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A~tract--The turbulent structure of velocity and temperature fields in moving equilibrium retarded 
boundary layers is analyzed. Most attention is given to 'the gradient sublayer', where, according to 
Ginevskii and Solodkin [PriM. Mat. Mech. (Appl. Math. Mech.) 22, 819-825 (1958)], Stratford [J. Fluid 
Mech. 5, 1-16 ; 17-35 (1959)] and Perry et al. [J. Fluid Mech. 25, 299-320 (1966)], the mean velocity and 
temperature profiles are described by the half-power and inverse half-power laws. Kader [Dokl. Akad. 
Nauk U.S.S.R. 279, 323-327 (1984) ; Int. J. Heat Mass Trans. 34, 2837-2857 (1991)] deduced formulas for 
spectra and cospectra of velocity components and temperature in the gradient sublayer for the mesoscale 
range of wave numbers k by dimensional analysis and then compared them with available experimental 
data. It is shown that accurate determination of velocity variances and Reynolds stresses requires taking 
into account the contribution of large-scale turbulent disturbances corresponding to small values of k. It 
is not so for determination of the temperature variance and vertical heat flux evaluation. An analysis of 
low wave number parts of velocity and temperature spectra and cospectra is given, and its results are used 
to determine the correlation functions of turbulent fluctuations in the gradient sublayer. The formulas for 
one-point second-order moments (variances <t2>, <u 2> and <v2>, temperature flux <vt>, and Reynolds 
stress < - uv>) in the gradient sublayer of quasi-equilibrium flows are also derived and compared with the 
available data. Comparison of calculated and experimental spectra of non-equilibrium retarded flows 
uncovers disagreement in the mesoscale wave number part of the spectra for vertical velocity and Reynolds 
stress fluctuations. At the same time longitudinal fluctuation spectra and one-point variance <u 2> prove to 

be less sensitive to non-equilibrium conditions. 

1. INTRODUCTION 

Pressure-gradient boundary  layers are of great im- 
portance for engineering and thermo-fluid mechanics. 
Aside from the many important  practical applications 
of the gradient boundary  layers, any information that 
leads to a better understanding of the effect of  longi- 
tudinal pressure gradient on the turbulent  structure 
will be a significant scientific contribution. Therefore, 
it is not  surprising that there is an enormous amount  
of literature devoted to the study of gradient turbulent  
flows, but  most of it concerns only mean velocity 
profiles U. According to experiments (see, e.g. refs. 
[1-3]), dimensional arguments [1, 2, 4, 5], calculations 
based on simple semiempirical models related to 
Prandtl 's  mixing length theory (e.g. refs. [1, 3, 6]) or 
more sophisticated closure models (e.g. refs. [7, 8]), 
there are three distinguished zones in retarded mov- 
ing-equilibrium boundary  layers not  near to sep- 
arat ion:  the outer part, where mean velocity U and 
temperature T profiles are described by defect laws; 
the inner part, where ordinary wall laws are valid; 
and the intermediate sublayer, where U and T profiles 
are determined by special 'gradient laws'. Alas, the 
conclusions made on the basis of this scheme are often 
very controversial, so a number  of authors using the 

asymptotic expansion method (see, e.g. ref. [9]) came 
to the conclusion that a velocity profile in the inter- 
mediate sublayer can be described by a logarithmic 
law with coefficients depending on mean pressure 
gradient, while in other papers (e.g. in ref. [8]), based 
again on the asymptotic expansion method, it was 
found that there is no logarithmic sublayer at all. This 
conclusion was supported by experiments in pressure- 
gradient boundary  layers near to separation [1, 2]. 

There are many more examples of such con- 
tradictions but  at least some of them can be explained 
by simple dimensional considerations. This was done, 
for example, in refs. [5, 10], where the three-layer 
model was proposed for a moving-equilibrium boun-  
dary layer with a mild value of adverse pressure 
gradient. 

The model of retarded boundary  layer under con- 
sideration is based on the assumption that the tur- 
bulent structure of the analyzed flow depends on the 
following dimensional parameters:  molecular vis- 
cosity and diffusivity v and Z, friction velocity u. ,  
temperature flux Q = <vt>, kinematic pressure gra- 
dient ~ = p -  ~ d P / d x ,  and thicknesses of dynamic and 
temperature boundary  layers ~ and H. Instead of 
them, the following five length scales can be used : the 
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NOMENCLATURE 

Eu, E,,, E,., E, longitudinal spectra of u, c, w 
and t fluctuations 

E~,,, E~.,, E,, longitudinal cospectra of 
Reynolds stresses ( -  uv), vertical 
(v t )  and horizontal (u t )  heat fluxes 

H thickness of a thermal boundary  layer 
k wave number  
IK, 1,, vK, tK viscous and diffusive length, 

velocity, and temperature 
Kolmogorov microscales, (Y3/F,) I/4, 
( ~ 3 / ~ )  1/4, (V~)14 ,  (N2v/e)1/4, 
respectively 

N rate of dissipation for (t2/2) 
Pe,  Peclet number,  6/6h = 6u, /x  
Pr thermal or diffusion Prandtl  number,  

v/z  
dP/dx  longitudinal pressure gradient 
Q temperature flux, (v t )  
Re ,  friction velocity Reynolds number, 

6/6~ = 6u , / v  
S 6./,~v = u3/Tv 
t temperature fluctuations 
t ,  temperature scale, Q/u,  
T mean temperature 
U mean longitudinal velocity 
U~ free-stream velocity 

u ,  friction velocity 
u, v, w velocity fluctuations along the x-, y-, 

z-axes, respectively 
x, y, z longitudinal, vertical and transverse 

coordinates, respectively 
Y .v/6p = 7y/u2, 
z 6/6p = 76/u?~ 
( ) averaging symbol. 

Greek symbols 
7 kinematic pressure gradient, 

p I dP/dx  
6 thickness of a dynamic boundary layer 
6v, 6h, 6p viscosity, diffusivity and pressure 

gradient length scales, respectively, 
v/u , ,  x / u , ,  u~,/~ ' 

c, mean energy dissipation rate 
v molecular viscosity 
p density 
X molecular diffusivity. 

Subscripts 
p quantities made dimensionless by 

pressure gradient parameters 7, 6, Q 
+ quantities made dimensionless by wall 

parameters v, Z, u ,  and Q. 

viscous and diffusive length scales v/u, and X/u, ; the 
pressure gradient length scale 6p = u2,/7; and outer 
flow length scales 6 and H, which, for the sake of 
simplicity, we will assume have close values. If these 
length scales satisfy the inequalities 

max (6v, 6h) << 6p << min (6, H)  

then the turbulent boundary layer is a fully developed 
one (Reynolds and Peclet numbers Re,  = 6u,/v = 
6/6v and Pe,  = 6u , / z  = 6/6h are high enough) and 
according to refs. [4, 5] three special zones can be 
singled out (see Fig. 1), as given below. 

