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INTRODUCTION 

The interface temperature of two suddenly contacting semi- 
infinite bodies is coramonly obtained from the analytical 
solution of the heat equation. In the classical case no phase 
change has been considered in any body. However, phase 
change in one of the contacting bodies is often encountered in 
many practical applications, such as metal casting, injection 
molding, welding, etc. No solution for -this problem can be 
found in the literature. The classical solution of two suddenly 
contacting solid bodies, initially at  different, but uniform 
temperatures, under the assumption that  no thermal contact 
resistance exists between them, is a constant  interface tem- 
perature. This average temperature shares the difference 
between the initial temperatures in the inverse thermal effus- 
ivities ratio. The purpose of this study is to determine the 
interface temperature of two semi-infinite bodies, suddenly 
coming into contact, in the case where one of them undergoes 
phase change. The two bodies are held initially at  two 
uniform, but different temperatures. The initial temperature 
of the liquid body is supposed higher than its melting tem- 
perature. We consider constant thermal physical properties, 
so the linear form of the heat conduction equation is adopted 
in this analysis. 

THERMAL ANALYSIS 

We consider the case of two semi-infinite bodies with con- 
stant, but  different physical properties. The first body (1) is 
a solid medium and its initial temperature is Ti~. The second 
body (2) is a liquid medium and its initial and melting tem- 
perature are respectively T~2 and T~2. We suppose that  there 
is no difference between the solid and liquid density of body 
(2), so Ps = P~. No convective effects are considered in the 
liquid phase. 

At  time t > 0, the bodies are placed in perfect contact, 
Fig. 1. The contacting plane is supposed at x = 0. After the 
contact, two cases may be considered. 

The interface temperature T2(0, t) is greater than T~ 
The second medium remains liquid and for pure con- 

duction the solution of such a problem is classical. The tem- 
perature fields in the two media have the following 
expressions, [1]: 

T, (x, t) 
Tilb, + Ti2b2 b2!T~!--_Ti2) erf ( - x  

b l + b~- -  + 01 + b2 \ 2 x / ~ l  t ] 

= T i n t _ . ( T i n t _ T i l ) e r f (  - - X  
\ 2 x ~ 1  t ]  

for medium (1), and 

T2 (x, t ) Til -- Tib2 bl (~2 -- 7~1) erf ( x 
b , + b~  + ~ -+--b 2 \ ~2t~2 t ] 

= Tint--  (Tin t -  Tz) erf ( ~ x ~  (2)  
\ 2 ~ / a  2 t /  

for medium (2). 
In this case, the interface temperature, at the contacting 

surface x -- 0, is constant and is given by : 

Ti~bi + Ti2b2 
Tint (3) 

bl +b2 

where b = ~ ,  i --- 1, 2 is the effusivity of the cor- 
responding bodies. 

This result, valid immediately after the contact (t ~ 0 +) 
shows the establishment of an average temperature at the 
contact surface which remains constant during the total time 
of contact. 

The heat fluxes at  the interface x = 0 have the following 
form ; 

h. 
tp] (0, t) = ~-ntnt (Til -- T~,t) (4) 

b2 
tp2 (0, t) = ~ t  (T i , t -  T'2) (5) 

The equality between these two expressions verifies the 
hypothesis of a constant interface temperature given in for- 
mula (3). 

The interface temperature T2(0, t) is smaller than T~ 
In this case, the problem is quite different. Under  the 

assumption that  I"2(0, t) remains smaller than T~2, region (2) 
will solidify. The solidification begins at the boundary surface 
x = 0 and the solid-liquid interface, S(t), moves in the posi- 
tive o-Yc direction. The problem, in body (2), is the solidi- 
fication of a semi-infinite slab. 

The mathematical formulation of such a problem, in the 
general case of perfect contact, can be written as : 

0 T1 (x, t) 02 Tt (x, t) 
Ot -cq , - o o < x < 0 ,  t>0 (6) 

0x 2 

(1) 
0 ~ (x, t) 02 ~ (x, t) 

Ot ct~ Ox 2 O < x < S(t), t > 0  (7) 
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b thermal effusivity 
Cp heat capacity 
L latent heat 
T temperature 
t time 
x space. 

Greek symbols 
thermal diffusivity 

2 thermal conductivity 
p density 

heat flux 
constant. 

NOMENCLATURE 

Subscripts 
l body 1 
2 body 2 
i = I, 2 representing bodies 1 and 2 

respectively 
int interface 
f fluid. 

Superscripts 
i initial 
1 liquid 
m melting 
s solid. 

