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L-moments: Analysis and Estimation of Distributions using Linear 
Combinations of Order Statistics 

By J. R. M. HOSKINGt 

IBM Research Division, Yorktown Heights, USA 

[Received January 1989] 

SUMMARY 
L-moments are expectations of certain linear combinations of order statistics. They can be 
defined for any random variable whose mean exists and form the basis of a general theory 
which covers the summarization and description of theoretical probability distributions, the 
summarization and description of observed data samples, estimation of parameters and 
quantiles of probability distributions, and hypothesis tests for probability distributions. The 
theory involves such established procedures as the use of order statistics and Gini's mean 
difference statistic, and gives rise to some promising innovations such as the measures of 
skewness and kurtosis described in Section 2, and new methods of parameter estimation for 
several distributions. The theory of L-moments parallels the theory of (conventional) 
moments, as this list of applications mi ht suggest. The main advantage of L-moments over 
conventional moments is that L-moments, being linear functions of the data, suffer less 
from the effects of sampling variability: L-moments are more robust than conventional 
moments to outliers in the data and enable more secure inferences to be made from small 
samples about an underlying probability distribution. L-moments sometimes yield more 
efficient parameter estimates than the maximum likelihood estimates. 

Keywords: ESTIMATION; HYPOTHESIS TESTING; KURTOSIS; L-STATISTICS; MOMENTS; ORDER 
STATISTICS; SKEWNESS 

1. INTRODUCTION 

It is standard statistical practice to summarize a probability distribution or an 
observed data set by its moments or cumulants. It is also common, when fitting a 
parametric distribution to a data set, to estimate the parameters by equating the 
sample moments to those of the fitted distribution. Yet moment-based methods, 
although long established in statistics, are not always satisfactory. It is sometimes 
difficult to assess exactly what information about the shape of a distribution is 
conveyed by its moments of third and higher order; the numerical values of sample 
moments, particularly when the sample is small, can be very different from those of 
the probability distribution from which the sample was drawn; and the estimated 
parameters of distributions fitted by the method of moments are often markedly less 
accurate than those obtainable by other estimation procedures such as the method of 
maximum likelihood. 

The alternative approach described here is based on quantities which we call L- 
moments. These are analogous to the conventional moments but can be estimated by 
linear combinations of order statistics, i.e. by L-statistics. L-moments have the 

tAddress for correspondence: IBM Research Division, T. J. Watson Research Center, PO Box 218, Yorktown 
Heights, NY 10598, USA. 
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106 HOSKING [No. 1, 

theoretical advantages over conventional moments of being able to characterize a 
wider range of distributions and, when estimated from a sample, of being more robust 
to the presence of outliers in the data. Experience also shows that, compared with 
conventional moments, L-moments are less subject to bias in estimation and 
approximate their asymptotic normal distribution more closely in finite samples. 
Parameter estimates obtained from L-moments are sometimes more accurate in small 
samples than even the maximum likelihood estimates. 

Many statistical techniques are based on the use of linear combinations of order 
statistics: see David (1981) for examples. However, there has not heretofore been 
developed a unified approach to the use of order statistics for the statistical analysis of 
univariate probability distributions. We shall show that L-moments form the basis for 
such an approach, which covers the characterization of probability distributions, the 
summarization of observed data samples, the fitting of probability distributions to 
data and the testing of hypotheses about distributional form. Few of the theoretical 
results are new, being instead extensions of some scattered results and techniques 
described principally by Gini (1912), Sillitto (1951, 1969), Downton (1966), Chan 
(1967), Konheim (1971), Mallows (1973) and Greenwood et al. (1979). It is the 
gathering of these results into a unified whole, and the demonstration that L-moment 
methods perform competitively with the best available statistical techniques, which 
makes L-moments now worthy of the attention of statisticians. 

2. L-MOMENTS OF PROBABILITY DISTRIBUTIONS 

2.1. Definitions and Basic Properties 
Let X be a real-valued random variable with cumulative distribution function F(x) 

and quantile function x(F), and let Xl:n < X2:n <, . . . < Xn:n be the order statistics of 
a random sample of size n drawn from the distribution of X. Define the L-moments of 
X to be the quantities 

Xrr' Z (1)k - EX,, r = 1,29 .... (2.1) 
k=O k ,rkr 

The L in 'L-moments' emphasizes that Xr is a linear function of the expected order 
statistics. Furthermore, as will be seen in Section 3, the natural estimator of Xr based 
on an observed sample of data is a linear combination of the ordered data values, i.e. 
an L-statistic. The expectation of an order statistic may be written as 

EXj: = r! X {F(x)} I {1- F(x)} -i dF(x) ( 1- )!(r -Ij)!Fx}r 

(David (1981), p. 33). Substituting this expression in definition (2.1), expanding the 
binomials in F(x) and summing the coefficients of each power of F(x) gives 

Xrhr x(F) Pre l(F) dF, r = 1, 29 ... . (2.2) 
0 

where 
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r 

Pr (F)= Z P*kFk (2.3) 
k=O 

and 

P/k = (-)r-kQr) (r + k) 

P*(F) is the rth shifted Legendre polynomial, related to the usual Legendre 
polynomials Pr(u) by Pr*(u) = Pr(2u - 1). Shifted Legendre polynomials are 
orthogonal on the interval (0, 1) with constant weight function (Lanczos (1957)- 
though his Pr*() differs by a factor (- l)r from ours). The first few L-moments are 

I 
XI =EX= ~x(F) dF, 

0 

1 

2= E(X2:2 - X1:2) = x(F) (2F - 1) dF, 
0 

(2.4) 

X3 = IE(X3:3 -2X2:3 + XI:3) = |X(F) (6F2-6F+ 1) dF, 

4= 4E(X4:4 - 3X3:4 + 3X2:4 - Xl4) = x(F) (20F3 - 30F2 + 12F - 1) dF. 