If y << 6p = u2,/V, then it is natural  to assume that 
neither 6 o (and therefore 7) nor  6 and H affect the 

3. ~L .. J.~t 
i ,y  

Wall  layer Oute r  layer 

I~ (0 ~ y<<~p) ~J l, ( % << Y < rain(& H))--~I 
[v,z,u.,O] [y,O,fi, H] 

Grad ien t  layer 
(max(Sv,~) << y << rain(8, h')) 

[y,u.,o] 

Logarithmic sublayer Gradient sublayer 

[u,Q) [Y, QI 

Fig. 1. The validity ranges for similarity laws in a retarded 
turbulent boundary layer. The main dimensional parameters 
determining the turbulent structure in the given range of y 

values are indicated in square brackets. 

turbulence regime significantly. Therefore, the mean 
characteristics of turbulence [including mean velocity 
and temperature profiles U(y) and T(y)] depend only 
on v, Z, u, ,  Q and y. Hence, at y << 6p we have the 
wall layer, where ordinary velocity and temperature 
laws of constant-pressure boundary  layers (presented, 
for example, in ref. [11]) are valid. 

If max (rv, 6h) << y << min (6, H) (see Fig. 1) the par- 
ameters v, Z, 6 and H are not important  and the 
turbulent structure depends only on 7, u ,  and Q. 

For  a layer far from the wall, where y >> 6p (and 
hence afortiori  y >> 6v, 6h) the defect laws must  be 
valid. However, according to refs. [4, 5], contrary to 
constant-pressure flows [11], the velocity and tem- 
perature scales are different from simple friction scales 
u ,  and t ,  = Q/u,  but are given as u** = (76) 1/2 and 
t** = Q/(~H) 1/2. 

Moreover, if there is an overlapping region 
max (rv, 6h) << y << 6p (see Fig. 1), where both wall- 
layer laws (valid in the region 0 ~< y << 6p) and gra- 
dient laws [in the region max (rv, 6h) << y << min (6, 
H)] are simultaneously valid, then in this region all 
the similarity laws must have the same form as in the 
logarithmic sublayer of a constant-pressure boundary  
layer [11], i.e. here 

U + ( y ) =  Alny+ + B  T + ( y ) = ~ l n y +  +fl(Pr) 

(1) 
where y+ = y/rv = yu,/v,  U+ = U/u,, T+ = IT(0)-- 
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T(y ) ] / t . ,  A ,  B and a are universal constants, and fl(Pr) 
is a universal function of the Prandtl number Pr = v/z.  

In the overlapping region 6p << y << 6, if this zone 
exists, there are 'gradient laws' 

U+ (y) = K Y  ~/2 + K  l (S)  

T+ (y) = - 2 Y -  ,/2 + 2, (S, Pr) (2) 

(see, e.g. [2, 5]). Here Y = y / tp  = y),/u~,, S = 6p/tv = 
u3/yv, K and 2 are universal constants, and Kj (S), 
2j(S,  Pr) are universal functions, which are de- 
termined by the difference of mean velocity and 
temperature between a wall and lower boundary of 
'gradient sublayer', where the mean velocity and 
temperature profiles are described by the 'half-power 
law' and 'inverse power law' (2). 

All these mean profile laws (1) and (2) were care- 
fully compared with available experiments in refs. [1, 
2, 4, 5], where also the cases of small and large pres- 
sure-gradient flows were studied. According to the 
scheme in Fig. 1 the kinematic pressure gradient must 
be considered as a small one if 6p > 6, i.e. 
Z = 6/6p = yt/u2. < 1. Therefore, the gradient sub- 
layer does not exist in such a flow but if 6 >> 
max (tv, 6h) then there is a noticeable logarithmic sub- 
layer. 

In the other asymptotic case of large pressure gra- 
dient, where 6p is of the order of max (tv, 6h), the 
logarithmic sublayer vanishes and the gradient sub- 
layer (2) is found between the wall and outer region. 
In fact, it is just enough to have 6p < (30-60)6v (the 
lower boundary of logarithmic sublayer) to exclude 
the logarithmic zone (1). This is the reason why in a 
pressure-gradient boundary layer near separation the 
logarithmic sublayer does not exist (see, e.g. refs. [1, 
2, 81). 

For  pressure-gradient turbulent boundary layers 
the gradient sublayer plays the same role as the log- 
sublayer in constant-pressure wall flows. In particular, 
the formulas (2) lead to the friction law [5] and the 
heat-mass-transfer law [4] in pressure gradient flows. 

There are enough experimental data in the literature 
to evaluate the unknown coefficients and functions 
included in these equations. At  the same time the study 
of the turbulent structure of  the gradient sublayer has 
attracted relatively little attention though it is known 
that the longitudinal adverse pressure gradient strongly 
affects the turbulent fluctuations here. This is mainly 
explained by the great experimental difficulties of such 
studies and the lack of theoretical work devoted to 
the turbulence structure of pressure gradient flows. 
This shortage especially concerns the measurements 
of spectra for velocity and temperature fluctuations in 
the gradient sublayer. The most comprehensive 
measurements were implemented in refs. [3, 12-14]. 
In refs. [ 12, 13] only velocity fluctuations in the conical 
diffuser were measured. Roganov's study [3] contains 
the most complete set of  experimental data measured 
in the adverse gradient boundary layer on a heated 
plate, and this study is of special interest for the pre- 
sent paper. 

8-1 H-1 << y-1 << IK-1 it-1 

I ~k 

Large scale range Small scale range 
(0 ~ k << y-l) (y-1 <<k ~ ~) 

f' ,I Ic 
[y,Q,~, HI [ IK, It, rE, tg] 

Mesost~le range 
Ic (max(6"1' H" 1) << k << min(IK'l'lt" 1)) II 

[.¢,y,O] 
Inertial subrange 

Mesoscale subrange (-5/3 power laws) 
imax(8-1 H'I) << k <<~-1 ) (y-1 <<k<< min(lK'l,~'l) ] 

Iv, Q] [-~,y,O] 

Fig. 2. The validity ranges for spectral similarity laws in the 
retarded turbulent boundary layer. The main dimensional 
parameters determining the spectral shapes in the given range 

of k values are indicated in square brackets. 