Contact plan 
l Solidification front 

Fig. 1. Geometry and coordinates. 

OT~(x, t) = ~ c32T~(x, t) 

~t Ox 2 
S(t) < x < + ~ ,  t > 0  (8) 

BTI (x, t) OT~2(x, t) 
2 ~ - - - 2 ~  , x = O ,  t > O  

Ox ~x 
(9) 

Tl (X, t) = T~ (x, t), x = 0 ,  t > 0  

t3T~ (x, t) , dS(t) aT~2(x, t) 212 x = S(t), 
6~x ~ x  -- p2L ~ t  - '  

T ~ ( x , t ) =  Tlz(x , t )= T~z, x = S ( t ) ,  t > O  

T j ( x , t ) = T ' l ,  x ~ - - ~ ,  t > O  

(10) 

T > 0  

(11) 

(12) 

(13) 

T2(x , t )=Ti2 ,  x ~ + ~ ,  t > 0  (14) 

T ~ ( x , t ) = T ' l ,  - o o < x ~ < 0 ,  t = 0  (15) 

T2(x , t )=T '2 ,  0 ~ < x <  +oo,  t = 0 .  (16) 

In the classical case, without phase change, formulas (1) 
and (2) may be established by considering that the interface 
temperature does not depend on time. Then by considering 
each medium as a semi-infinite body submitted to a tem- 
perature step (respectively, Tin~- 7~ and T~n~-- T~2 for med- 
iums (1) and (2)), the heat fluxes equality on the interface 
allows one to calculate T~,t. 

The same approach was used when one of the media under- 
goes solidification. To attempt a decoupling between the two 
media, a very strong hypothesis is tried: the interface 
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temperature T,(0, t) (or T2(0, t)) remains constant and equal 
to a value Ti,t. Equation (10) is then verified. If  the equality 
of the heat fluxes on tlhe contacting surface between medium 
(1) and (2) allows one to compute a value of Tint which 
does not depend on the time t, as for the classical case, the 
hypothesis will be valid. The problem in the three regions: 
body (1), solid body (2), liquid body (2) can be separated 
into two problems. The first as a semi-infinite solid body 

- oo < x ~< 0 with a step at x = 0. The second problem is 
the solidification in half-space with a temperature step at 
x = 0. The solution of the first problem is given in formula 
(1) and then verifies equations (6), (10), (13) and (15). The 
solution of the second problem can be found in refs. [1-3]. 
The temperature of  the solid, in region (2), is given by : 

T~2--Tint [ x \ 
- - e f t  - -  . (17) TS2(x't) = Tint + erf(¢) ~2. ~/~t) 

The temperature of the liquid phase is given by : 

e r f c ( ~ X  ~ 

T~(x,t) = /'i2+(TT2 -Ti2) \ 2 ~ 2 t ]  (18) 

where / and s refer respectively liquid and solid phases of 
medium (2). These expressions verify equations (7), (8), (12), 
(14) and (16). 

The parameter ~ is determined from the solution of  the 
following transcendental equation : 

exp(--¢ 2) + 2~ ~ 7~2 --T~ 

erf(~) 2~ ~ / ~  ] 7  -- Ti~t 

x \ c ~ / _  ~L2.v/n (19) 

( ~ )  Cpt(TT2 - Tin,) 
erfc 

obtained by equatiort (1 l) and the relation S(t) = 2~x~2t. 
The heat flux in the solid phase and at the interface x = 0 is 
equal to : 

b~ (Ti . t -  T~2) 
~o~ (0, t) - ~ erf(~) (20) 

The equality between the heat fluxes at the interface x = 0 
given in equations (4) and (20), allows one to verify equation 
(9) and gives the interface temperature : 

TT2b~ + Tilb, err( 0 
Tint = (21) 

b~ +bl  erf(O 

We see that Ti., remains constant and validates our strong 
hypothesis. The new instantaneous interface temperature 
depends on ~ which itself depends on the interface tem- 
perature Tin t. In such a situation we use an iterative process 
to find the solution. To start the iterative procedure, we 
arbitrarily guess the interface temperature and we compute 
the corresponding ~ from equation (19). This is used to 
compute the new interface temperature in formula (21). The 
algorithm converges very quickly. 

EXAMPLES 

To illustrate the above analysis, numerical tests were per- 
formed to estimate the interfacial temperature. These simu- 
lations are done in two different cases. The first one is the 
sudden contact between molten tin and a solid substrate of 
nickel. The second case concerns injection molding (poly- 
mer-steel). The last case concerns the molding of  molten 
polymer on a solid one (overmolding). The values of physical 
properties used in this analysis, and taken from refs. [3, 4], 
are given in Table 1. Results of  these examples are given in 
Table 2. 