The use of L-moments to describe probability distributions is justified by the 
following theorem. 

Theorem 1. 

(a) The L-moments Xr, r = 1, 2,. . ., of a real-valued random variable Xexist if 
and only if X has finite mean. 

(b) A distribution whose mean exists is characterized by its L-moments {X,: r = 1, 
2, ... .}. 

Proof. A finite mean implies finite expectations of all order statistics (David 
(1981), p. 33), whence part (a) follows immediately. For part (b), let 

Ar,EXr: r= |x{F(x)1 -'dF(x), (2.5) 

so that, from equation (2.2), 
r 

^r =EZPr* 1,k- 1k kS, 
k= 1 (2.6) 

r (2k- l)r!(r- l)! 
k=1 (r 

- k)!(r - 1 + k)! k 

Chan (1967) and Konheim (1971) proved that a distribution with finite mean is 
characterized by the set {Mr: r = 1, 2, . . .}. By equations (2.6), a given set of Xr 
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108 HOSKING [No. 1, 
determines a unique set of (r' so the characterization of a distribution in terms of the 
latter quantities extends to the former. 

Thus a distribution may be specified by its L-moments even if some of its 
conventional moments do not exist. Furthermore, such a specification is always 
unique: this is of course not true of conventional moments. 

As will shortly be shown, X2 is a measure of the scale or dispersion of the random 
variable X. It is often convenient to standardize the higher moments X,r r > 3, so 
that they are independent of the units of measurement of X. Define, therefore, the 
L-moment ratios of X to be the quantities 

TrrXr/X2i r =3, 4, .... 

It is also possible to define a function of L-moments which is analogous to the 
coefficient of variation (CV): this is the L-CV, r e X2/Xl. Bounds on the numerical 
values of the L-moment ratios and L-CV are given by the following theorem, proved 
in Hosking (1989). 

Theorem 2. Let X be a non-degenerate random variable with finite mean. Then 
the L-moment ratios of X satisfy I Tr, < 1, r > 3. If in addition X > 0 almost surely, 
then r, the L-CV of X, satisfies 0 < T < 1. 

We consider the boundedness of L-moment ratios to be an advantage. Intuitively, 
it is easier to interpret a measure such as r3, which is constrained to lie within the 
interval (- 1, 1), than the conventional skewness, which can take arbitrarily large 
values. 

More stringent bounds on the Tr can be found, via the (r defined in equation (2.5). A 
complete specification of the possible values of the tr, in terms of the positivity of the 
determinants of certain matrices whose elements are linear combinations of the (r, iS 
given by Mallows (1973), theorem 2(ii). From that theorem and equations (2.6) we can 
obtain the possible values of the L-moments of a distribution. In particular, for a non- 
degenerate distribution the constraints on 0 , 6 63 and 04 are that 

02 - 01 > ?s 63 - 62 > 09 - 6 + 242 - 41 > O? 

Q4 - U3(2 - 0 1) - (Q3 _ 6 )2 ;? 0~ - 44 + 263 - 62 > ?i 

and so the constraints on X1, X2, T3 and T4 are that 
X 22 - < T3 < I 5 (T-r )<T (2.7) 

2.2. Probability Weighted Moments 
Greenwood et al. (1979) defined probability weighted moments (PWMs) to be the 

quantities 

Mp, r, s = E[XP{F(X)} r{ 1 -F(X)}1, 
and they and others (Landwehr et al., 1979a, b; Wallis, 1980; Greis and Wood, 1981; 
Hosking et al., 1985; Hosking and Wallis, 1987a) developed statistical inference 
procedures using the PWMs Ml 0,s and M, r, o. These PWMs can be expressed 
as linear combinations of L-moments, so procedures based on PWMs and on 
L-moments are equivalent. L-moments are more convenient, however, because 
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1990] L-MOMENTS: ANALYSIS AND ESTIMATION OF DISTRIBUTIONS 109 
they are more directly interpretable as measures of the scale and shape of probability 
distributions. 

2.3. Summarizing a Probability Distribution 
The L-moments XI, . .., Xr and the L-moment ratios T3 . . ., X, are useful quantities 

for summarizing a distribution. The L-moments are in some ways analogous to the 
(conventional) central moments and the L-moment ratios are analogous to moment 
ratios. In particular, XI, X2 3 and 74 may be regarded as measures of location, scale, 
skewness and kurtosis respectively. 

