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AbstractÐThe paper presents a theoretical study using KaÂ rmaÂ n±Pohlhausen method for describing the
transient heat exchange between the boundary-layer free convection and a vertical ¯at plate embedded
in a porous medium. The unsteady behaviour is developed after generation of an impulsive heat ¯ux
step at the right-hand side of the plate. Two cases are considered according to whether the plate has a
®nite thickness or has no thickness. The time and space evolution of the interface temperature is
evidenced. # 1998 Elsevier Science Ltd.

1 . INTRODUCT ION

The importance of heat transfer phenomena associated with free convection in porous media is

well known. Interest in this phenomena has been motivated by such diverse engineering

problems as geothermal energy extraction, storage of nuclear waste material, ground water

¯ows, pollutant dispersion in aquifers and packed-bed reactors, to mention just a few appli-

cations. The archival publications on this topic were excellently reviewed by Nield and Bejan [1].

Owing to its fundamental and practical importance, the conjugate coupling heat transfer

between a free convection ¯ow and a vertical ¯at plate of ®nite thickness embedded in a porous

medium has received particular attention [2±7]. Various approaches were used to deal with the

di�culties associated with the simultaneous solution of the ¯ow and thermal boundary layers

and the longitudinal and transversal heat conduction in the solid plate. Some aspects of this

coupling phenomena and bibliography on the topic can be found in the most recent reviews by

Kimura et al. [8], and Pop and Nakayama [9]. However, despite the existing results in the open

literature they do not yet provide a complete description of this important problem, which has a

bearing on many practical applications, particularly those related to energy conservation in

buildings [10].

The point we wish to take up here is that of the transient conjugate free convection due to a

vertical ¯at plate embedded in a porous medium. We assume that at a given time (t>0) the

right-hand side of the plate is suddenly subjected to a uniform heat ¯ux, while the left-hand side

of the plate is thermally insulated. The present study was conducted in two phases: with ®nite

thickness or without thickness of the plate, respectively. Analytical and numerical solutions are

presented for all possible values of time and space evolution of the interface temperature.

Finally, it is worth mentioning that Vynnycky and Kimura [6] have considered the case when

the temperature of the left-hand side of the plate is suddenly raised to, and held at, a uniform

temperature.
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2 . BAS IC EQUAT IONS

Consider unsteady free convection ¯ow due to a semi-in®nite vertical ¯at plate of ®nite thick-

ness a adjacent to a semi-in®nite ¯uid-saturated porous medium. Initially, the whole system is at

a temperature T1, but subsequently the left-hand side of the plate is suddenly raised to, and

held at a uniform heat ¯ux qw. The physical model and coordinate system is shown in Fig. 1.

Assuming that the porous medium is isotropic and homogeneous and that the ¯uid is incom-

pressible, we invoke the boundary layer and the Boussinesq approximations to obtain the fol-

lowing equations.

The equation of continuity

@u

@x
� @v
@y
� 0 �1�

Darcy's Law

u � gKb
�
�Tf ÿ T1� �2�

The equation of energy in the ¯uid±porous medium

s
@Tf

@ t
� u

@Tf

@x
� v

@Tf

@y
� af

@2Tf

@y2
�3�

and the equation of the heat transfer inside the solid plate

@Ts

@ t
� as

@2Ts

@y2
�4�

where (x,y) are cartesian coordinates along and normal to the plate, (u,v) are the velocity com-

ponents in the (x,y) directions, t is the time, Tf and Ts are the temperatures of the ¯uid±satu-

rated porous medium and the solid plate, respectively, and the physical constants g, b, �, K, af,
as and s are as given in the Nomenclature. Equations (1)±(4) are subject to the following initial

and boundary conditions.

For the ¯uid±porous medium (yr0)

u � v � 0, Tf � T1 at t � 0 or x � 0 �5�

Fig. 1. Physical model and coordinate system.
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v � 0 on y � 0 �6�

u � 0, Tf � T1 as y ÿ41 �7�
for the solid (ÿaRyR0)

Ts � T1 at t � 0 or x � 0 �8�

@Ts

@y
� 0 on y � ÿa �9�

for the ¯uid±solid interface

Tf � Ts � Tp on y � 0 and t > 0 �10�

qw � jqsj � jqf j � ks
@Ts

@y
ÿ kf

@Tf

@y
on y � 0 and t > 0 �11�

where Tp is the interface temperature and kf and ks are the thermal conductivities of the ¯uid

and solid, respectively.

