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Abstract--Control engineers have been investigating and developing different on-line adaptation 
schemes to fine-tune performance of controllers after off-line design. Artificial neural network 
technology has shown satisfactory results for many control applications. However, certain types of 
nonlinear problems are difficult for the neural controller to learn by conventional on-line adaptation 
schemes, while the nonlinear system can be effectively controlled by incorporating heuristics 
knowledge. This paper presents an effective approach to incorporate heuristics control knowledge 
into a neural controller by off-line pre-training, then fine-tune the neural controller performance 
further by on-line adaptation. Experimental results on a servomotor system with significant nonlinear 
friction characteristics are used to demonstrate the effectiveness of the design approach. 

1. INTRODUCTION 

Artificial neural network (ANN) technology has become increasingly popular  as a 
tool for performing tasks such as pat tern  recognition, t ime series prediction, system 
identification and automatic  control [1-3]. The control of  nonlinear t ime-varying 
systems is one application in which neurocontrollers  have been shown to provide 
performance  and flexibility superior to that of conventional linear controllers in many  
cases [3]. The choices of network classes and topologies often depend upon the 
characteristics of the system being controlled [1]. However ,  several general neurocon- 
troller design approaches  for nonlinear systems have been developed [3]. 

One of the most  popular  neural network control techniques involves using an A N N  
in the forward path  of a feedback system as shown in Fig. 1. 

The inputs to the network are usually present  and past values of  error ,  e, defined 
as the difference between the reference input r and system output  y.  The outputs of 
the network,  u, are used as inputs to the plant. Different  neural control design and 

Plant 

Fig. 1. A common neural control method. 
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adaptation approaches have been reported in different technical journals and transac- 
tions. One of the strong features of neural control is its capability to adapt on-line in 
order to minimize some prespecified cost index [4]. An inverse nonlinear control 
strategy using neural networks is proposed in [5]. The neurocontroller is trained to 
approximate the inverse mapping of the plant, and inputs to the neurocontroller are 
then conditioned in order to obtain desired error dynamics. A method in which a 
neural network is used in parallel with an existing neural controller is developed in 
[6]. The parallel network is adapted to correct system performance so that the 
mapping of the base controller is preserved and the convergence speed of the 
adaptation process is increased. 

However, successful adaptation of on-line neural controllers in many cases requires 
careful and substantial design effort. One of the common practices is to pre-train a 
neural controller off-line based on some simplified design methods, such as a 
proportional integral (PI) controller based on approximated system models that can 
provide reasonable control performance, before putting the neural controller for 
on-line fine tuning [7]. This approach can speed up the neural controller on-line 
adaptation process and increase the closed-loop on-line adaptation stability because 
the initial weights of the neural controller are much closer to the optimal final weights 
(if they exist) after the pre-training process. 

In many control problems, conventional control strategies may not provide satisfac- 
tory results, nor can the pre-trained neural controller fine-tune its performance even 
after on-line adaptation until a significant amount of time and effort is spent. 
However, in many cases, knowledge-based techniques can be incorporated in the 
control-loop to provide an effective solution. Different control schemes such as fuzzy 
control and gain scheduling have been investigated and developed in this avenue and 
have provided satisfactory results [8]. However, knowledge-based techniques are in 
general difficult to adapt on-line to provide optimal control. Recently, a significant 
amount of research effort has been invested in the adaptation of fuzzy logic. One of 
the popular approaches is to implement fuzzy logic in neural network structures for 
on-line adaptation. 

This paper presents the design approach to incorporate heuristic knowledge into 
fuzzy logic controllers, which can provide reasonable performance for a servomotor 
with significant nonlinear friction characteristics, then pre-train the neural controller 
to learn the fuzzy control before placing the neural controller on-line to further 
optimize its performance. 

The neural control implementation presented here is similar to that presented in [6] 
except that the development of the supplementary network is different. The sup- 
plementary network is first trained off-line to mimic a fuzzy system which has been 
designed using a knowledge base obtained through observation of the plant dynamics 
[8]. If a human operator were assigned the task of controlling the motor using a 
joystick, for example, he might experience difficulty compensating for the nonlineari- 
ties of the motor. As the operator obtains qualitative knowledge of the motor 
dynamics, however, he should be able to modify his control policies to compensate 
for the nonlinearities. Assuming that these modifications are describable by fuzzy 
rules of the form "If A and B then C," fuzzy logic can be used to incorporate the 
heuristic knowledge of the operator into the design of an automatic controller. The 
supplementry network which learns the fuzzy logic mapping is used to modify the 
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control policies of the base neurocontroUer in order to compensate for undesired 
performances. 