To see this consider equations (2.4), the definition of the Xr as expectations of linear 
combinations of order statistics. Clearly X1, the mean, is a measure of location. To 
interpret X2, consider the typical configuration of a sample of size 2: if the two values 
tend to be close together, as in Fig. 1(a), then X2 will be smaller than if they are far 
apart, as in Fig. 1 (b). Thus X2 can be thought of as measuring the scale or dispersion of 
the distribution. Samples of size 3 are relevant to X3, which is the central second 
difference of the median of such a sample. Samples like that of Fig. 1 (c), which yields 
a positive central second difference, tend to arise from positively skew distributions; 
Fig. 1(d) is more typical of distributions with negative skewness. Symmetric 
distributions have X3 = 0. Thus X3 may be thought of as measuring skewness, 
although not independently of scale. Similarly, (e) and (f) of Fig. I illustrate samples 
of size 4. Configuration (e), typical of a heavy-tailed or sharply peaked distribution, 
has a large positive central third difference, while configuration (f), more typical of a 
flat or even U-shaped distribution, has a negative central third difference. Thus X4, 
itself the central third difference of the expected order statistics of a sample of size 4, 
measures the same aspects of a distribution as does the fourth central (conventional) 
moment. The L-moment ratios r3 and T4 are dimensionless analogues of X3 and X4 
respectively and are therefore plausible measures of skewness and kurtosis. 

An alternative justification of these interpretations of L-moments may be based on 
the work of Oja (1981). Extending work of Bickel and Lehmann (1975, 1976) and van 
Zwet (1964), Oja defined intuitively reasonable criteria for one probability 
distribution on the real line to be located further to the right (more dispersed, more 
skew, more kurtotic) than another. A real-valued functional of a distribution that 
preserves the partial ordering of distributions implied by these criteria may then 
reasonably be called a 'measure of location' (dispersion, skewness, kurtosis). It 
follows immediately from Oja's work that X1 and X2, in Oja's notation ,u,(F) and 

, a(F), are measures of location and scale respectively. Hosking (1989) shows that 73 
and T4 are, by Oja's criteria, measures of skewness and kurtosis respectively. 

(a) v _ _v 
(b) - 

(c) *- * - _ 

(d) 

(e) *r of v o 

Fig. I. Configurations of samples of sizes 2, 3 and 4 
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110 HOSKING [No. 1, 
2.4. L-skewness and L-kurtosis 

Section 2.3 implies that the main features of a probability distribution should be 
well summarized by the following four measures: the mean or L-location, XI; the 
L-scale, X2; the L-skewness, 73; the L-kurtosis, 74. We now consider these measures, 
particularly T3 and 74, in more detail. 

The L-moment measure of location is the mean, XI. This is a well-established and 
familiar quantity which needs no further description or justification here. 

The L-scale X2 is also long established in statistics, for it is, apart from a scalar 
multiple, the expectation of Gini's mean difference statistic. To compare X2 with the 
more familiar scale measure a, the standard deviation, write 

X2=-E(X2:2 
- X1:2), 2= IE(X22 -X2). 

Both quantities measure the difference between two randomly drawn elements of a 
distribution, but a 2 gives relatively more weight to the largest differences. 

The L-skewness 73 is a dimensionless analogue of X3. By theorem 2, T3 takes values 
between - 1 and + 1. These bounds are the best possible: they are approached 
arbitrarily closely as p -O 0 or p --*1 in the Bernoulli random variable Xp with 
P[Xp = 01 = p, P[Xp = 11 = 1 - p. Symmetric distributions have T3 = 0. Apart 
from brief mentions by Sillitto (1951) and Kaigh and Driscoll (1987), 73 has not 
appeared previously in the statistical literature. However, using Sillitto (1951), 
equation (9), to write 

=EX3:- 2EX2:3 + EX1I3 
3 EX3:3 - EX1 :3 

shows that 73 is similar in form to a measure of skewness used by Bowley (1937): 

B_ Q3-2Q2 + Q1 

where Qr x(r/4), r = 1, 2, 3, are the quartiles of X. Skewness measures similar to B 
but based on quantiles other than the quartiles have been used by Hinkley (1975) and 
Groeneveld and Meeden (1984). As a measure of skewness, B can be criticized for 
being insensitive to the distribution of Xany further into the tails than the quartiles. In 
contrast, the conventional moment-based measure of skewness, 

ey E(X - EX)3/{E(X- EX)2-312 

is so sensitive to the extreme tails of the distribution that it is difficult to estimate 
accurately in practice when the distribution is markedly skew. We believe that the 
skewness measure 73 steers an advantageous middle course between these extremes. 

