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Heat flux qw(t) estimation using data from the time evolution of isotherms in material 
depth is considered. The location of isotherms is determined by thermal indicators, The 
inverse heat conduction problem with spatially distributed data on isotherms is discussed. 
The results of numerical experiments for different numbers of indicators and different 
values of input data accuracy are presented. © 1997 by Elsevier Science Inc. 
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Introduction 

Standard temperature measurements are performed in fixed 
points in space (where sensors are located). Thermal indicators 
(TI) can provide spatially distributed data. However, as a rule, TI 
are not used for the measurement of unsteady heat flux because 
of the large interval between color change temperatures and 
(Abramovich Kartavtsev 1978). An attempt to use spatially dis- 
tributed unsteady data is described in the present paper. An 
approach to heat flux qw(t) evaluation using data on TI color 
change coordinates (in specimen depth) in time dependence is 
considered. We discuss a situation when TI strips are located 
depthward from a heated surface (Alekseev 1994, 1996). A heat 
flux measurement method is described, which can be used in a 
situation when standard means based on electric measurements 
are not desirable. Safety conditions or large electromagnetic 
interference can be reasons for its application. A new type of 
inverse heat conduction problem (IHCP) arises with considera- 
tion of this method. 

The heat flux sensor shown in Figure 1 contains strips of 
temperature-indicating paints located depthward from the heated 
surface. We discuss the reversible indicators that recover color 
under cooling (they can be liquid crystals or luminescent temper- 
ature indicators) or irreversible ones at the stage of temperature 
rise. The sensor material should be transparent in the visible 
range and opaque to infrared rays. It is valid for glasses, for 
example. It allows us to nelOect the radiative heat transfer within 
the sensor structure and, therefore, simplifies the heat transfer 
model used. The TI state Ci(t, x) is recorded in time depen- 
dence. The state of TI color can be approximated by curves 
Xi(t), which are the isotherms in two-dimensional (2-D) space, 
composed of spatial and thne coordinates. 

Governing equation.,; 

The temperature field is nonstationary and spatially one-dimen- 
sional (I-D). The heat conduction equation is written with corre- 
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sponding initial and boundary conditions. 

OT(t, x) ~2T(t, x) 
C(T)" p 0-------~ = h(T). ~x----------y~ (1) 

h~x x=o=qw(t); ~ - - ~ = L = 0  (2) 

xe(0, L);  t¢(0, t/);  T(0, x) = To(x) 

The effect of TI thermophysics is neglected. The state of N 
TI (with temperatures T~(i = 1. . .  N)) can be described by the 
following equation: 

Ci(t, x) = fot~(T(t, x -  T/)dt, i = 1 . . . . .  N (3) 

Here 0 = initial state, 1 = annealed state. 
These data can be described by the set of N isotherms 

corresponding to N indicators color change temperatures 

X]r(t)=r, =.~i(t) ,  i =  1 . . . N  (4) 

The values Xi(t)=.~i(t)+ ~i(t) are known from the experi- 
ment. We search such heat flux qw(t) that reproduces in compu- 
tation the experimentally measured values Xi(t). We consider 
the case of the relatively simple shape of Xi(t) corresponding to 
one impulse of heating (Figure 2). For more complicated events 
[if Xi(t) is a multi-value function of t, e.g.], the problem is 
beyond our consideration. 

If N is large enough, then we can restore total temperature 
field T(t, x) and determine qw(t) by differentiating this field: 
qw(t) = h. ~T(t, O)/~x. This kind of problem is classified by Ali- 
fanov (1994) as a pseudo-inverse one. Such problems are accom- 
panied by fewer numerical difficulties. 

If N >  1, the problem (Equations 1-4) is an inverse heat 
conduction problem similar to that discussed by Alifanov (1994). 
The solution region is composed of the boundary value problem 
zone (from the cold surface to the isotherm and between 
isotherms) and the Cauchy problem zone (from heated surface to 
nearest isotherm) (Figure 3). It is the Cauchy problem zone 
where the problem is ill-posed and can be unstable. If Xi(t) is a 
good enough function (analytical e.g.) then the problem (Equa- 
tions 1-4) has a unique solution (Lavrentiev et al. 1980) for only 
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Figure 1 The thermal indicators location sketch 

one isotherm. We observe X/exp =Xi(t)+ ~i(t) that can be nei- 
ther an analytical nor a continuous function because of an error 
of experiment 8~(t). One subject of this paper is the comparison 
of stability and precision in dependence on 8i(t) and TI number 
N in computational experiments. 