We further de®ne the following dimensionless variables

x* � x

aRa
, y* � y

a
, t* � ast

a2
,

d* � d
a
, u* � u

UcRa
, v* � v

Uc
,

y*
f �

Tf ÿ T1
DT

, y*
s �

Ts ÿ T1
DT

, y*
p �

Tp ÿ T1
DT

�12�

where d is the boundary-layer thickness and Uc, DT and Ra are the velocity characteristic, tem-

perature characteristic and Rayleigh number which are de®ned as

Uc � af
a
, DT � aqw

kf
, Ra � gKbqwa2

kfaf�
�13�

equations (1)±(4) then become, subsequently dropping the asterisks

@u

@x
� @v
@y
� 0 �14�

u � yf �15�

G
@yf
@t
� u

@yf
@x
� v

@yf
@y
� @

2yf
@y2

�16�

@ys
@t
� @

2ys
@y2

�17�

subject to

u � v � 0, yf � ys � 0 at t � 0 or x � 0 �18�

v � 0, yf � ys � yp on y � 0 and t > 0 �19�

u � 0,yf � 0 as y ÿ41 �20�
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@ys
@y
� 0 on y � ÿ1 �21�

k
@ys
@y
ÿ @yf
@y
� 1 on y � 0 and t > 0 �22�

where G= sas/af and k = ks/kf.

To obtain the integral form of the governing equations for transient conjugate free convection

in a vertical porous layer, we integrate equation (16) in combination with equation (14) and

equation (15) across the boundary layer and equation (17) is integrated from ÿ1 to 0, to yield

G
�d
0

@yf
@ t

dy� @

@x

�d
0

y2f dy � ÿ
@yf
@y
jy�0 �23�

�0
ÿ1

@ys
@ t

dy � @ys
@y
jy�0 �24�

Further, we assume a second-order KaÂ rmaÂ n±Pohlhausen temperature pro®le in the ¯uid±por-

ous medium and in the solid with the constraints such that the boundary conditions,

equations (18)±(22) hold. We then have [11, 12]

yf � yp

�
1ÿ y

d

�2

�25�

ys � 1

2k

�
1ÿ 2yp

d

�
y2 � 1

k

�
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d

�
y� yp �26�

Substituting these expressions into equation (23) and equation (24), we obtain

G
3

@

@ t
�dyp� � 1

5

@

@x
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d

�27�

@

@t

�
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�
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k

�
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d

�
�28�

subject to

d � yp � 0 at t � 0 or x � 0 �29�

For the steady case (@/@t = 0), equation (27) and equation (28) give

yp0 �
�
5x

2

�1
3
, d0 � �20x�

1

3 �30�

To solve equation (27) and equation (28) the method of characteristics has been used. They

are hyperbolic sets of partial quasi-linear di�erential equations, which have two characteristic

curves. The equations of direction of the characteristics are

dx � 0 and
G
3

�
4

3
� kd

�
dx � 1

5
yp�2� kd�dt �31�

so that the wave speed in the porous medium is

9�2� kd�yp
5G�4� 3kd� �32�
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Fig. 2. Pro®les of the interface temperature for G = 1 and k= 10.

Fig. 3. Pro®les of the interface temperature for G = 1 and k= 10.

Fig. 4. Pro®les of the interface temperature for x = 0.1 and k= 10.
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The interface temperature distribution yp is illustrated in Figs 2±5 for G = 1,5 and 10 with

k = 1,5 and 10. These ®gures show that although the value of yp increases continuously with

both in t and x, its slope exhibits a discontinuity at tss whose value depends on x, G and k. This

discontinuity suggests a sudden change in the heat transfer characteristics that can be attributed

to the presence of an essential singularity in the governing equations [13±16]. We also notice

that yp increases continuously with time and approaches for large time the corresponding steady

state value yp0.

3 . PLATE WITH NO THICKNESS

We consider the same assumptions and restrictions as in the previous section, but with a

semi-in®nite ¯at plate without thickness (a = 0). However, instead of a in equation (12) and

equation (13), we take now L, where L is the characteristic length of the plate. In this con®gur-

ation, there are no conduction phenomena.