It is interesting to compare the skewness measures T3 and y for various 
distributions: the comparison is made graphically in Fig. 2. For symmetric 
distributions both T3 and y are zero, and many near symmetric distributions have 
-y 6T3, but in general there is no simple relationship between 'y and T3. Both -y and T3 
may yield a large positive skewness either when a distribution has a heavy right tail or 
when a continuous distribution is reverse J shaped, i.e. has a finite lower bound near 
whichf(x) -k oo. The former case tends to yield particularly high values of y relative to 
73, because y is more sensitive to the extreme tail weight of the distribution. Indeed for 
some heavy-tailed distributions -y approaches infinity while T3 has still quite a modest 

This content downloaded from 195.221.106.44 on Tue, 29 Jul 2014 09:43:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


19901 L-MOMENTS: ANALYSIS AND ESTIMATION OF DISTRIBUTIONS 111 

8 1 lI 21 31 j4 5/ 6/ 7 Distributionis: 

E exponclntial 
G Gunibel 

6 1 generalized 
logistic 

2 generalized 

/ / ~~~~~~~~~extrenmc 
3 4 value (GEV) 

-O 
/ //;/ ,, ,3 generalized 

/ ~~~~~~~~~~Pareto (GP) 

4 lognormal 
2 

# 5 ga mm a 
G / 6 Weibtll 

/ y -(reverse GEV) 

0 1 Z t | | | X X , t 7 reverse GP 

0.0 0.2 0.4 0.6 0.8 1.0 

L-skewness 

Fig. 2. Comparison of skewness and L-skewness: , ---, **, distributions whose asymptotic 
distributions of maxima are of extreme value types II, I and III respectively, i.e., roughly, distributions 
with power law upper tails, exponential upper tails and finite upper limits respectively 

value: for example, 0.25 for the generalized logistic distribution. 
Kurtosis, as measured by the moment ratio 

K -E(X - EX)4/{E(X- EX)2-2 

has no unique interpretation. It can be thought of as the 'peakedness' of a 
distribution, or as 'tail weight', but only for fairly closely defined families of 
symmetric unimodal distributions do these interpretations have any demonstrable 
validity (see Balanda and MacGillivray (1988), and references therein). L-kurtosis, r4, 
is equally difficult to interpret uniquely and is best thought of as a measure similar to K 

but giving less weight to the extreme tails of the distribution. To illustrate the greater 
dependence of K on the extreme tails of a distribution, consider a lambda distribution 
(Tukey, 1960) with quantile function x(F) = FX - (1 - F)x and X = - 0.1466. If the 
distribution is truncated at its 0.001 and 0.999 quantiles, its kurtosis K falls from 10.00 
to 5.48, but its L-kurtosis r4 falls only from 0.224 to 0.204. 

Table 1 gives the first four L-moments and L-moment ratios for some common 
distributions. Values of 3 and r4 can be plotted to yield an L-moment ratio diagram, 
exemplified by Fig. 3. The 'bound for all distributions' is the last inequality of 
equations (2.7). The uniform distribution has Tr = 0 for all r > 3 and thus plays a 
central role in L-moment theory akin to that of the normal distribution in cumulant 
theory. 

Higher L-moments may be viewed similarly to higher conventional moments. For 
example r5 could be interpreted as a measure of tendency to bimodality, while the Tr of 
odd order are generalized skewness measures in so far as symmetric distributions have 
r2r+ I= 0forallr 1. 

2.5. Approximating a Quantile Function 
Sillitto (1969) derived L-moments, without so naming them, as coefficients in the 

approximation of a quantile function by polynomials. As a matter of taste, we prefer 
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112 HOSKING [No. 1, 

TABLE 1 
L-moments of some common distributionst 

Distribution F(x) or x(F) L-moments 

a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _4 Uniform x= a+(f-a)F X1 (C + 3), X2 = 6 - (a), 3 ='4- 

Exponential x=t-cx log(l-F) X1=t?a, I2= 2 =3 

Gumbel x=t-a log(-log F) X1=t+Ya, X2=a log 2, 73=0.1699, 74=0.1504 

Logistic x=t+a log{F/(l-F)} .=t, X2=a, 73=0 74=6 

Normal F- (XL ) XI=A, X2=Kr-I', T3=0, T4=30ir- tan-1V2-9=0.l226 

Generalized x=t++{1-(1 F)k}/k X= t + a/(l + k), X2-a/(l + k)(2 +k), 
Pareto T3 =(1 - k)/(3 + k), 4 = (1 - k)(2 - k)/(3 + k)(4 + k) 

Generalized x= + a{c - (--log F)k}/k X1 = ?+a{1 -1r(i +k)}/k, X2=a(1 -2-k)r(l +k)/k, 
extreme value 73=2(1 -3 k)/(1- 2-k)_3, 

Tr4=(1-6.2-k+ 10.3-k-5.4-k)1(1-2-k) 

Generalized x=t+a[l-{(1-F)/F}k]/k x1 = t + c{ I - r(i + k) r(l - k)}/k, X2 = a1P(l + k) 1(1 - k), 
logistic 3 = -k, T4= (I + 5k2)/6 

LF 4 (log(x- t) - A I= = + exp(g + a 2/2), X2 = exp(jA + a 2/2) erf(cr/2), Log-normalka /73 = 67r - "/2J/2erf(x/-J3)exp( -x2)dx/erf(a/2) 

Gamma F= -l txt aexp( - t/f3)dt/r(a) 'XI = a3, - 1/2=r(a + 2 )/r(a), 73 = 61/3(Aa, 2a) - 3 

t,y is Euler's constant; 4 is the standard normal distribution function; Ix(p, q) is the incomplete beta function. 
Expressions for 74 for the gamma and log-normal distributions are given by Hosking (1986). 

to regard equation (2.1) as the fundamental definition; the approximation to the 
quantile function then becomes an inversion theorem, expressing the quantile 
function in terms of the L-moments. 