X=L X 

coordinate of color 

method was used as the optimization algorithm. The computa- 
tions for a sensor having the following characteristics (X = 0.00074 
kW/(m-s); C.p=2500 kJ/m3; thickness 0.01 m)were  per- 
formed to confirm the validity of the above method. The heat 
transfer equation was solved by implicit finite-difference meth- 

Numerical experiments 

The problem (Equations 1-4) is formulated as an optimization 
one. The heat flux density qj = q(tj) should provide a minimum 
of the mismatch of computed and experimental values of color 
change coordinates Xi(t). 

~(qj) = ~ f [ x w ( t )  -x~°mp(t)]2dt (5) 
i 

Alifanov (1994) offers the conjugated problem solution for calcu- 
lation of Ae/Aqi that provide high computational effectiveness. 
Nevertheless, for the case of a large number of isotherms, this 
approach is very complicated to program. In the present work the 
discrepancy gradient As/Aqi was computed in the simplest way 
by means of a finite-difference approach. The value of Aqi/q i 
was varied in the range of 0.01-0.001. The steepest descent Figure 3 

I s o t h e r m s  Xi ( t )  = X r=vi 

Classic IHT~ Cauchy Problem zone~ 
zone 

The scheme of different problem zones 

Notation 

C(T) specific heat 
Ci(t, x) state of ith thermal indicator (1:0) 
L thickness of sensor 
N number of thermal indicators 
qw(t) wall heat flux 
t time 
T( t, x) temperature 
T o initial temperature 
X coordinate 

Greek 

e discrepancy of computed and measured data 
X(T) thermal conductivity 

p density 
Dirac's delta function 

~i(t) experimental error 

Superscripts and subscripts 

comp computed 
exp experimental 
i thermal indicator number 
w wall 
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Figure 4 The heat f lux estimation using 1, 3, and 10 
isotherms wi th  precise data 

ods of second-order accuracy in space. The t ime-space location 
of isotherms Xi(t)  was computed numerically for some heat flux 
q , ( t )  and used as input data. The normally distributed random 
error with different dispersion was added to input data Xi(t)  for 
experiment error simulation. 

The results of computational experiments are presented in 
Figures 4, 5, 6. The results of heat flux estimation using 1, 3, and 
10 isotherms in comparison with the exact solution are shown in 
Figure 4 for exact input data. A constant heat flux was used as an 
initial guess. The numerical experiments confirm the feasibility 
of heat flux evaluation using the isotherms coordinates X~(t). 
Figure 5 demonstrates the input data error influence. The heat 
flux estimation was made using one isotherm for 0% and 5% 
standard deviation error in input data. An increase of the num- 
ber of isotherms improve:~ the accuracy. Figure 6 demonstrates 
that 10 temperature indicators are sufficient for acceptable accu- 
racy with the same input data error level. Solution instability was 
not found in the computalional experiments despite our problem 
being ill-posed. 

Discussion 

Direct and inverse heat transfer methods with data on some 
curves X( t )  were discussed by Lavrentiev et al. (1980) and 
Alifanov (1994). Usually, measurements at a moving boundary 
are very difficult; here we discuss a natural way of obtaining such 
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Figure 5 The heat f lux est imation using one isotherm for 0 
and 5% standard deviation error in input data 
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Figure 6 The heat f lux estimation using 10 isotherms for 0 
and 5% standard deviation error in input data 

data. In the standard method of using thermal indicators, we 
record an indicator color being changed or not as a function of 
time. It is a piece-wise constant function, and intervals of con- 
stant color do not contain any useful information. In the method 
offered in the present paper, every indicator strip provides more 
information about the process: continuous functions Xi(t)  con- 
tain information on heat flux at any moment. The possibility of 
achieving the sensitivity threshold is far less, because the temper- 
ature range is smaller in the sensor depth. The temperature 
determination error is governed by the color change error AT 
(about 1%). In the standard approach, it is determined by the 
interval between service temperature of indicators (it provides 
error of about 10%). 

The considered method has the following peculiarities. The 
sensitivity of isotherms to heat flux depends on the distance from 
the heated surface to the isotherm and decreases when this 
distance rises. The signal recorded by this sensor has an integral 
character in time, and, thus, it is robust to information loss. 
Direct interpretation of these sensor records is impossible (ex- 
cluding the stationary case). In the steady case (qw = CONST), 
the sensor's conductivity k can be measured by simple differenti- 
ating, which provides an opportunity for sensor calibrating. 

Conclusions 
(1) The numerical experiments demonstrate the feasibility of 

heat flux estimation from isotherms. 
(2) One isotherm is sufficient for boundary condition estimation. 
(3) The increasing of necessary isotherms number improves ac- 

curacy. The maximum number is moderate (from 3 to 10) and 
far less than the number necessary for precise temperature 
field T(t, x)  determination. 

(4) The input data Xi(t)  accuracy of about 5% was modeled by 
random number generator and was found to be acceptable. 
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