A servomotor with nonlinear mechanical characteristics, which will be explained in 
later sections, is used to illustrate the effectiveness of the proposed method. A neural 
network is trained off-line to learn a PI controller input/output mapping so that the 
pre-trained neural controller will have better initial weights for online adaptation. A 
cost index for on-line training to fine-tune the neural controller performance in order 
to compensate the undesirable closed-loop control performance due to the nonlinear- 
ity is described, and problems encountered with on-line training of the neurocon- 
troller are discussed. The design methodology proposed in this paper is to effectively 
incorporate heuristic knowledge into a neural controller. Heuristic knowledge of the 
motor dynamics is used to design a fuzzy logic rule which can improve the 
performance of the closed-loop system. A supplementary network is trained off-line 
to learn the fuzzy mapping and is then trained on-line in order to further improve 
performance over the operating range of the system. 

2. D.C. MOTOR SYSTEM DESCRIPTION 

Servomotors are used extensively in industry for applications such as robot arm 
drives, machine tools~ rolling mills and aircraft control [9, 10]. A block diagram of the 
popular unity-feedback motor control system is shown in Fig. 2, where r is the 
desired output and d represents a load disturbance. 

In this paper, the speed control of a D.C. servomotor system with significant 
mechanical nonlinear characteristics is used to illustrate the effectiveness of the 
proposed control methodology. Linear time-invariant characteristics of D.C. motors 
have been emphasized in classical control text books, in which most conventional 
control techniques such as transfer functions, zero-pole placements, Bode plots, PI(D) 
(where D stands for derivative) algorithms can be applied directly. Unfortunately, in 
general, only expensive D.C. motors are manufactured to provide all the nice linear 
time-invariant characteristics over a reasonably wide operating range. In reality, many 
D.C. motor systems have different nonlinear characteristics. Many conventional 
control algorithms developed for D.C. servomotors require significant amounts of 
on-line fine-tuning to provide better performance. The PI(D) controller is a classical 
example. The gain settings on the design stage generally provide reasonable motor 
performance over a small operating range. Engineers need to adjust the two (three) 
knots, corresponding to the P, I (and D) gain settings, from the off-shelf PI(D) 
controller on-line for their systems, and repeat the tasks for different motor operating 

Fig. 2. Block diagram of the unity-feedback servomotor control system. 
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conditions. The motor  used in this paper for illustration purposes has several 
nonlinear characteristics including backlash, dead zone and nonlinear friction [9]. The 
nonlinear friction has a significant effect on system dynamics, while the effects of the 
other nonlinearities are comparatively insignificant. Thus, we lump all the nonlinear- 
ity effects into the nonlinear friction effect in our future discussion for simplicity. 

Several friction models have been proposed for the analysis of physical systems that 
involve some type of sliding motion [11]. A popular friction model known as the 
Stribeck curve [12] is shown in Fig. 3. 

Purely velocity-dependent friction models such as the Stribeck curve do not include 
additional friction components,  such as rising static friction and frictional memory,  
which may significantly affect performance [12]. Although it may be difficult to obtain 
an accurate analytical friction model,  the qualitative effects of friction are well-known. 
At low velocities, motion may be intermittent and the resulting stick-slip phenome- 
non can lead to overshoot and large-amplitude limit cycles [13]. These effects are 
discussed in more detail in the following section, where they are demonstrated on an 
actual D.C. motor. 

A schematic of the experimental system is shown in Fig. 4. The controllers are 
implemented on a 486 PC using the LabVIEW graphical programming package. The 
rotation of the motor shaft generates a tachometer voltage which is then scaled by 
interfacing electronic circuitry. A National Instruments data acquisition board receives 
the data via an Analog Devices isolating backplane. After a control value is 
computed, an output voltage is generated by the data acquisition board. The voltage 
is then scaled by the interfacing circuitry before being applied to the armature of the 
motor. Load disturbances are generated by subjecting a disc on the motor  shaft to a 

friction force 

steady state velocity 

Fig. 3. Generalized Stribeck curve friction model. 