Theorem 3 (Sillitto, 1969). Let X be a real-valued continuous random variable 
with finite variance, quantile function x(F) and L-moments Xr, r > 1. Then the 
representation 

00 

x(F) = E (2r - I)XrPr*- 1(F), 0 < F< 1, 
r= 1 

is convergent in mean square. 

The representation for x(F) given by the inversion theorem is of limited practical 
utility. The approximation to x(F) using a finite number of L-moments can be poor in 
the tails of the distribution, particularly if the distribution has a heavy tail; not 
uncommonly there are some intervals of Fin which the approximation to x(F) is not 
monotonic increasing. Similar problems arise with the Cornish-Fisher expansion of 
x(F) in terms of the cumulants of X. Just as the Cornish-Fisher expansion is 
most useful for near normal distributions, we would expect the approximation of 
x(F) by L-moments to be most accurate when the distribution of X is close to 
uniform. 
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5 ~~~~~~~~0 
t 

I.. 

L-skewness 
-1 -0.5\ lJ /~~~~ ~ ~~~ 0.51 

Distributions: U uniform, E exponential, G Gumbel, L logistic, N Normal, 
- generalized Pareto, . generalized extreme value, generalized logistic, 

lognormal, ---gamma, - bound for all distributions 

Fig. 3. L-moment ratios of some common distributions 

3. ESTIMATION OF L-MOMENTS 

3.1. Unbiased Estimators 
In practice, L-moments must usually be estimated from a random sample drawn 

from an unknown distribution. Because Xr iS a function of the expected order statistics 
of a sample of size r, it is natural to estimate it by a U-statistic, i.e. the corresponding 
function of the sample order statistics averaged over all subsamples of size r which can 
be constructed from the observed sample of size n. Let xl, x2, . . ., xn be the sample 
and xln x ... . (Xn:, the ordered sample, and define the rth sample L-moment 
to be 

n r- I~~~~~~~r 
Ir = rn z r- 1-)k( k )Xi,-k:n r = 12,. .,n; 

I <-il <i2 < .... < ir,<n . k=O 

(3.1) 
in particular 

11 = n Z Xi, 

12 
n > (Xi:n - Xi:n), 

3 Z) EE (Xi:n - 2Xj:n + Xk:A), 3 3 i>j> k 

14 = ()Z ZE (Xi:n - 3xj:n + 3Xk:n Xl:n). 4 4 ~~i>j> k> I 

U-statistics were introduced by Hoeffding (1948) and are widely used in non- 
parametric statistics (see, for example, Fraser (1957) and Randles and Wolfe (1979)). 
Their properties of unbiasedness, asymptotic normality and some modest resistance 
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to the influence of outliers make them particularly attractive for statistical inference. 
When calculating 1, it is not necessary to iterate over all subsamples of size r; the 

statistic can be expressed explicitly as a linear combination of order statistics of a 
sample of size n, as in Blom (1980). Considering the U-statistic estimator Of EXr:r, and 
counting the occurrences in it of each Xihn, shows that the estimator may be written as 
rbr_ 1, where, as in Hosking et al. (1985), 

n 
(b 

- 1)(i-2) (i-r) 

thus by equation (2.5) 

r-I 

r= Pr- ,kbk 
k=O 

Sample L-moments may be used similarly to (conventional) sample moments: they 
summarize the basic properties-location, scale, skewness, kurtosis-of a data set, 
they estimate the corresponding properties of the probability distribution from which 
the data were sampled and they may be used to estimate the parameters of the 
underlying distribution. In these applications L-moments are frequently preferable to 
conventional moments: being linear functions of the data, they are less sensitive than 
are conventional moments to sampling variability or measurement errors in the 
extreme data values, and may therefore be expected to yield more accurate and 
robust estimates of the characteristics or parameters of an underlying probability 
distribution. 

Under a linear transformation of the data, the sample L-moments are transformed 
isomorphically with the corresponding population L-moments. If xi -* Axi + B, 
i = 1, . . .,n,thenl1 --Al1 + Band I*(signA)rAl,,r 2. 

Sample L-moments have been used previously in statistics, although not as part of a 
unified theory. The statistic 11 is the sample mean. The sample L-scale, 12, is a scalar 
multiple of Gini's mean difference statistic 

G =2 E , (xi:n xi:n) 

which has been used in statistics since at least as far back as von Andrae (1872) and 
Gini (1912). The statistic 2r 1/2G is a 98 /o efficient estimator of the scale parameter of 
a normal distribution (Downton, 1966; David, 1968). G is also related to the 'total 
time on test' statistic for testing exponentiality (Gail and Gastwirth, 1978). The 
statistic 13/s, where s is the sample standard deviation, has been used to test for 
normality by Locke and Spurrier (1976). However, it is more logical to base such a test 
on (3 = 13/12, as in Section 4.2 later. 

3.2. Plotting-position Estimators 
A plotting position is a distribution-free estimator of F(Xi:n). Reasonable choices 

for plotting positions includepi ,a (i + y)/(n + 6) for 6 > y > - 1. Plotting positions 
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are used in the graphical display of statistical data (Cunnane, 1978; Harter, 1984) but 
also provide a means of estimating quantities of the form Sx(F) q(F) dFwhere x(F) is 
the quantile function of a distribution and v is a function of F alone. Equation (2.2) 
shows that X, is of this form, so it can be estimated by 

n 

Xr- E Pr~- I (Pi:n )Xi:n - 
i=1 

In general Xr is not an unbiased estimator of Xr, but it is consistent. Indeed Xr and Ir are 
asymptotically equivalent, the difference between them being of stochastic order n- 1. 