CONCLUDING REMARKS AND COMMENTS 

Formula (21) is quite different from the classical one used 
for thermal contact without phase change. The numerical 
examples show that for contacting materials with effusivities 
of  the same order of magnitude, the results differ strongly 
from the solution without phase change. This is very impor- 
tant for morphological considerations. However, it must be 
noted that this approach is purely theoretical and exact from 
the mathematical point of  view. In realistic situations this 
simple approach must be complicated by taking into account 
thermal contact resistance, supercooling effects, if necessary, 
and other complex phenomenon. In any case the use of  the 
exact formula is an improvement in comparison with the one 
which is actually used. 

Table 1. Value of the properties used in the simulations 

Property Tin Nickel Polymer Steel 

p [kg m -3] 7300.0 8900.0 910.0 7850.0 
C~ [J kg -1 K -l] 226.0 450.0 1910.0 460.0 
2 [W m 1 K-I]  60.0 90.0 0.43 30.0 
L [J kg -1] 59000.0 - -  54000.0 - -  
Melting temperature [K] 505.0 - -  453.0 - -  

Table 2. Results 

Tin Nickel Polymer Steel Polymer Polymer 

Initial temperature [°C] 300.0 20.0 230.0 40.0 230.0 40.0 
Interface temperature [°C] 

Formula (3) 116.0 54.0 135.0 
Formula (21) 150.0 56.0 142.0 
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1. INTRODUCTION 

The short-phase laser heating process of  metals is composed 
of  three general steps : the deposition of  radiation energy 
on electrons, the transport of  energy by electrons and the 
propagation of energy through media. The propagation of  
energy during a relatively slow heating process can be mod- 
eled by the Fourier heat conduction model, since the depo- 
sition of  radiation energy can be assumed to be instan- 
taneous. However, it takes time, in reality, to establish an 
equilibrium state in thermodynamic transition. For  a prob- 
lem involving reflectivity change resulting from short-pulse 
laser heating on gold films [1], the response time is on the 
order of picoseconds, comparable to the time required to 
establish an equilibrium state. The diffusion theory fails 
under such circumstances because the hot electron gas and 
the metal lattice cannot reach thermodynamic equilibrium 
in such a short period of time. Thus, more general and 
rigorous models are needed to include effects of  electron- 
lattice interactions and non-Fourier transport. After 
Maxwell's research [2] on the kinetic theory of  gases, which 
has had great influence on the development of the thermal 
wave theory, modifications on Fourier's law are promoted 
by its deficiencies in advanced applications [3-16]. 

The unified model (Tzou [16]) is a generalized approach 
based on the dual-phase-lag concept which accounts for the 
lagging behavior in the high-rate response. A universal 
constitutive equation between the heat flux vector and the 
temperature gradient is proposed with an effort to cover a 
wide range of  physical responses from microscopic to macro- 
scopic scales in both space and time [16]. An exact solution, 
using the method of  separation of  variables, to the above 
universal constitutive equation for a one-dimensional prob- 
lem is addressed in this paper. Part of  the results are found 

to be different from those by Tzou [16]. The aim of this note 
is to present a convenient approach to the short-pulse laser 
heating problem by virtue of the unified heat conduction 
equation. 

2. THEORETICAL ANALYSIS 

The short-pulse laser heating of  a metal film can be treated 
as a one-dimensional problem because its heat penetration 
depth is much smaller than the beam diameter. The solid is 
assumed to have a finite thickness, l. The phase lag of the 
heat flux and that of  the temperature gradient are Zq and zx, 
respectively. An initial temperature distribution of  constant 
value, To, in solid and an imposed initial time-rate change of  
temperature, ~0, are given. A suddenly-raised temperature 7", 
at left end x x 0 and a zero temperature gradient remaining at 
right end x = l are suitable boundary conditions for this type 
of problem. After introducing the following dimensionless 
variables as in ref. [16], 

T-To  x t 
O = T w _ ~ ,  6= 7 , and 3=(12/ot ) (1) 

the temperature field equation, the initial conditions and the 
boundary conditions become : 

020 ~30 00 020 
- - + z r  -- - -  
062 06203 03 +Zq032 

(2) 

and 

00 
0 = 0  and ~ = 0 o  a t f l = O  (3) 

cO 

t30 
t Author to whom correspondence should be addressed. 0 = 1 at 6 = 0 and ~ = 0 at 6 = 1 (4) 


