimental
values of the effective diffusion coefficient. Interpretation of the test data from the point of view of
the homogenization theory is also incorporated.
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Notations

c solute concentration.
cc; tc; Dc characteristic quantities.
D molecular diffusion coefficient.
Deff effective diffusion coefficient.
l characteristic microscopic length.
L sample length.
n porosity.
L characteristic macroscopic length.
xi macroscopic nondimensional variable.
yi microscopic nondimensional variable.
Xi physical variable.
N unit outward vector normal to �.
S volume of the pores in the period divided by the length of the period.
t time variable.
t� nondimensional time variable.
V volume of the liquid in the reservoir.
" homogenization (or scale separation) parameter.
"g geometrical scale separation parameter.
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�i local vector field.
��i nondimensional local vector field.

l volume of the pores in the period.

s volume of the solid in the period.

 total volume of the period (
 = 
l +
s).
� boundary between 
l and 
s.

1. Introduction

The knowledge of effective diffusion coefficient is of paramount importance for
the calculations of diffusive transport in porous media. This kind of transport is met
in many different domains. For example, recent studies have indicated that diffu-
sion is the controlling mechanism of contaminants transport through soil barriers
(soil liners and slurry walls). Failure to recognize the role of diffusion in barrier
design used for waste containment can lead to extremely unconservative designs
(Manassero and Shackelford, 1994). In general, diffusion is a well-recognized phe-
nomenon and diffusion coefficients for solute diffusion in free solution (also called
molecular diffusion coefficients) are available in the literature for most chemical
compounds. The problem arises when diffusion occurs in a porous medium, where
the presence of solid matrix restricts the (random in nature) movements of mole-
cules to the pore space. In such cases, the evaluation of the effective diffusion
coefficient becomes more complicated.

The theoretical approaches to the problem of the determination of the effective
diffusion coefficient are based on ‘the micro–macro passage’ (the homogenization).
The general idea of the homogenization process consists of the passage from
the description of the phenomena at the microscale (the local scale), where the
medium is heterogeneous and the governing equations are known, to the equivalent
macroscopic continuum that provides the ‘averaged’ behaviour of the medium. The
main advantage of this approach is the ‘elimination’ of the microscopic scale, in
favor of the macroscopic one, over which the variables such as the concentration
or the velocity are measured. In this framework the effective diffusion coefficient
for the macroscopic transport equation can be directly calculated, provided the
microscopic structure of the porous medium, i.e., the geometry of the pores is
known. Unfortunately, at present such calculations are practically impossible for
most of the actual porous media (like soils), due to very complex, and often not
well defined, pores networks. The existing techniques are not powerful enough to
deal with actual porous media and the only way to estimate the effective diffusion
coefficient is through experimentation.

Several approaches are used for the measurement of the effective diffusion
coefficient. A comprehensive review of the methods suitable for soils can be found
in Shackelford and Daniel (1991); Manassero and Shackelford (1994). During
the experimental process, known initial and boundary conditions are imposed to
a representative sample of the medium. That provokes the transport phenomena
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to occur, that means the propagation of the solute into the soil. The response
of the system, i.e., the concentration as a function of space and time variables is
monitored. Then, the effective diffusion coefficient is fitted to the transport equation
so, that the difference between the concentration predicted and the one observed
in the experiment is sufficiently small. At that point the important condition of the
applicability of the transport equation should be recalled. It can be formulated as
follows: the transport equation treating the porous medium as a continuum is valid,
provided the homogenizability conditions for the medium and the phenomena are
met (see relation (4) below). If these conditions are not satisfied, the experiment
will not lead to the determination of the intrinsic diffusion parameter (Auriault and
Lewandowska, 1996).

In this paper, the problem of theoretical and experimental evaluation of the
effective diffusion coefficient for a periodic porous medium will be addressed. The
purpose of the paper is to present an example of the application of the homo-
genization approach to predict the effective parameters of the equivalent continu-
um, together with the experimental verification of the obtained theoretical results.
Owing to the homogenization approach the complete resolution of the problem
could be captured.