DC Motor 

~ interfacing 

IBM PC 

Fig. 4. Schematic of the experimental D.C. motor system. 
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magnetic field. The complete system setup is shown in Fig. 5, and a close-up view of 
the motor is given in Fig. 6. 

3. PI CONTROLLER DESIGN AND PERFORMANCE 

A PI controller is designed in order to provide training patterns that will be used to 
pre-train, thus initialize, a neurocontroller [14]. A second-order model of the form 

= A x  + b u  (1) 

is used, where u is the armature voltage, x = [ia ~o] r and i a and ~o are the armature 
current and shaft angular velocity, respectively. A discrete version of (1) is obtained, 
and a digital PI controller is designed to provide critically damped step responses and 
rise time of about 1.5 sec. 

The parameters of the motor are estimated via a standard system identification 
technique based on a linear D.C. motor model [15]. The parameters of the motor, 
based on the linear time-invariant model, are listed in Table 1. Ra and La are the 
resistance and the inductance of the motor armature circuit, respectively; J and f are 
the moment of inertia and the viscous-friction coefficient of the motor  and load 
referred to the motor shaft, respectively; K is the constant relating the armature 
current to the motor torque, and Kb is the constant relating the motor speed to the 
D.C. motor's back-emf. 

The amplifier for the motor saturates at 15 V, at which point the effectiveness of 
the feedback loop is lost. The output of the controller will remain saturated until the 

Fig. 5. Motor control system setup. 
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Fig. 6. Close-up view of the D.C. motor. 

Table 1. D.C. motor parameters 

R, 4.67 f2 
L,, 170e-3 H 
J 42.6e-6 kg-m 2 
f 47.3e-6 N-m/rad/sec 
K 14.7e-3 N-m/A 
Kb 14.7e-3 V-sec/rad 

error has been negative for a sufficiently long time to allow the magnitude of the 
integral term to become small. This phenomenon is called integrator windup [16]. To 
avoid potential problems caused by integrator windup, the following rules are used: 

1. e(-1)  --= e(0). 

2. If [Ucalc(k)[ > 15, set u(k) = 15. sgn (u(k)), 

where Ucalc(k) represents the control output calculated by the PI controller. The first 
rule prevents the control output from immediately taking on a large value due to the 
step input introduced at time t = 0. The second law is a simple back-calculation 
algorithm commonly used to avoid windup [16]. Typical responses of the linear model 
and the actual system for step reference inputs of 100 and 300 rad/sec are given in 
Figs 7 and 8. 

It is clear that the friction nonlinearity has an adverse effect on system response, 
causing overshoot for small reference inputs and oscillatory transient responses for 
large reference inputs. It is reasonable to expect that load disturbances could induce 
limit cycles due to the nonlinear friction characteristics of the motor. To verify this, 
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Fig. 7. Typical step responses of the linear D.C. motor model under PI control. 
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Fig. 8. Typical step responses of the actual D.C. motor under PI control. 

step disturbances are introduced at steady-state conditions for the same reference 
inputs used in Figs 7 and 8. Figure 9 shows typical responses of the PI control system 
under load disturbance. 

The load disturbances cause large-amplitude limit cycles, as expected, and this 
behavior is not limited to small reference inputs. Adjusting PI controller constants in 
order  to provide smooth step responses and stable disturbance responses results in 
unacceptably large response times. Instead, a neural network is initialized using the 
PI controller and the resulting neurocontroller  is trained on-line in an effort to 
improve response characteristics. 

4 .  N E U R A L  C O N T R O L  

A neurocontroller  is trained on-line in an attempt to compensate for the friction 
nonlinearity that the PI controller cannot achieve. The symbol Nn ....... is used to 
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responses of the PI control system under load disturbance. 

designate a class of three-layer feedforward ANN with ni inputs, nh hidden-layer 
neurons and n. outputs. The PI controller uses values of e(k)  and e ( k -  1) to 
compute A u ( k ) ,  so inputs to the PI controller can be considered to be error (e) and 
change in error (ce), where change in error is defined to be the backward difference 
e(k)  - e(k  - 1). 