2. VELOCITY AND TEMPERATURE SPECTRA 
AND COSIPECTRA IN THE GRADIENT 8UBLAYER 

For simplicity of theoretical analysis we consider 
here only pressure-gradient boundary layers in mov- 
ing equilibrium conditions. The free-stream velocity 
U~ and kinematic pressure gradient ~ are supposed 
to vary slowly enough with the coordinate x for the 
boundary layer to adjust to these variations, and its 
structure at any value of x depends essentially on the 
relevant local parameters (at the same x) only, not on 
the upstream history of the flow. 

Let us consider the longitudinal (x-direction) spec- 
tra El(k),  where i = u, v, w, t, in the gradient layer (Fig. 
l) of the developed boundary layer with heat transfer. 
Five different length-scales affect different ranges of 
wave number k---see Fig. 2, where 6 and H are 
assumed to be of the same order of magnitude. In the 
small scale range k >> y -  1 the size of the corresponding 
turbulent disturbances is much smaller than the dis- 
tance from the wall y, hence here the spectra have a 
universal form if Kolmogorov scaling is used 

E,(k) = lKv2q,(klK), 

E t ( k ) = l t t 2 q t ( k l t ,  Pr) for k>>y -]  (3) 

where i = u , v , w ,  and I K = ( V 3 / g , )  TM, l t - " ~ l  K e r  3/,, 
VK = (re) TM and tK = (N2v/e) TM are Kolmogorov's 
scales for viscous and diffusion lengths, velocity and 
temperature, while e is the mean energy dissipation 
rate, N is the rate of dissipation for ( t2 ) /2 ,  and qi, 
q, are universal functions. Note that in the gradient 
sublayer 

e = a~Ta/2y I/2 

N = aNQ27 - i/2y-3/2 (4) 

where a~ and as  are universal constants (see ref. [4]). 
Therefore, if 6p << y << 6, then 

1 K = a z I / a y - 3 / s v 3 / 4 y - J / 8  l t = aZ1 /4 ]~ -3 /8~3 /4y  -1 /8  

V K = Y / l  K = a l / 4 ~ 3 / S v l / 4 y  1/8 

tK = a [  l/4 a l N / 2 Q T - 5 / s v l / 4 y -  7/8. 
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Another  scaling is appropriate for the range 
6 -  J << k <</£ 1. Here 7 and Q are the main parameters 
affecting the statistical regime of turbulent  fluc- 
tuations. Therefore, y is the only length scale, (~y)J/2 
is the only velocity scale and Q(Ty)  -I/2 is the only 
temperature scale. It follows from this that in the 
mesoscale wave number  range 

Ei (k )  = ~ , y 2 ~ ( k y )  

E,(k)  = Q27-~f f , (ky)  for y / 6  << k y  << y/IK (5) 

where ~Oj = ~0,, ~02 = 0,,, qJ3 = ~bw and ~,, are some new 
universal functions. 

The third wave number  range, where spectral 
shapes are universal for special scaling, is the large- 
scale range of very small values of k corresponding to 
large-size turbulent disturbances with sizes of the 
order of the boundary layer thickness 6, H. The scales 
for length, velocity and temperature appropriate in 
this range are 6, (76) I/z and Q(76) -t/2, respectively. 
This implies that 

E~(k) = y6:  dp,(k6) 

E , ( k ) = Q 2 ~  'dp,(k6) for k << y - ' .  (6) 

As was shown in another connection in ref. [15], 
this part of the spectrum, which describes the con- 
tribution of large-scale organized structures, some- 
times plays a very important  role. In particular, it 
determines the values of variances of horizontal wind 
fluctuations near the ground on hot summer days. 

Let us now assume that there are two overlapping 
ranges where equations (3), (5) and, respectively, (5), 
(6), are valid simultaneously. In the first of  these 
ranges we obtain 

( 7 - ' Y - ' / 3 k S / 3 ) E ~ ( k )  = a2/3 (klK)5/3t l , (klK) 

= ( k y ) 5 / 3 ~ i ( k y )  = ai = const (7a) 

where al = a,, a2 = a,,, a 3 = a,~ must be constant  (since 
the arguments klK and k y  are different and can change 
independently). The length of this region is deter- 
mined by the inequalities IK 1 >> k >> y -  ~ and here 

~ i ( k y )  = a i (ky )  -5/3 and rli(klK) = a'[(klK) 5/3 

a'i' = ala~- :/3. (7b) 

This range is the well-known Kolmogorov's  inertial 
range. Its upper limit is given by k = ia/IK where i4 is 
a constant. The function r/~(klK) at klK = i4 begins to 
deviate from equation (7b). The lower wave number  
limit is equal k = i 3 / y ,  where i3 is a value of k y  at 
which the function ~Oi begins to deviate from equation 
(7b). Naturally, the constants i 3 and i4 can be different 
for i = u, v, w. 

Similarly we can get a temperature spectrum in the 
overlapping range of Kolmogorov and mesoscale scal- 
ings (this range is nothing more than the inertial- 
convective wave number  range). Here 

[Q - 2 7 ( k y ) S / 3 ] E t ( k  ) = a;-l/3 aN(klK)5/3t l t (k lK,  Pr )  

= (ky)5 /3~l t (ky)  = a t = const 

for t4 (Pr) / IK <~ k <<. t3/y .  (8) 

The second range, where all the spectral laws have 
quite simple forms, is the overlapping range of the 
low wave number  and mesoscale k scalings, where 
equations (5) and (6) are simultaneously valid. Here 

(7 ~ k 2 ) E , ( k )  = (k6)2 dPi(k6) 

= (ky)2qJ , (ky)  = A~ = const 

for 6 i <<k<<y 1 (9) 

(Q-27)E,(k) = ck,(k6) = ~ , ( k y )  = A, = const 

for di i <<k<<y- t .  (10) 

Therefore, in this overlapping range, if it exists, the 
' - 2 power law' must  be valid for the velocity spectra 

4ai(k6) = A i ( k 6 )  2 and ~bi(ky) = A~(ky)  2 

for i l / 6  <~ k <~ i2 /y  (9a) 

and the 'constant  law' must be valid for a temperature 
spectrum 

4a,(k6) = A t  and qJ,(ky) = A,  

for t~/6 <<. k <<. t2 /y  (10a) 

in the gradient sublayer 6p << y << 6. 
The laws (9a) and (10a) were obtained (in another 

way) and compared with the data in refs. [4, 10]. 
It was shown that the experimental data [3, 12-14] 
confirm the existence of the range where the ' - 2  
power law' is valid and show that 

A u ~  1.2-1.6 A ~  1.4 A , ~ 2 . 5 - 4 .  ( l l a )  

For  the convective-inertial subrange of k values the 
data imply that 

au-~0.9 a ~ . ~ l - l . 2  a , ~ 0 . 5 .  ( l i b )  

If we take the most reliable [16] values of the Kol- 
mogorov and Obukhov-Corrs in  constants ctu---0.5 
and ct,~ 0.7 entering ' - 5 / 3  power laws' for one- 
dimensional spectra 

Eu(k)  = O~uC.2/3k- 5/3 Et.(k)  = (4~tu/3)e2/3k - 5/3 

and E , ( k )  = ~ t g e  1/3k-5/3 

we can calculate from equation (11 b) the values of the 
constants a, and aN in equations (4) 

at ~ 1.8-2.4 and aN ~- 0.8--t ( l l c )  

and evaluate Kolmogorov's  scales IK, Is VK, tK in the 
gradient sublayer. 