The mathematical approach is based on the energy semi-integral equation (27) with G= 1,

since for this con®guration t* = aft/(sa
2), and using also the second-order KaÂ rmaÂ n±Pohlhausen

temperature pro®le (equation (23)). The boundary conditions remain identical as in the previous

case, while the initial conditions are

yf � 0 for tR0�
@yf
@y

�
y�0
� ÿ1 for t > 0 �33�

The thermal boundary-layer thickness d as deduced from equation (33), where yf is replaced

by its expression (equation (25)), is given by

d � 2yp �34�
Substituting d given by equation (34) into equation (27), where G= 1, leads to the following

partial di�erential equation

4

3
yp
@yp
@t
� 6

5
y2p
@yp
@x
� 1 �35�

subject to

yp � 0 at t � 0 or x � 0 �36�

Fig. 5. Pro®les of the interface temperature for G= 1 and x = 0.1.
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It is noticed that equation (35) has only one characteristic curve and the wave speed now is
9yp
10 . The temperature distribution yp are also shown in Fig. 6 and 7. The same behaviour of yp
can also be seen in Figs 2±5.

REFERENCES

1. Nield, D. A. and Bejan, A., Convection in Porous Media, Springer, New York, 1992.
2. Vynnycky, M. and Kimura, S., International Journal of Heat and Mass Transfer, 1994, 37, 229.
3. Pop, I., Lesnic, D. and Ingham, D. B., International Journal of Heat and Mass Transfer, 1995, 38, 1517.
4. Lesnic, D., Ingham, D. B. and Pop, I., Zeitschrift fuÈr Angewandte Mathematik und Mechanik, 1995, 75, 715.
5. Pop, I. and Merkin, J. H., Fluid Dynamics Research, 1995, 16, 71.
6. Vynnycky, M. and Kimura, S., International Journal of Heat and Mass Transfer, 1995, 38, 219.
7. Higuera, F. J. and Pop, I., International Journal of Heat and Mass Transfer, 1997, 40, 123.
8. Kimura, S., Kiwata, T., Okajima, A. and Pop, I., Advances in Water Resources, 1997, 20, 111.
9. Pop, I. and Nakayama, A., in Analysis of Heat Transfer for Fin Type Surfaces, eds. B. Sunden and P. J. Heggs.

Computational Mechanics Publications, Southampton, 1997 (in press).
10. TrevinÄ o, C., MeÂ ndez, F. and Higuera, F. J., International Journal of Heat and Mass Transfer, 1996, 39, 2231.
11. Cheng, P., International Journal of Heat and Mass Transfer, 1978, 5, 243.
12. Lachi, M., Polidori, G., Chitou, N. and Padet, J., in International Symposium on Transient Convective Heat Transfer,

eds. J. Padet and F. Arinc, Begell House Inc., New York, 1997.

Fig. 7. Pro®les of the interface temperature for a thin (a= 0) ¯at plate.

Transient conjugate free convection 213



13. Yang, K.-T., International Journal of Heat and Mass Transfer, 1966, 9, 511.
14. Nanbu, K., International Journal of Heat and Mass Transfer, 1971, 14, 1531.
15. Pop, I. and Cheng, P., International Journal of Heat and Mass Transfer, 1983, 26, 1574.
16. Cheng, P. and Pop, I., International Journal of Engineering Science, 1984, 22, 253.

(Received 17 February 1997, accepted 17 February 1997)

NOMENCLATURE
a thickness of the conducting plate
g acceleration due to gravity
K permeability of the porous medium
k thermal conductivity ratio
kf e�ective thermal conductivity of the porous medium
ks thermal conductivity of the plate
qw heat ¯ux at the plate
Ra Rayleigh number
T temperature
t time
tss time to reach the steady state
Uc characteristic velocity
u,u velocity components along (x,y) axes
x,y Cartesian coordinates

Greek symbols

af e�ective thermal di�usivity of the porous medium
as thermal di�usivity of the solid plate
b coe�cient of thermal expansion
G dimensionless parameter
DT temperature characteristic
d boundary-layer thickness
y dimensionless temperature
� kinematic viscosity
s ratio of heat capacity of the porous medium to that of ¯uid

Subscripts

0 steady state condition
f ¯uid
p interface condition
s solid
w wall condition
1 ambient condition

Superscript

* dimensionless variables
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