An ANN of the class N3,12,~, which has sufficient number of weights to learn the 
proper  control knowledge discussed in this paper [17], is trained to learn the PI 
controller mapping {e(k),  ce(k)}--~ A u(k)  described in the previous section by using 
the concept of a functional link [2, 18] so that the ANN inputs are defined by the 
mapping 

H: {xi} ~ {xi, xixj}. (2) 
j>i 

Thus, the inputs to the ANN are {e(k), ce(k),  e ( k ) . c e ( k ) }  and the output is the 
change in armature voltage. The initialized ANN is then trained on-line using a 
popular cost function of the form 

J -- ~[cle 2 + c2ce2], (3) 

where cl and c2 are weighting factors that represent the penalties placed on the error 
and change in error of the output. 

The popular backpropagation method [14, 15] is used to train the neurocontroller 
on-line. ANN weights are adjusted at each time step using a small learning stepsize. 
An estimate of the plant input/output sensitivity ~y/3u needed for on-line training is 
obtained from the linear model of the plant. The weighting constants in Eqn (3) are 
chosen to be {cl, c2} -- {0.1, 5.0} in order to balance the speed and smoothness of 
response. Sinusoidal reference inputs of different frequencies and amplitudes are used 
to train the neurocontroller until the observed performance of the closed-loop system 
over the operating range of interest has converged. The performance of the trained 
neurocontroller is shown in Fig. 10, where the reference inputs used are the same as 
those shown in Fig. 8. 

Figures 8 and 10 reveal that the step responses of the PI and neurocontrol  systems 
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Fig. 10. Typical step responses of the trained neurocontrol system. 

are very similar even after the on-line adaptation. The neurocontrol system exhibits 
slightly better convergence, but on-line training has n o t  significantly compensated for 
the effects of the nonlinear motor friction. To further illustrate this point, step load 
disturbances are introduced during steady-state conditions for reference values of 100 
and 300 rad/sec. The disturbance responses are shown in Fig. 11. 

Basically, the results imply that the conventional on-line neural controller adapta- 
tion could not compensate the nonlinear friction effects. There are several options to 
be considered to improve the on-line training in order for the network to compensate 
the nonlinear friction effect on the servomotor system. One option for improving 
performance is to use a different cost index for on-line training. Due to the 
complexity of the friction nonlinearity, it will require a significant amount of effort 
and development time to find an appropriate cost index. Using a more elaborate cost 
index may also significantly increase the complexity of the adaptation process. 

As mentioned previously, in general it is difficult to develop an accurate nonlinear 
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Fig. 11. Typical disturbance responses of the trained neural control system. 
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friction model for the servomotor system [9]. Although approximate models have 
been shown to be sufficient in some cases [16, 18, 19], an effective model-free 
approach may be more appealing if it results in a simpler design. This paper proposes 
another option to use fuzzy logic to incorporate heuristic knowledge of the effects of 
the nonlinear friction in order to improve performance, from which we incorporate 
the knowledge to train the neural controller. 

5. FUZZY LOGIC FRICTION COMPENSATION 

A fuzzy logic friction compensation methodology has been described in [8] and is 
briefly described in this section for completeness. The input to the motor can be 
written as 

u(k)  = u(k  - 1) + N(e (k ) ,  ce(k),  w), (4) 

where N ( . )  denotes the neural network mapping and w denotes the adjustable 
connection weights of the network. The following fuzzy logic rule is used to modify 
the controller output: 

IF r(k)  IS SMALL 
AND u(k  -1 )  IS L A R G E  
AND ay(k) IS SMALL (5) 
THEN D E C R E A S E  K,  

where r is the reference, u is the motor input, o9 is the motor speed and K is an 
attenuation factor incorporated into Eqn (4) which yields 

u(k)  = u (k  - 1) + K ( r ( k ) ,  u (k  - 1), w ( k ) ) N ( e ( k ) ,  ce(k),  w). (6) 

The membership functions {/ft.)} for the fuzzy rule are shown in Fig. 12. 
Correlation-minimum encoding [20], which yields the minimum fuzzy degree of truth 
of the rule antecedents, is used to compute the rule output so that 

K = 1 - 0.9 min {/t/SMALL(r), I/LARGE(U), /./,SMALL((/))}. (7) 

The fuzzy rule compensates for the nonlinear friction by reducing the gain of the 
integral term when the system is most sensitive to the nonlinearity. The 0.9 factor is 
included in Eqn (7) to preserve the integrating operation of the controller so that 
steady-state tracking error is eliminated, provided the system is asymptotically stable. 