Combining equations (3) and (5)-(10) one can 
obtain the following model for velocity and tem- 
perature spectra in the gradient sublayer of a retarded 
turbulent boundary  layer : 
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I A ~ k - 2  

E,(k) = ~ 2;y 2 ~k~(ky) 

l aity U~ k -  ~/3 

t-lKv2~l,(kl~) 

for O < k < i ~ / 6  

for i~/6 < k < i~/y 

for i21Y < k < i~/y 

for i31Y < k < i41l K 

for idlK < k < oo 

(12) 

and 

Et(k) = 

{ Q2~-ldp,(kH) for 0 < k < t~/H 

A,Q2) , -I  for h l H  < k < t21Y 

Q27-1~l,(ky ) for i21y < k < i31Y 

a,Q2~-~(ky) -5/3 for t3/y < k < t4(Pr)/lK 

IKtE~It(kl~,Pr) for t4(Pr)/lK < k < oo 
(13) 

where t4(Pr) is a function of Pr = v/)~. 
With the aid of equation (12) the variance tr 2 can 

easily be calculated : 

(tr,/u,) 2 = u-  E,(k) dk = I, (6/6p) 

+6(y/G)  + t~(y~/~l~/~ /G) 

or ~, / r y  = I ,  O / y )  + 6  + ~ ( t ~ / y )  ~/~ 

where I~,/2 and /3  are three constants 

If I l = ~ ) i ( X )  dx + A , / i ~  

h = ~k,(x) d x -  Adi2 + 1.5aft3 2/3 
2 

I3 = _,a 2/3 th(x ) d x -  1.5aii2 2/3 . 
4 

The factors (6/y), 1 and (lK/y) 2/3 are quite different 
because y >> lK and for a non-separated boundary  
layer in a gradient sublayer 6 >> y >> ~p (see Fig. 1). 

The values of  coefficients I~ and Iz can be approxi- 
mately evaluated with the aid of a simple model which 
uses the following assumptions : d~(k6) --, G = con- 
stant at k6 --* 0 ; neglect the transition zone between 
validity ranges for - 2 and - 5/3 laws ; and supposes 
that i4 = oo (i.e. the simplified model neglects the dis- 
siltation range) : 

f C~62 for O < k < i l / 6  

E~(k) = ~A~Tk -2 for i l / 6  < k < iz/y 
I 
[_aiTyl/3k -5/3 for i3/y < k < 00. 

(14) 

It follows from the continuity of spectra that 
it = (AdC3 m, i2 = i3 = (Ai/a33. Then 

I, = 2(A,C,) '/2 I2 = 0.5(a3/A2). 

In the same way it follows from equation (13) that 

(atlt*)z = (u*lQ)2 f o  E,(k) dk = T, (6~/6) 

+ T: (G/Y) + T3 (G/Y) (lK/y) :/~ 

a2 I(O217y) = Tl (y13) + "1"2 + I"3 (l~ty) 213 

where 

T~ = f i '  q6,(x) dx + Ad,  

ft3 ~ 
T2 = t(x) d x -  Att2 + 1.5att; 2/3 

dt2 

I 
oo 

T3 = anal-1/3 ~h(X) d x -  1.5ad~ 2/3 . 
4 

The simplified model of the form (13) 

~Q27-~A, for 0 < k < t2/y 
E,(k) % 

[a ,O2y- l  ( ky ) -  5/3 for t3/y < k < oo 

(15) 

where the spectrum continuity implies that t 2 ----- t 3 = 
(at~A,) 3Is, Ct = At, T~ = T 3 = O, T2 = 2.5a,(A,/a,) 2/5 
gives the result 

") ~r t3/5  A 2/5 V - -  1/2 (at~t ,)  ~ -~ ....... t -- . 

As to the cospectra E .... Eu, and Ev,, they are 
described in the overlapping range of low wave-num- 
ber and mesoscale k scalings by the equations 

E.o(k) = a = ~ k  -2  E . , ( k )  = a . , Q k - '  

E~,(k) = A~,Qk- ' .  (16) 

As it was shown in ref. [4], the equations for E~(k) 
and Evt(k) agree satisfactorily with the experimental 
data from ref. [3] (the cospectrum Eut was not  mea- 
sured in ref. [3]). 

Assuming, as is often done (see, e.g. refs. [17, 18]), 
that cospectra fall off as k -  7/3 in the inertial range and 
neglecting the dissipation range, we can propose for 
the cospectra the following model : 

~ A ~ k -  2 
E~(k)  = I ~y2~b~(ky) 

L auvTY- 1/3k- 7/3 

for O < k < uvl/3 

for UVl/6 < k < uv2/y 

for Uvz/y < k < uvdy  

for uv3/y < k < oo 

(17) 

and 
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E # ( k )  = 

tQ 
Hd~. (kH)  tbr  0 < k < i t l / H  

A . Q k  ~ for i t~ /H  < k < it2/y 

Qy~k.(k)i ) for i t2/y < k < i t3/y 

a . Q y  " k 73 for i t3/y  < k < oc, 

i = U, l: (18) 

so we have 

( - -uv ) /u2 .  = u - .  Eu, .(k)dk 
) 

= u v ,  (a/a~) + u r n ( y ~ 4 . )  

( v t ) / Q  = Q ' E , , ( k ) d k  = VT,  + A , , l n ( H / y )  
I 

( u t ) / Q  = Q ' E . , ( k ) d k  = UT,  + A . , l n ( H / y )  
) 

where 

~ii al 
UV1 = 4)~,(x) d x +  A.,,/uv, 

? U V  2 = O , , . ( x )dx - -Au , / uv2+O.75a , , , uv f  43 
t 

I i  tl 
VTI = dp,,,(x) d x + A , , , l n ( v t 2 / r t l )  

+ 49,,,(x) dx+0.75a, , ,v tq  -4'~ 
,t 

if' UT, = ck . , ( x )dx  + A . , l n  (u t2 /u t , )  

I 
ut 

+ 49.,(x) dx+O.75a . ,u t3  4,) 
t u 2 

If  it is supposed tha t  4~(k6) = C~, c~2 = a3 for c~ = uv, 
vt and ut, then, due to spectra cont inui ty  : 

uv, = (A,,./C,.) ~/4 uv3 = (a,,.i&,.) ~ 

vtt = A,.,/C,., vt~ = (a,.~/A,.,) TM 

utl = A, , /C, ,  ut3 = (a, , /A, , )  3~4 

and,  according to the simple models  considered.  