2. Formulation of the Problem

Let us consider diffusion phenomenon occurring in a periodic porous medium
shown in Figure 1. It is assumed that the solid part in the period is undeformable and
impermeable. The pores are fully saturated by an incompressible fluid containing
a solute of the concentration c. There is neither adsorption of the solute on the
solid surface nor any reaction. Our objective is the theoretical and the empirical
evaluation of the effective diffusion coefficient for such a medium.

Figure 1. Periodic porous medium.

3. Homogenization Approach

The starting-point of the homogenization analysis is the description of the physical
process taking place in the pores of the porous medium. It is assumed that Fick’s
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molecular diffusion in the pores can be described by the following mass balance
equation for the nondimensional variables (Auriault and Lewandowska, 1993)

P
@c�

@t�
+

@

@yi

 
�D�

ij

@c�

@yj

!
= 0; (1)

with the boundary condition imposed on the solid–liquid interface

�Ni

 
D�

ij

@c�

@yj

!
= 0 on �; (2)

where the superscript ‘*’ denotes the nondimensional variables. N is the unit
outward vector normal to �. In the derivation of Equations (1) and (2) the following
representation of the variables is introduced

concentration : c = ccc
�;

space variable : X = ly
time variable : t = tct

�;

molecular diffusion tensor : D = DcD
�;

dimensionless number : P =
l2

tcDc

:

(3)

The subscript ‘c’ means the characteristic quantity (constant). The parameter "
appearing in Equation (1) is the ratio of the characteristic microscopic length
l (dimension of a period) to the macroscopic length L (dimension of a porous
sample). The very important assumption is the scale separation assumption
expressed as follows

" =
l

L
� 1: (4)

For a transient equivalent macroscopic description to be possible, the dimen-
sionless number must verify (Auriault and Lewandowska, 1993)

P = O("2): (5)

The characteristic lengths l and L introduce two nondimensional space variables

x =
X
L
; y =

X
l
: (6)

Due to the separation of scales the concentration is the function of three variables
c = c(x; y; t), where x = x(x1; x2; x3) and y = y(y1; y2; y3). The problem will
be investigated by means of the asymptotic expansion method which is often used
to derive the macroscopic equivalent models for finely heterogeneous materials,
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like porous media, composite materials, etc. (Bensoussan et al., 1978; Sanchez-
Palencia, 1980; Auriault, 1991). When following the homogenization technique, it
is assumed that the concentration can be presented in the form of an asymptotic
expansion

c�(x; y; t�) = c0(x; y; t�) + "1c1(x; y; t�) + "2c2(x; y; t�) + � � � (7)

where the components ci(x; y; t�) are y-periodic and the variable x is expressed by
the variable y, i.e. x = "y. Note that the gradient operator becomes

@(:)

@yi
! @(:)

@yi
+ "

@(:)

@xi
: (8)

The methodology of the homogenization resides in the application of the asymp-
totic expansion (7) to Equations (1) and (2). Comparison of the terms of the same
powers of " will yield the required descriptions in the form of the systems of equa-
tions to be analysed. In result, after transformations that are presented in details
in the paper by Auriault and Lewandowska (1993), the following macroscopic
governing equation is obtained

n
@c�

@t�
+

@

@xi

 
�Deff�

ij

@c�

@xj

!
= O("); (9)

where Deff� is the effective (or macroscopic) diffusion tensor and n is the porosity

n =
j
lj
j
j :

Deff� is defined by the volume average

Deff�
ij =

1
j
j

Z

l

D�

ik

 
Ikj +

@��j

@yk

!
d
: (10)

The vector field�� is the solution of the following local boundary-value problem
for the period

� @

@yi

"
D�

ij

 
Ijk +

@��k
@yj

!#
= 0; (11)

�Ni

"
D�

ij

 
Ijk +

@��k
@yj

!#
= 0 on �; (12)

where I is the identity tensor and ��i = ��i (y) is y-periodic and its average over the
period is zero

h��i i =
1
j
j

Z

l

��i d
 = 0: (13)
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Remark that the Problem (11)–(13) depends uniquely on the microscopic features
of the period geometry. It is independent of the boundary conditions imposed on
the macroscopic external boundaries of the porous medium. Therefore, Deff� is
considered as an intrinsic parameter. It can be easily shown that Deff� is symmetric
and positive definite.