There is no theoretical reason for preferring plotting-position estimators to the 
unbiased estimators, but practical experience shows that plotting-position estimators 
sometimes yield better estimates of parameters and quantiles when a distribution is 
fitted to data. In particular the choice Pi:n = (i - 0.35)/n gives good results for the 
generalized Pareto (Hosking and Wallis, 1987a), generalized extreme value (GEV) 
(Hosking et al., 1985) and Wakeby (Landwehr et al., 1979b) distributions. 

3.3. Estimation of L-moment Ratios 
The L-moment ratio -rr = Xr/X2 is naturally estimated by tr4- 4/12. The plotting- 

position estimator fr -Xr/2 is asymptotically equivalent to tr and will not be con- 
sidered separately. Analogously to our previous terminology, tr is called the rth 
sample L-moment ratio, t3 is the sample L-skewness and t4 is the sample L-kurtosis. 

The sample L-moment ratios t3 and t4 may be used to measure the skewness and 
kurtosis of an observed data set, as is commonly done with the conventional sample 
moment ratios g (skewness) and k (kurtosis). A disadvantage of the conventional 
moment ratios, noted by Kirby (1974) and Dalen (1987), is that when calculated from 
finite samples they are bounded and cannot attain the full range of values available to 
the population skewness and kurtosis. For example the skewness g is bounded by 

Igj I(n-2)/(n-l)1/2 

for a sample of size n, and for many moderately to highly skew distributions it is 
unusual for g to take a value anywhere near the population skewness 'y (Wallis et al., 
1974). In contrast, it can be shown (Hosking, 1986) that the sample L-moment ratios 
(t3, t4) calculated from a sample of size n > 4 can take any of the feasible values of the 
population L-moment ratios (T3, T4). 

3.4. Sampling Distributions of L-moments 
Exact sampling distributions of L-moments are difficult to obtain. The most 

practically useful results come from asymptotic distribution theory. Asymptotic 
theory for linear combinations of order statistics, developed by Chernoff et al. 
(1967), Moore (1968) and Stigler (1974) among others, can be immediately applied to 
sample L-moments and L-moment ratios. The main result is the following theorem. 

Theorem 3. Let X be a real-valued random variable with cumulative distribution 
function F, L-moments Xr and finite variance. Let 1,, r = 1, 2, . . ., m, be sample 
L-moments calculated from a random sample of size n drawn from the distribution of 
X.Letrr = Xr/X2andtr = lr/12,r = 3,4,... .,m.Thenasn -oo: 
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(a) n 1/2(4 - Xr), r = 1, 2, . . ., m, converge in distribution to the multivariate 
normal distribution N(0, A), where the elements A,s (r, s = 1, 2, . . ., m) of A 
are given by 

Ars = { P* I(F(x))P,* I(F(y)) 
x<y 

+ Ps* I(F(x))P,* I(F(y))} F(x){l -F(y)} dx dy, (3.2) 

P,*(x) being the rth shifted Legendre polynomial defined in equation (2.3); 
(b) the vector 

n 1/2[(j 
_ XI) (12 - X2) (t3 -3) (t4 - T4) . . . (tm - Tm)]T 

converges in distribution to the multivariate normal distribution N(0, T) 
where the elements T,, (r, s = 1, 2,. . ., m) of Tare given by 

Ars if r ? 2,s s2, 
Trs = (Ars-TrA2s)/X2 if r > 3, s ?2, 

(Ars - TrA2 - TsA2r + TrTsA22)/X2 if r > 3, s 3. 

Proof. 

(a) Theorem 6 of Stigler (1974) gives the asymptotic normal distribution of linear 
combinations of order statistics and can be applied immediately to any finite 
linear combination of the statistics Xr based on the plotting position i/(n + 1). 
Thus these Xr have an asymptotic normal distribution with covariance matrix, 
as evaluated using Stigler's theorem, given by A as defined above. By 
expressing 4r as a sum of the Xs , s = 1, . . ., r, it is straightforward to show that 
4, - Xr = Op(n- 1); thus the asymptotic distributions of the 4r and of the Xr are 
identical. 

(b) The result follows from standard theory for functions of asymptotically 
normally distributed vectors (Serfling (1980), section 3.3). 

When the random variable Xis continuous, with a differentiable quantile function 
x(F), A,s may be written as 

Ars = H J {P*,I(u) PsA l(V) + Ps( I(u) P 1(v)} U(l -v) x'(u) x'(v) du dv. 
O<u<v< 1 

(3.3) 
This is often the most convenient form for evaluating these quantities for specific 
distributions. Hosking (1986) gives several examples. 

Asymptotic biases of L-moment ratios can be calculated by standard Taylor series 
expansion methods (e.g. Rao (1973)). For most distributions these biases are 
negligible for sample sizes of 20 or more. For example, for the normal distribution 
(T4 = 0.1226) the asymptotic bias of t4 is 0.03n-', and for the logistic distribution 
(T4 = 0.1667) this bias is - 0.04n-1. 