( - u v ) / u .  = 2(A,,:C,,,,) t:2 (y6/u . )  

-O.25(A4,,/a3,.)(Ty/u2.) (19) 

( v t ) / Q  3,4 7/4 = A, , , [ l .75+ln(ai ,  i C,.,/A,,, )] 

+ A,., In (H/y )  (20) 

( u t ) / Q  = A,,[1.75 + In (a2i4C,,/A~fl)] 

+A.,ln(~/y). (2l) 

Table 1. The points of spectral measurements in ref. [3] 

No. y [mm] y ~ y/b y /H  Y 

1 1.5 28 0.016 0.022 0.8 
2 4.0 75 0.043 0.059 2.1 
3 10.0 190 0.11 0.15 5.2 
4 40.0 750 0.43 0.59 2! 

3. COMPARISON WITH EXPERIMENT 

3.1. M o v i n 9  equil ibrium boundary  layers 
Let us now compare  the derived formulas with mea- 

sured values of  the spectra Ei(k),  i = u,v,  w, t and 
cospectra E~j(k), Ei,(k) in a moving-equi l ibr ium 
decelerated bounda ry  layer on a heated plate studied 
by Roganov  [3]. In this exper iment  Z = 3/30 = 
76/u.  ~- 45 and  S = 6p/6,, = u3/Tv ~ 35 for the cross- 
section at  x = 955 ram, where the measurements  were 
made. These values of  Z and  S are large enough  to 
believe that  the gradient  sublayer in the bounda ry  
layer exists and  is easily observable.  T h o u g h  there 
are some differences between measured thicknesses 
6 ~ 93.3 m m  and H ~ 68 mm, we can at first not  take 
them into account  because, as was explained above.  
they do not  affect not iceably the characterist ics of  
turbulence in the gradient  sublayer. The spectra in ref. 
[3] were measured at four points  (see Table  1). Two 
of  these points,  where y/6p = 0.8 and  21, lie approxi-  
mately outside or close to the boundar ies  of  the gra- 
dient sublayer. 

Spectra E~(k) of longi tudinal  velocity f luctuat ions 
measured in ref. [3] agree satisfactorily with the pro- 
posed model (12), where i = u. Figure 3(a) represents 
the funct ion E~k2/7 = f ( k 6 )  which, according to equa-  
t ion (12), is equal  to A~ = const  in the range where 
the - 2 power law is valid. The figure shows tha t  four 
non-dimensional  Eu(k)k2/7 spectra are close to each 
other  in the low wave n u m b e r  range and, at  very low 
values of  k, these spectra become independent  on k. 
Therefore  

cku(k6) ~ C, = const  E, (k )  = C~762 

C , ~ 0 . 0 8  f o r k 6 <  1. 

There is a ra ther  wide t ransi t ion zone between the 
range of  constancy for E,(k )  and the validity range of  
the - 2  power law but  the low wave n u m b e r  par ts  of  
all the spectra, including the domain  of  mesoscale 
values of  k, can be described by a simple in terpola t ion 
formula  E, (k )  = A,T62/[Au/Cu+ 3(k6) + (k6)2]. At  the 
same time the t ransi t ion zone between the validity 
ranges for the - 2 and  - 5/3 power laws proves to be 
so nar row (see also ref. [4]) tha t  it is possible to assume 
that  u2 --- u3 in equa t ion  (12). Therefore,  if  we neglect 
the small  a m o u n t  of  very high wave n u m b e r  energy, 
then 
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& ( k )  = 

{ A.y62/[AdC.+3(k&)+(k6)  2] for 0 < k < u2/y 

auTyU3k -5/3 for u3/y < k < 

(22a) 

where according to Fig. 3(a) and equations (1 la) and 
(1 lb) (see Fig. 14 in ref. [4]) 

C . ~ 0 . 0 8  A . ~  1.2 a . ~ 0 . 9  u2 ~ u 3  ~ l .  

(22b) 

These results imply the following equation : 

(a. /u,)  2 = u ,  2 Eu(k) dk 

2 = A . Z _ _ F t a n - I  ( 2 Z / Y +  3~ 
~/51L \~51--I 

- t a n - '  ( ~ 5 1 ) ] +  1.5a. Y (22c) 

which is compared with the experimental data [3] in 
Fig. 3(b). There is also a curve in this figure that meets 
the first of  the formulas 
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(a~/u, )  2 = 1 .3 (4+2(x /Y)+  Y) (23a) 

(a , / u , )  2 = 1 + ( x / Y ) / 3  + Y/3 (23b) 

(a,,./u.) 2 = 3 + ( x / Y )  + 0.8 Y (23c) 

proposed in ref. [19] (see also ref. [20]) on the basis of  
an interpolation between near separated ( Y ~ m) and 
constant-pressure (Y ~ 0) turbulent wall flows. The 
comparison shows that the relation (22c) agrees better 
with the experimental data analyzed and in accord- 
ance with a remark in ref. [19], a value of  
Z = 6/6p = 76/uZ. noticeably affects the value o f a , / u . .  

The relation (22c) can be simplified if we take into 
account that in the gradient sublayer, where according 
to ref. [10] ug/7 <<. y <~ 0.36, i.e. Z / Y  = 6/y > 3, the 
argument of  tan ~ is large enough to suppose that 
tan ' ( . . . )  ~ ~/2. Then 

(au/u . )  2 ~ 0 . 4 Z +  1.35 Y (24) 

[compare with the results of  calculations by (23a) in 
Fig. 3(b)]. 

The normalized spectra E,.(k)/y62 prove to be more 
sophisticated and do not coincide with each other at 
the low wave number range, as can be seen in Fig. 
4(a). All spectra tend to C, = const when k6 ~ 0 but, 
in a contradiction to equation (12), the value of  this 
constant depends on y/ap even for Y = 2.1 and 5.2 
inside the gradient sublayer. The spectrum model (12) 
is clearly valid only if there is enough energy in the low 
wave number range. For  the vertical velocity spectrum 
E,.(k) the energy range is much narrower than for 
horizontal velocities. Therefore, we should use the y 
instead of  the 6 scale, and we should change the first 
and the second lines in equation (12) for 

[yu.2~b,(ky) for 0 < k < i , /y 
E,.(k) 

(A,.Tk 2 for i ~ / y < k < i : / y .  