4. Numerical Calculations

The calculations of the effective diffusion tensor will be performed for the porous
medium, periodic in one macroscopic dimension, Figure 2. We consider the period
geometry as shown in Figure 3. This medium was primary used by Borne (1983)
for the investigations of dynamic filtration. Let us assume the molecular diffusion
tensor D as isotropic, Dij = DIij . The axes X1;X2 and X3 are the principal
directions of the tensor Deff , therefore it can be written

Deff =

�������
D11 0 0

0 0 0

0 0 D33

�������
X1;X2;X3

: (14)

To calculate the components of the effective diffusion tensor, the local boundary-
value Problem (11)–(13) has to be solved. This problem consists of three indepen-
dent equations for three components of the vector field ��. The equation ‘k’, i.e.
the equation for the component ��k, corresponds to the macroscopic gradient of the
concentration in the direction ‘k’. Obviously, in the case considered we have, as
in Auriault and Lewandowska (1993), D22 = 0 and D33 = nD. We turn to the
determination of D11. The local boundary-value problem for � = ��1 in the period
is as follows

@2�

@y2
1
+

@2�

@y2
2
= 0; (15)

N1

�
1+

@�

@y1

�
+N2

@�

@y2
= 0 on �; (16)

Z

l

� d
 = 0; (17)

� is 
-periodic. Due to the arbitrary periodicity in the y3 direction, it is a function
of y1 and y2 only.

Remark that the problem is two-dimensional and the period is completely
defined by its cross-section by the plane (X1;X2), Figure 4. The analysis of the
geometrical symmetry of the period with respect of y1 = 0:5 enables the simplifi-
cation of the Problem (15)–(17). It is possible to show that the symmetry imposes
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Figure 2. Periodic medium.

Figure 3. Geometry of the period.

� to be an odd function of the variable (y1 � 0:5). Together with the periodicity of
�, it yields

�(y1 = 0) = 0; (18)

�(y1 = 0:5) = 0: (19)

The boundary-value problem is now formulated for the dimensionless half-period
0 6 y1 6 0:5, Figure 5, as follows: find �(y1; y2) satisfying Equations (15),
(16), (18) and (19). This is a classical Laplace problem with particular boundary
conditions. The problem was solved using the Finite Element Method (Schmelter,
1980). The domain 
l was divided into triangular elements. We applied the finite
element mesh used by Borne (1983), Figure 6. This mesh is obtained by the conform
transformation method. The network consists of 100 nodes and 144 elements.
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Figure 4. Cross-section of the period.

Figure 5. Dimensionless half-period.

Once the �-field is known, the effective diffusion coefficientD11 can be calculated
according to its definition given by Equation (10).

A computer program in Pascal was developed to solve the above problem. For
the geometry of the period shown in Figure 5 we obtain the �-field shown in
Figure 7 and the effective diffusion tensor in the form
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Figure 6. Final element mesh.

Deff = nD

�������
0:3833 0 0

0 0 0

0 0 1

������� : (20)

To determine completely the numerical value of the effective diffusion coefficient,
one has to know the molecular diffusion coefficient for NaCl solution at the con-
centration 0.017 mol/l and at the temperature 18:66�C. The following data are
available

� at the concentration 0.017mol/l and at 18�C,D = 1:345�10�5 cm2/s (Landolt
and Bornstein, 1935)

� at the concentration 0.017 mol/l and at 25�C, D = 1:538� 10�5 cm2/s (Zbior
wielkosci fizyko-chemicznych, 1974).