Asymptotic theory is useful only in so far as it yields accurate approximations to 
finite sample distributions. Fig. 4 shows the distributions of skewness and L-skewness 
for samples of size 50 drawn from the Gumbel distribution, together with the 
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>4 

0.4~~~~~~~~~. 

0.2 /1 

0.c0 0 
-1 0 1 2 3 4 -0.1 0.0 0.1 0.2 0.3 0.4 

Skewness, g L-skewness, t3 

Fig. 4. , distributions of sample skewness g and sample L-skewness t3 for samples of size 50 from 
the Gumbel distribution; ---, approximations to these distributions based on asymptotic theory (results 
for sample size 50 were obtained by Monte Carlo simulation using 100000 simulated samples) 

asymptotic normal approximations to these distributions. The normal approximation 
to the distribution of the sample L-skewness t3 is very good; for the conventional 
moment statistic g it is unusably poor. 

Of course, the true devotee of L-moments would prefer to describe the limiting 
normal distributions of sample L-moments in terms of their L-moments rather than 
their means and variances. Since a random variable distributed as N(kL, or2) has 
L-moments X1 = y and X2 = - 1/2a this is easily done. An L-moment analogue of 
covariance, however, is not so easy to define. 

3.5. Identification of Distributions 
An important application of summary statistics calculated from an observed 

random sample is to identify the distribution from which the sample was drawn. This 
is much more easily achieved, particularly for skew distributions, by using 
L-moments rather than conventional moments. 

As an example, 50 random samples of size 100 were simulated from each of three 
distributions: a GEV distribution with skewness 3 and two Weibull distributions, one 
with the same skewness and one with the same L-skewness as this GEV distribution. 
The distributions are illustrated in Fig. 5. Moments and L-moments of the generated 
samples are shown in Fig. 6. The sample conventional moments from the three 
distributions all lie close to a single line on the graph and overlap each other; they offer 
little hope of identifying the population distribution. In contrast, the sample 
L-moments plot as fairly well separated groups and permit a high probability of 
discrimination between the three distributions. 

A practical example of distinguishing between distributions has been discussed by 
Hosking and Wallis (1987b). Analysis by the State of California Department of Water 
Resources (1981) of annual maximum hourly rainfall data at 689 rain-gauges in 
California suggested that a gamma distribution was appropriate for the data because 
the average values of sample skewness and kurtosis were consistent with the 
relationship K = 3 + 3-y2/2 between the population skewness and kurtosis of gamma 
distributions. This inference is valid only if sample moments are accurate estimators 
of population moments, which for the California data is dubious because the sample 
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1.0 - GEV: y=3.00, r3=0.289 

, .. Weibull 'A': y=3.00, T3=0.440 

0.8 'Weibull B: y=1.67, T 3=0.289 

Ws~~~~~~~~~~e ,Y L .67 T=,28 

0.2 

0.0 
-2 -1 0 1 2 3 

Variate 

Fig. 5. Probability density functions of three probability distributions: each distribution has zero mean 
and unit variance 

+ GEV 0 0.4 
0 Weibull 'A' + 

20 * Weibull 'B' + 0 
0 :.3 -+ o 

Ai + 0 

5 i ; 00 L + 
2 ~~~~~~~~~0.3 

~i0 in + + 00 t02 + 0+ 

+ 0 

2 0.0 
0.5 1 2 3 4 5 0.2 0.4 0.6 

Skewness, g L-skewness, t3 

Fig. 6. Sample skewness versus sample kurtosis and sample L-skewness versus sample L-kurtosis, for 
examples of size 100 simulated from the three distributions of Fig. 5 

sizes are small-only 12 gauges have records for as long as 50 years. L-moments tell a 
different story. The sample (3 and t4 values for the 68 sites with at least 20 years of 
records in the Central Valley of California are shown in Fig. 7(a). The data are on 
average closer to the population L-moments of a GEV distribution rather than a 
gamma distribution. Furthermore the spread of the data about the GEV line is 
consistent with what we might expect from data sampled from independent GEV 
distributions each with r3 = 0.24 (the average of the 68 values of t3) and the same 
record lengths as the actual rainfall records-see Fig. 7(b). Sample L-moments of 
data simulated from a gamma distribution are shown in Fig. 7(c), which has an 
appearance rather different from Figs 7(a) and 7(b): there are many fewer points 
above the GEV line and many more below the gamma distribution line. Thus the 
Central Valley hourly rainfall data may be well described by a GEV distribution but 
seem most unlikely to follow a gamma distribution. 
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0.5 + California data (a) 
U average 

0.4 + + + 

w~~~~~~~~~ + / 
- 0.3 X+ + + 

o~~~~~~~~~~~~ 

* vrg + + vrg 

t 
0.2 4 + + 

001 -GEV 
+ ....gamma 

0.000 . 
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 

L-skewness, t3 

0.5 + simulated GEV data (b) 0.5 + simulated gamma data (c) 
4 average + + U average 