In Fig. 4(b) we can see that all spectral data in low k 
coincide with each other and an approximation 

E , , ( k )  = 

A,.yu,((A,./C,. + (yu~/y)k  2) 

a, TY t:- k 5 

for 0 < k < U2/y 

for v3/y < k < oc, 

(25a) 

can be used, where e, = t~3. According to the exper- 
imental data 

C, = 0 . 0 5 5 " Z g 2 . 5  A, ~ 1.2 

a, ~ 1 v2 =v~  ~ 10 (25b) 

therefore 

i7 (a,,/u,) 2 = u ,  2 E , , ( k )dk  = ~ / A , C , . x / Y  

× tan ~ ( v3x / (C , . /A , . ) / x /Y )+  1.5a,.v3 ~-' Y 

= 0.26x/Zx/Y tan --~ (2. l x / Z / x / Y )  + O. 3 Y 

(25c) 

which can be simplified if we suppose v3 --+ oo 

( a, , /u,)  2 ~- 0.4x/Z~/Y (25d) 

[compare with the results of  calculations by equation 
(23b) shown in Fig. 4(c)]. 

It is worth noting here that if equation (6) proves 
to be inconsistent with the E,.(k) spectrum then the 
existence of  an overlapping range of  low wave number 
scaling and mesoscale k scaling becomes doubtful and, 
thereafter, there is no basis for derivation of  the - 2 
power law. In addition, it is difficult to distinguish the 
- 2  power law from the nearby - 5 / 3  law when the 
area of  validity of  these laws is rather narrow. From 
the other side, according to numerous experimental 
data, we should not expect a noticeable k range where 
E,(k) ~ k 5/3 for low Re  number flows. 

Let us now consider the spectrum E,(k).  The cor- 
responding experimental data more or less satis- 
factorily coincide with each other in the low wave 
number range and can be described by model 0 3 ) - -  
see Fig. 5(a) where only data for points inside the 
gradient sublayer (for Y = 2.1 and 5.2) are used. We 
see that E,(k)7 /Q 2 ~ C, = const when k H  ~ O. For  all 
values of  k, a simple approximation formula of  the 
form 

E,(k)  = A ,Q2)  ' ' / [ A , / C , + A , / a , ( k y )  s3] 

for 0 < k < vc (26a) 

can be used where according to equations (1 la) and 
( l i b )  

C , ~ _ A , ~ 3  and a,~_0.5. (26b) 

Therefore 

i] ( a , / t , f -  = ( u , / Q )  2 E , ( k ) d k  

3~ 
= A~Sa2,5 y 1 ~ 2 / y .  (26c) 

5 sin (3n/5) 

This equation agrees satisfactorily with experimental 
data [see Fig. 5(b)]. 

In just in the same way we analyze the experimental 
data from ref. [3] related to cospectra of  a temperature 
flux in the gradient sublayer [Fig. 6(a)]. They can be 
approximated by a simple formula 

E,,(k)  = 

A,,,QH/[(A,,,/C,.,)2 + (kH)2] i;2 for 

a,.,Qy -4'3k-7'3 for 

0 < k < vt3/y 

vt3/y < k < oo 

(27a) 
where according to ref. [3] 

A, . ,~0 .25 a,.,~_0.6 C, . ,~0.1 and vt2 ~ 2 .  

(27b) 

The approximation (27a) agrees with the spectrum 
model (18) and implies that 
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(v t )  /Q = Av, In { (vt3/2) + ~/[(y/H) z + (vG/2)21} 

+ 0.75av,vt34/3 

-~ 0.25 In {1 +~/[1 +(y/H)2]} 

+ 0.18 + 0.25 in (H/y). (27c) 

The simplified model  (20) gives 

(v t ) /Q ~- 0.38 + 0.21 In (H/y). (27d) 

Both models within the region of  their validity agree 
quite satisfactorily with each other and with the exper- 
imental data  in Fig. 6(b). 

Like the case of  spectra Ev(k) the normalized 

cospectra of  Reynolds stress ( - u v )  do not coincide 
in the low wave number  range [Fig. 7(a)]. Taking into 
account that in the low wave number  range the linear 
scales for horizontal and vertical fluctuations are 6 
and y, respectively, we can use a model  with geometric 
mean linear-scale x/y6 in the spectral model  (17). 
According to data from ref. [3] 

A=v = 0.35 C,v = C"~Z C'~ ~- 0.14 (28a) 

and the empirical approximation 

e,~(k) = Auv76y/(A=~/C'~ + y f k  2) (28b) 

agrees well enough with the experimental data [see 
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Fig. 7(b)]. At the same time it proved to be impossible 
to determine a value of ut; 3 where the experimental 
data begin to deviate from the - 5 / 3  law to a - 7 / 3  
law according to the spectral model (18). Therefore, 
we use the relation (28b) to evaluate normalized Reyn- 
olds stresses 

( - uv)/u~. = (n/2)(A,,,C'~,.)~/2Z';2 y,,.2 ~ 0.35~/Zx / y 

(28c) 

and compare it with experimental data [Fig. 7(c)]. The 
simplified model (19) with u v 2 ~  ~ gives a bit 
higher coefficient in equation (28c): ( - u v ) / u  2 

0.44x/Zx/Y. 
Compared with the interpolation formula 

( - m , > / u ~ ,  = 0.25(4+ (x /Y)+ Y) (28d) 

proposed in ref. [19] (see also ref. [20]) equation (28c) 
describes the experimental data better. 

Like all other methods of predicting the charac- 
teristics of turbulent boundary layers, the formulas 
derived above contain a large degree of empiricism. 
To check the universality of the empirical constants 
in the proposed formulas we compared them with the 
experimental data [21], which became known to us 
when the present paper had already been finished and 
accepted for publication. Report [21 ] does not contain 
any spectral data but it includes unique measurements 
of one-point second-order moments in equilibrium 
flows with very high pressure gradients. Only strong 
adverse pressure gradient data in flow Nos. 6,7 with 
Z >> 1 were used (see Table 2). 

All experimental data and calculated results are 
summarized in Fig. 8. With the exception of u-fluc- 
tuations near the wall in the near separated flow No.7, 
where the difference between measured and calculated 
values of standard deviations reaches 40%, the exper- 
imental values of normal to the wall velocity and 
Reynolds stress fluctuations prove to agree well with 
the above equations. 