~M,~_L (r) 

'1 :\ o i 
b r Zr 

(u) 
LARGE 

r (rad/sec) u (volts) ¢o (rad/sec) 

1 /.,,,, 
0 

Zu bu 

SMALL 
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bm zm 

Fig. 12. Membership functions for fuzzy rule. 
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The parameters of the membership function are chosen to be 

{br ,  b . ,  b,o} = {200, 6, 100} 

{Zr,  Zu, Zto} : {600, 2, 600}. (8) 

Note that Zr = Z,o = 600 even though the maximum attainable speed of our motor is 
about 500 rad/sec. The parameters in Eqn (8) describe the s h a p e s  of the membership 
functions over the range of attainable values for each variable; it is not required that 
the parameters themselves lie in these ranges. 

6. RESULTS 

A neural network of the class N3,4,1 is trained to learn the mapping given by the 
fuzzy logic rule. This network is used as a supplementary network which modifies the 
gain of the network used in the initial control scheme. The overall structure is 
depicted in Fig. 13. 

On-line training is performed again using the cost function given by Eqn (3), but 
only the weights of the supplementary network are adjusted. Typical step responses of 
the actual motor control system with the trained supplementary network are shown in 
Fig. 14. 

T 
(PI control Cheuristic control 

pre-training) pre-training) 

ANN for on-line adaptation 

m°t°r 

Fig. 13. Schematic diagram of the servomotor system neural control scheme. 
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Fig. 14. Typical responses of the modified neural control system. 
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The step responses are smooth and exhibit negligible overshoot. Settling times are 
approximately the same as those of the original controller. Typical responses of the 
system with supplementary network under load disturbance are shown in Fig. 15. The 
step disturbances are the same as those used for the responses shown in Fig. 9. 

The convergence of the response corresponding to the smaller reference is slower 
since the friction nonlinearity is more significant at lower speeds and the supplemen- 
tary network has more of an effect on the change in input. A set of 200 
reference/disturbance pairs has been used to test the stability of the modified system 
under load disturbance, and the system has exhibited asymptotically stable responses 
in every case. 

Trajectories of the input and output of the motor with and without the supplemen- 
tary network are shown in Fig. 16 in order to further illustrate the effects of the 
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Fig. 15. Typical responses of the modified neural control system under load disturbance. 
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Fig, 16. Input (bottom) and output (top) trajectories of the motor with and without the supplementary 
network. 
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supplementary network. A step reference input of 200 rad/sec is used, and a step 
disturbance is introduced after the step responses have settled. 

As indicated in the control structure shown in Fig. 13, there are several ways to 
view the controller structure. The PI control pre-trained neural network and the fuzzy 
control (knowledge-based) pre-trained neural network can be viewed separately as a 
two-step control. This modular viewpoint can provide the designer with more insight 
as to how the neural network controllers process information. On the other hand, the 
two neural controllers can be synthesized and viewed as a single controller. This 
approach views the controller providing correct input -ou tput  control mapping to 
compensate the system nonlinearity as well as performance control as an integrated 
controller. 

In situations where we feel confident with either the PI and/or fuzzy controllers'  
optimal design, we do not need to train neural networks to learn their performance 
for further on-line adaptation. Unfortunately,  this is hardly the case in most real 
world situations. If we are confident about the optimality of PI design while less 
confident on the fuzzy control design, we can just train a neural network to learn the 
fuzzy control,  and cascade it with the PI controller for further on-line adaptation. 
Similar arguments apply to the less confident PI design and confident fuzzy control 
design. Of course, this hybrid control system complicates the neural control structure 
and requires modifications for the on-line adaptation schemes [1]. Fur thermore,  
implementing the PI and fuzzy control in neural network structure can significantly 
improve the controller speed due to the inherent nature of parallel processing that 
neural network possesses, in addition to its easy adaptation features. 

7. CONCLUSIONS 

This paper has discussed a methodology to train a neural controller by incorporat- 
ing heuristic knowledge to the control effort. The methodology includes a pre-training 
session and an on-line adaptation session. The pre-training session trains the network 
to learn reasonably well control surfaces from different knowledge sources, thus 
providing better  initial weights for the neural controller for future successful on-line 
adaptation. Then the on-line adaptation session fine-tunes the controller performance,  
based on actual system performance.  A servomotor  system with significant nonlinear 
effect is used in this paper to illustrate the proposed methodology. 

Acknowledgments--The authors would like to acknowledge the support of the Electric Power Research 
Institute, Research Contract RP8004-24: Intelligent Energy Control. 
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