The temperature dependence of D is assumed to be in the form (Kalendarz
chemiczny, 1954)

D = D0 exp
�
� E

RT

�
; (21)
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Figure 7. �-field.

where E is the activation energy, T is the absolute temperature and R is the
universal gas constant, R = 8:134510(J=�K mol). The temperature interpolation
for 18:66�C, according to Equation (24), gives

D = 1:362� 10�5 cm2=s: (22)

By using the above value of the molecular diffusion coefficient Equation (20) gives
the effective diffusion coefficient in the X1 direction

Deff; num
n =

D11

n
= 5:22� 10�6 cm2=s: (23)

5. Experimental Investigations

The aim of this research was the experimental determination of the effective diffu-
sion coefficient of the periodic porous medium described in Section 4. The solute
concentration verifies

Deff
n

@2c

@X2 =
@c

@t
; (24)

where

Deff
n =

Deff

n
=

D11

n
: (25)
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Figure 8. Experimental setup.

There exist several methods of measuring effective diffusion coefficient of
miscible solute (Shackelford and Daniel, 1991; Manassero and Shackelford, 1994).
The single reservoir with decreasing source concentration (SRDC) method was
chosen for its relative simplicity.

5.1. THE SETUP

The experimental setup is presented in Figure 8 while its schematic view is shown
in Figure 9. It consists of a Plexiglas model, periodic in the directionX1 and placed
between two reservoirs made of Plexiglas as well. The dimension in the direction
X3 is sufficiently large to justify the assumption that the microscopic problem
is two-dimensional. In Borne, 1983 the ‘border effects’ for this geometry were
evaluated to be of negligible importance. In the longitudinal direction X1 there are
100 periods. Therefore, the geometrical scale separation parameter �, according to
Equation (4), is equal to 10�2.

5.2. EXPERIMENT CONDITIONS

The model is equipped with two special valves on both sides of the model. First, the
two valves were open and pure water (of resistivity 18.2 megaohms) was poured
to saturate the model (pore volume = 451:17 cm3). It was left for 24 hours for the
temperature to stabilize. Then, the two valves were closed and the reservoirs were
emptied. Next, 1000 cm3 of a NaCl solution (1 g of (dried) NaCl per kg of solution)
was introduced into the left reservoir. A low concentration solution was used to
avoid the influence of density variations (see: Jacob Bear and Arnold Verruijt
Modeling Groundwater Flow and Pollution, D. Reidel, 1987). After 24 hours, the
left valve was opened and the experiment started. Initial solution samples were
taken for chemical analyses of the ion concentrations. An automatic burette of
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Figure 9. Schematic view of the experimental setup.

200�l was used for sample withdrawals. The following chemical methods were
used to analyze the samples

� cations Na+:
flame photometry FLAPHO 4 Carl Zeiss Jena.

� anions Cl�:
potentiometric titration with ion selective electrode E(Cl)/NaCl/Hg/Hg2SO4.

The diffusion test started when the inlet valve was opened. During the test the
temperature and the level of the fluid in the inlet reservoir were controlled. To obtain
an homogenizable situation (see Equation (39) and the comments that follow), the
test has to last a sufficiently long time. Therefore, the time of the concentration
measurement was chosen to be 143 days. The solution in the left reservoir was
regularly mixed, with the inlet to the model kept closed (for several minutes, to
be compared to the experiment duration, 143 days). Upon completion of the test,
final reservoir samples were taken to determine the final solute concentration. The
diffusion test was performed at an average temperature 18:66�C � 1:01�C (143
measurements). To prevent the bacterial growth, silver scobs were used.