3.2. Non-equi l ibr ium f l o w s  
Although the investigation of the general case of 

non-equil ibrium retarded boundary layers is beyond 
the scope of this paper, it is worth seeing how devi- 
ation from moving equilibrium conditions can distort 
the turbulent structure in the gradient sublayer, if it 
exists. Quite recently very accurate and detailed spec- 
tral measurements in non-equil ibrium retarded tur- 
bulent flows have been accomplished [22]. They were 
used partially (see Table 3 where only the case 
U.~ = 30 m s-~ was considered) to check the effect of  
deviation from equilibrium on the spectra and one- 
point moments. 

In Fig. 9 it can be seen that the lack of equilibrium 
distorts the mesoscale energy containing parts of the 
spectra. Discrepancies are noticed in particular in the 
longitudinal spectra of the normal velocity and Reyn- 
olds stress fluctuations. At the same time the exper- 
imental spectra of u-fluctuations are not  noticeably 
different from calculated ones, therefore it is not  sur- 
prising that the proposed formula (22c) more or less 
agrees with the experiment even without equi- 
l i b r i um -see  Fig. 10. In the cases of normal velocity 
and Reynolds stress fluctuations the agreement is 
much less satisfactory. 
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Table 2. Parameters of flows in ref. [23] used in the analysis 

Flow x U~ ~ u, "f 
No. [mm] [m s ~] [mm] [m s ~] [m s 2] S Z 

6 3858 22.30 151.2 0.518 47.3 196 26.6 
7 3858 19.61 260.2 0.240 34.7 26.6 156.4 
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4.  CORRELATION FUNCTION IN THE GRADIENT 
SUBLAYER 

The spectral results above can be used for finding 
longitudinal  correla t ion (more precisely, auto-  
correlat ion) funct ions 

( i ( x + A x ,  y , z ) i ( x , r , z ) )  = B i ( A x ; y  ) i = u,t:, w 

and symmetrized cross-correlat ion funct ions 

&/(Ax ;y) = ~(i(x + Ax, y, z)/(x,y,  z) 

+ i ( x , y , z ) j ( x + A x ,  y , z ) )  i = u,L~,w 

of turbulent  f luctuations within the gradient  sublayer 
of  re tarded tu rbulen t  bounda ry  layers. In fact, these 
funct ions are Fourier  t ransforms of  the corresponding 
longitudinal  spectra and  cospectra : 

&(Ax  ;y) = cos (kAx)E~(k ;y) dk 

(29a) 

Bi,(Ax:y) = cos(kAx)E,y(k:y)dk i d=  u, t ' ,w, t .  

(29b) 

There are some reasons why formulas  deduced in 
such a way are less interesting and  reliable than  cor- 
responding spectral equat ions.  First  of  all, there are 
no data  which we can use to obta in  measured values 
of  longi tudinal  corre la t ion funct ions in decelerated 
bounda ry  layers. Moreover ,  we must  also note tha t  
our  results are based on the assumpt ions  tha t  the 
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Table 3. Parameters of boundary layers in two stations in ref. [22If or the case 
U~ = 3 0 m s  -j 

x U~ 6n u, 7 
No. [mm] [m s-ll [mml [m s-q [m s-:] S Z 

1 2880 14.36 81.5 0.67 108.6 177 19.7 
2 3080 14.99 92.5 0.60 104.9 129 27.2 
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Fig. 9. Streamwise spectra in non-equilibrium retarded flow [22] (30 m s ~ flow case). The solid lines 
correspond to the interpolation formulas on the upper lines of the right-hand sides of equation (22a), (25a) 

and (28b). 

tu rbu len t  s t ructure  in the gradient  sublayer is deter- 
mined mainly  by the values of  k inemat ic  pressure 
gradient  y and  tempera ture  flux Q. Therefore  we pro- 

pose tha t  all these parameters  are approximate ly  con- 
s tan t  in the region of  longi tudinal  spatial  measure-  
ments.  I t  is clear tha t  these requirements ,  which are 
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and x = 3080 mm 

included in the conditions for moving-equilibrium, 
restrict considerably the class of  pressure-gradient 
boundary layers that can be used for verification of  
the given equations. [They are probably more appro- 
priate to spatial transversal correlation functions 
B,(Az ; y) and B,/(Az ; y) in plain-parallel turbulent wall 
flows with longitudinal pressure gradient. All the 
above spectral results can be easily applied to the 
transversal spectra of  turbulent velocity and tem- 
perature fluctuations, but we cannot use Taylor 's  
hypothesis then, and therefore there are at present no 
experimental results which can be used to verify the 
conclusions related to transversal characteristics.] 
Nevertheless, it seems reasonable to consider briefly 
some results for longitudinal correlation functions to 

stimulate experimental measurements of these impor- 
tant statistical characteristics. Note in this respect that 
similarly derived equations in refs. [18, 23] for spatial 
correlation functions of  surface-layer atmospheric 
turbulence proved to be helpful in micrometeoro-  
logical studies. 

In the gradient sublayer the spectra Ei(k) and 
cospectra &/(k), i = u, t,, w, t are given by equations 
(12), (13), (17) and (18). Let us begin with the auto- 
correlation functions for the very small longitudinal 
distance Ax <~ ]K/i4. Since the wave numbers k > 1/Ax 
are very large in this case, the contribution of  the 
spectral range where kAx > 1 to the integral on the 
right-hand side of  equation (29a) is negligible, and we 
can replace cos (kAx) in it by the two first term Tay- 
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lor's expansion of this function. Then, using the well- 
known equations from the theory of locally isotropical 
turbulence (see, e.g. [11]), we obtain 

B , ( a x / y )  = a ~ - A ~ ( A x / y )  2 i =  u , v , w , t  (30) 

where A~ = y2e/3Ov, A,, = A,. = y2e/15v and 
A, = y2N/62.  

Consider now the case where Ax >> IK. According 
to equation (12) 

B~(Ax) = a ~ - ( ? 6 2 / A x )  fi'ax!a (l - c o s q ) d ? ~ ( q ~ ) d q  

~ i2Ax,I 3' 
- A i y A x  (1 - c o s  q)q -2 dq 

,)i I Ax/a 

13Ax/Y A X  

I 
;4t~X/IK 

-- ai?yl/3 A x  2j3 (1 - c o s  q)q -  5,,3 dq 
~Axly 

~' IK 

= 0"]--I1 - - 1 2 - - / 3 - - h - I s  (31) 

where II, I2, I3, I4 and Is are the contributions of 
spectral subranges of low wave numbers (0 < k < 
i~/6), wave numbers where the - 2  power law is valid 
(i1/6 < k < l i ly) ,  intermediate wave numbers 
(6/Y < k < idy) ,  wave numbers from the inertial 
interval ( i 3 / y  < k < i 4 / l K )  and dissipative-subrange 
wave numbers (i4/& < k < oo). 