5.3. TEST RESULTS

The following experimental results were obtained

� From the analysis of cations Na+ we obtained

c00 = c(t = 0) = 894:11 mg NaCl=dm3 � 23 mg(27 samples);
ct = c(t = 143 days) = 860:76 mg NaCl=dm3 � 26 mg(21 samples):

� The analysis of anions Cl� yielded

c00 = c(t = 0) = 1042:02 mg NaCl=dm3 (1 sample);
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ct = c(t = 143 days) = 989:56 mg NaCl=dm3 (1 sample):

5.4. DATA ANALYSIS

After opening the inlet valve at t = 0, mass transport of chemical constituents
occurs by molecular diffusion from the reservoir into the porous medium model.
It results in a decrease in the concentration in the reservoir as function of time.
This process is described by Equation (24) with the following initial and boundary
conditions

c(0; 0) = c00; (26)

c(0;X) = 0; (27)

@c

@X
(t; L) = 0; (28)

V
@c

@t
= Deff

n

@c

@X
S at X = 0: (29)

Equation (26) is the solute balance of the inlet reservoir in which ideal mixing is
assumed. V is the volume of the liquid in the inlet reservoir. S is the volume of the
pores in the period divided by the length of the period: it represents the macroscopic
pore cross section. In the considered case S = 501:3 mm2.

The solution to the Problem (24), (26)-(29) can be approximated by the solution
for the semi-infinite model L = 1. This approximation is appropriate because at
small time the influence of the sample end can be ignored. In this case the condition
(28) is replaced by Equation (30)

c(1; t) = 0: (30)

The solution to the Problem (24), (26)-(27), (29)-(30) is as follows

c(T �;X�)

c00
= eT

�
+X�

erfc
�p

T � +
X�

p
4T �

�
; (31)

where the dimensionless distanceX� and the dimensionless time T � are expressed
by

X� = X
S

V
(32)

and

T � =
S2

V 2D
eff
n t: (33)

tipm1243.tex; 5/09/1997; 9:12; v.7; p.13



218 JEAN-LOUIS AURIAULT AND JOLANTA LEWANDOWSKA

For X� = 0 we have

c(T �)

c00
= eT

�

erfc
p
T �: (34)

Figures 10 and 11 show a zoom of the function f(T �) = eT
�

erfc
p
T � for small

values of in the range of interest. This solution can be applied to analyse the results
of the performed diffusion test. We proceed as follows. The final experimental value
of the dimensionless concentration is used to obtain the corresponding dimension-
less time T � from Figures 10 and 11. Then, the determined value of T �, together
with the final test time ttest = 143� 24� 3600 s are introduced into relation (33),
to get the effective diffusion coefficient.

� The analysis of cations Na+ yields

c(T �)

c00
=

860:76
894:11

= 0:9627 gives T � = 0:00116 (see Figure 10):

Then, the effective diffusion coefficient is calculated

Deff
n =

T �V 2

S2t
=

0:00116� 106

(5:013)2143� 24� 3600
= 3:74� 10�6 cm2

s
: (35)

� The analysis of anions Cl� yields

c(T �)

c00
=

989:56
1042:02

= 0:9497 gives T � = 0:002155 (see Figure 11):

In this case the effective diffusion coefficient is

Deff
n =

0:002155� 106

(5:013)2143� 24� 3600
= 6:94� 10�6 cm2

s
: (36)

The two values of the effective diffusion coefficient can be averaged by considering
the mass flux of NaCl as equal to the sum of mass fluxes of Na+ and Cl�. We
obtain

Deff; av
n = 5� 10�6 cm2=s: (37)

This value is in a good agreement with the numerical result (23).
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Figure 10. Zoom of the function f(T �

) for small values of T �.

Figure 11. Zoom of the function f(T �

) for small values of T �.

5.5. VALIDITY OF THE APPROXIMATE ANALYTICAL SOLUTION

The validity of the approximate solution (34) can be checked by calculating the
characteristic time of the diffusion test and by comparing it with the time duration
of the test. The characteristic time of the diffusion test is given by

tc =
L2

Deff
n

� 902

5:22� 10�6 � 1:5� 109 s: (38)

As it can be seen, the time of the test ttest = 143 days = 1:23 � 107 s is small
with respect to tc = 1:5� 109. Therefore, the approximation (34) is appropriate to
interpret the results of the experiment.
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6. Discussion

The comparison between the obtained results indicates that there exists a good
agreement between the theoretical and experimentally determined effective diffu-
sion coefficient. Nevertheless, some discrepancy between the two values, namely
5:22� 10�6 cm2/s and 5� 10�6 cm2/s is noticed. There are many possible sources
of errors in the experimental estimation of the effective diffusion coefficient, like

� temperature variations (�10),
� modifications of the pore geometry due to the utilization of glue to make the

model leak-proof and to the imperfections of the model realization (the volume
estimated experimentally was 434 cm3 instead of 451 cm3),

� presence of parasite phenomena, like anion adsorption of Cl�,
� bacterial activity. Biochemical corrosion appeared to be an important problem

during the first test trial when the model was made of duraluminium.
� errors related to collection of solution samples,
� precision of chemical analyses,
� error in the estimation of the molecular diffusion coefficient D for NaCl.

Another origin of error may be related to the limit conditions of the homogeniz-
ability of the problem considered. To analyze this aspect of the problem let us
recall the definition of the homogenization parameter " introduced in Boutin and
Auriault (1990). In our case it is written

" = l
j@c=@xj
c00

: (39)

The definition (39) was used to calculate " as a function of the space variable for the
final time of the experiment ttest = 1:23�107 s, i.e.T � = 1:62�10�3, Figure 12. In
Figure 13 the concentration profile for the same time is presented. It can be seen that
at time ttest diffusion occurs in the part of the model from 0 to 0.15 (that corresponds
to 30 cm or 33 periods, approximately). Again it confirms the validity of the
approximate solution (34). However, at X = 0, i.e. at the reservoir inlet, " � 0:13
that makes the measurements conditions slightly over the generally accepted upper
limit, which is usually assumed to be 0.1 for homogenizable situations. This may
disturb the result.

It should be pointed out that in general the homogenization analysis introduces
boundary layers of the width equivalent to one or two periods along the external
boundaries of the porous medium. However, in our particular problem such a
boundary layer does not exist and we have at X = 0 the concentration c =

creservoir = cst all along the macroscopic boundary.
The obtained results can also be interpreted in terms of the tortuosity factor � ,

(Bear and Verruijt, 1987), that expresses the effect of the microscopic configuration
of the pores on the effective diffusion coefficient. By following the definition in
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Figure 12. Variations of " with X� for ttest = 1:23 � 107 s.

Figure 13. Concentration profile for ttest = 1:23� 107 s.

Bear and Verruijt (1987), we obtain the general expression for the tortuosity tensor
� in the case when the molecular diffusion tensor is assumed as isotropic

�ij =
1
j
j

Z

l

 
Iij +

@��j

@yi

!
d
: (40)

In our case we obtain

�11 num = 0:3833 and �11 exp = 0:3671: (41)

These two values are rather close each to other; the experimental value slightly
underestimates the value of the tortuosity factor.
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7. Conclusions

In the paper an example of the application of the homogenization approach to
calculate the effective diffusion coefficient for one-dimensional periodic porous
medium, together with the experimental verification of the theoretical result was
presented. To the authors best knowledge such a comparison has never been made
before. The existing discrepancy between the results proves that the investigations
toward better understanding and description of the diffusion phenomenon should
be continued.

For real porous media it is practically impossible to solve the local boundary
value problems to obtain the theoretical value of the effective diffusion coefficient,
because of the complex pore geometry. Simplified formula based on the porosity
of the medium proved to be inadequate in the case of anisotropic systems (like
the one considered), for which the details of the geometry play an essential role.
Therefore, very often experiment is the only available method of prediction of the
effective diffusion coefficient.

Finally, the experimental effort has to be emphasized. Although very simple
in conception, the diffusion test was found to be very difficult to carry out and
several trial tests were necessary in order to elaborate the final test procedure. It is
pointed out that the diffusion parameter identification test should be programmed
in a way to ensure the homogenizability condition to be satisfied. It practically
means long duration of a test and thus problems to maintain the constant test
conditions (bacteria growth, pH variations, etc.). If the homogenizability condition
is not met, the obtained diffusion coefficient is not an intrinsic parameter and can
not be applied to field conditions.
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