If Ax < lK/i4 then a lower limit of  the integral Is is 
less than one and therefore all limits in I~-I4 are less 
than one. In this case the term Is plays the main role, 
i.e. the contr ibution of a dissipation-subrange wave 
number  to B~ is the most important,  and a spatial 
correlation function is described by equation (30). 

For  Ax belonging to the inertial interval, i.e. for 
/~ < Ax < y, we obtain 

B, (Ax /y )  = a~ - a~?y(Ax/y) 2/3 [0.75F(1/3) 

+ O(Ax/IK)  2/3 +O(Ax/y)4/3 l 

tr~ - -0 .75F(1/3)a~Ty(Ax/y)  2:3 i = u,v ,  w 

(32) 

where F is the Ga mma  function. The main con- 
tr ibution to equation (31) is provided by the integral 
/4 and estimated by equations (3.761.7), (8.354.2) and 
(8.357) from ref. [24]. The contributions of the dis- 
sipation spectrum subrange integral 15 and 13 plus the 
- 2  power law integral /2 are evaluated as 
O[Ty(lK/y) 2/3] and O[Ty(Ax/y)  2] and prove to be much 
less than (Ax /y )  2/3 for IK/i4 < A x  < y/i3. This result 
is equivalent to the 2/3 power law for velocity and 
temperature structure functions [11]. 

Let us assume now that y < Ax < 6. Here the main 
contribution to equation (32) is provided by the meso- 

scale wave number  integral 12, and integrals L,  12, 13 
can be estimated with some algebra from equations 
(3.761.7), (8.230.1), (8.232.1), (8.354.2) and (8.357) 
in ref. [24] and equation (9.8.10) in ref. [25]. It leads 
to the linear correlation function 

Bi(Ax /y )  = tr~ - A iyy (Ax /y ) [n /2  - (y /Ax) / i2  

+ O(y/ax) 2 + O(Ax/a)l 

- -  a?/yl  /3 A x  2/3 [1.5(i2Ax/y)- 2/3 

-- 1.5(i3Ax/IK) 2/3] 

a 2, --]~y[1.5aii22/3 - -A j i2]  

- - A i ( n / 2 ) y y ( A x / y )  i = u , v ,w .  (33) 

The accuracy of this formula is O[Ty(y/Ax)]  and 
O[#(ax/a)]. 

It is not difficult to estimate the correlation func- 
tions at Ax > 6 if we use the low wave number  spectral 
regions k < i l /3 or the approximation formulas (22a) 
and (25a) for E,(k )  and & ( k )  in the range ofmesoscale 
and low k domain but, as stated above, the validity of 
the experimental correlation data in the region Ax > 6 
is doubtful. 

Similarily we can also use equations (13) to evaluate 
a correlation function for temperature fluctuation in 
the gradient sublayer : 

Bt (Ax /y )  _~ t r~- -0 .75F( l /3)a t (Q2 /Ty) (Ax /y )  2'3 

for IK/t 4 < A x  < y/t3 (34) 

with accuracy O[(Q2/yy)(IK/y) 2/3] and O[(Q2/Ty) 
(Ax /y )  2] and 

B, (Ax / y )  = cr 2 - (Q2/yy)(A, t2  - 1.5a,t? 2/3) 

- A , (Q  2/7Y) ( y / A x )  sin (t2 Ax /y )  

for y/ tz  < A x  < H/t~ (35) 

with accuracy O [ ( Q 2 / T H ) ( A x / H )  2] and O[(Q2/yy) 
(y /Ax)] .  

Cross-correlation functions for Reynolds stresses 
( -  uv)  follow from equation (17): 

9 4 g  B,, , (Ax/y)  _~ ( - uv )  - G F ( 1 / 3 ) T y a , ~ ( A x / y )  

for Ax < y/uv3 

Bu,,(Ax/y) _~ ( - uv)  - 7y[O.75a,,.uv34/3 

- A,~,/uv2] - Au,,(z~/2)Ty(Ax/y) 

for y/uv2 < A x  < 3/uvt (36) 

and vertical ( v t )  and longitudinal ( u t )  heat fluxes can 
be described with the aid of equation (18): 

Bi , (Ax/y)  ~-- ( it ) - 9  F(1/3)Qai,(Ax/y)4/3 

for Ax < y/it3 

B , ( A x / y )  ~- ( it ) -Q[O.75a , i t 74 /3  

+ A,(7 + In it2)] - A,tQ In (Ax /y )  

for y/it2 < A x  < H/i t t  (37) 

where 7 ~ 0.58 is Euler's constant, i = u,v. 
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5. CONCLUSION 

The dimensional  theory proves to be very helpful 
when the turbulent  s tructure of  bounda ry  layers with 
adverse pressure gradient  is analyzed. The formulas 
derived allow us to calculate and  compare  with exper- 
iments such impor t an t  characterist ics of  wall flows 
as spectra and profiles of  Reynolds  stresses ~ -  uv) ,  

temperature  fluxes (t~t), ~u t ) ,  second-order  moments  
of turbulent  f luctuations of velocity, and tempera ture  
in the gradient  sublayer of  a retarded tu rbulen t  flow. 
Together  with the results of  theoretical and exper- 
imental  studies of  turbulent  s tructure in a logari thmic 
sublayer of  constant-pressure  flows, these results can 
be used to describe the profile of  second-order  
moments  in the most  impor t an t  near wall par t  of  an 
adverse pressure-gradient  bounda ry  layer. 

The results above lead to the conclusion that  dis- 
t r ibut ion of  energy in the low wave n u m b e r  part  of 
the spectra E,, E, differs strongly from the spectral 
d is t r ibut ion in E,. and E~, spectra, but  they cannot  
explain this phenomenon .  The cont r ibu t ion  of dis- 
turbances  with low k to the energy of  turbulent  
mot ions  (related to the large-scale organized struc- 
tures or ' inactive'  turbulence which is generated by 
the large-scale turbulence dis turbances in the outer  
par t  of  the boundary  layer) p robably  affects the ver- 
tical and hor izonta l  velocity f luctuations in different 
ways, but  there are no direct experiments to clarify 
this problem. 

All the theoretical formulas  deduced above include 
some u n k n o w n  cons tants  which can be evaluated from 
a model using some appropr ia te  closing hypotheses 
or estimated from the data  obta ined in experiments.  
Unfor tunate ly ,  up until now the necessary exper- 
iments  have been very rare or absent,  so the evalu- 
at ions of  coefficients in the formulas given above must  
be considered as only prel iminary ones and  addi t ional  
experiments are needed to verify the deduced 
relations, especially those concerning spatial cor- 
relat ion functions.  
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