0.4 -+ 0.4 -+ + 

++ 
CQ O3 + 043CO.3 

C ~~~~~+ + z 
0 ~~~ ~~+ . 0 + 

A common pro+bc t + + re z 0.2 - +04 

0.1 +~+: +0.1 4 
0.0 0.01 

+ 4" 

0.1 0.0 0.1 0.2 0.3 0.4 0.5 -0. 1 0. 0 0.1I 0. 2 0.3 0.4 0.5 
L-skewnoess, t3 L-skewness, t3 

Fig. 7. (a) Values of't3and t4 for rainfall data from 68 sites in the Central Valley of California, together 
with the theoretical relationship between q3 and t4 for GEV and gamma distributions; (b) values oft3 and 
(4 for 68 samples, with sample sizes the same as for the Central Valley data, simulated from a GEV 
distribution with r3 = 0.24; (c) values of t3 and e4 for 68 samples, with sample sizes the same as for the 
Central Valley data, simulated from a gamma distribution with b3 = 0.24 

4. PARAMETER ESTIMATION AND HYPOTHESIS TESTING USING L-MOMENTS 

4. 1. Parameter Estimation 
A common problem in statistics is the estimation, from a random sample of size n, 

of a probability distribution whose specification involves a finite number p of 
unknown parameters. Analogously to the usual method of moments, the 'method of 
L-moments' obtains parameter estimates by equating the firstp sample L-moments to 
the corresponding population quantitles. Examples of parameter estimators derived 
using this method are given in Table 2. 

Exact distributions of parameter estimators obtained by the method of L-moments 
are in general difficult to derive. Asymptotic distributions can be found by treating 
the estimators as functions of sample L-moments and applying Taylor series methods 
(Serfling (1980), p. 122). Hosking (1986) gives several examples of such results. For 
most standard distributions, this approach can be used to show that L-moment 
estimators of parameters and quantiles are asymptotically normally distributed and to 
find standard errors and confidence i'ntervals. In applications we have found that 
asymptotic approximations are usually reliable for samples of size 50 or more: see, for 
example, Hosking et al. (1985) and Hosking and Walli's (1987a). 

It is of interest to compare the method of L-moments with the asymptotically 
optimal method of maximum likelihood. The method of L-moments is usually com- 
putationally more tractable than the method of maximum likelihood and needs less 
frequent recourse to iterative procedures. The asymptotic standard errors of 

This content downloaded from 195.221.106.44 on Tue, 29 Jul 2014 09:43:29 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


120 HOSKING [No. 1, 

TABLE 2 
Parameter estimation via L-moments for some common distributionst 

Distribution Estimators 

Exponential (t known) 1 = 11 

Gumbel & = 12/log 2, l- -y& 
Logistic &'12, = 11 
Normal &= irl/212, A= I 
Generalized Pareto (Q known) k= 11/12 - 2, = (1 + 
Generalized extreme value z = 2/(3 + t3) - log 2/log 3, k 7.8590z+ 2.9554z2, 

=-2k1/(l -2-k)r(i+k), j=1j+&{r(1i+k)-i1}/ 
Generalized logistic k= - t3, & = l2/r(i + k)r(( - k), Z = 14 + ('2 - Wk 

Log-normal z = V(8/3)4- 1 ( 23), &aO.999281z-0.006118z3+0.000127z5, 

= log{ 12/erf(a/2)} - &2/2, 1 = 1 - exp(A + &2/2) 
Gamma (Q known) t = 12/l1; if 0 <t< t then z = 7rt2 and 

a=(1 - 0.3080z)/(z - 0.058 12z2 + 0.017 65z3); if t < 1 then 
z = - t and= (0.7213z - 0.5947z2)/(l -2.1817z+1.2113z2); 1=1-/a 

ty is Euler's constant; 4' I is the inverse standard normal distribution function. 

L-moment estimators, when compared with those of maximum likelihood estimators, 
usually show the method of L-moments to be reasonably efficient. For example, the 
efficiencies of the L-moment estimators of location and scale for the normal 
distribution are 100% and 97.8% respectively; for the Gumbel distribution the cor- 
responding values are 99.6% and 75.6%. Asymptotic efficiencies of L-moment 
estimators tend to be lower, but still reasonably high, for distributions with more than 
two parameters. For example, the parameters of the GEV distribution are all 
estimated with at least 70% efficiency when the shape parameter k satisfies - 0.2 < k 
? 0.2 (Hosking et al., 1985). 

In practice only a finite sample is available, and asymptotic theory is not always a 
reliable guide to finite sample performance: Hannan (1987) refers to the 'near 
irrelevance of asymptotic criteria in small samples'. Hosking et al. (1985) compared 
maximum likelihood estimation and the method of L-moments for the GEV 
distribution, paying particular attention to estimation of quantiles in the upper tail of 
the distribution. For all values of the shape parameter in the range - 0.5 < k < 0.5, 
and for all samples sizes up to 100, estimates obtained by the method of L-moments 
have lower root-mean-square error than the maximum likelihood estimates. Results 
for k = - 0.2 are given in Table 3. Similar results were reported by Hosking and 
Wallis (1987a) for generalized Pareto distributions with shape parameters in the range 
-0.5 < k < 0. 

4.2. Hypothesis Testing 
The use of L-moments to describe the main characteristics and to estimate the 

parameters of probability distributions extends naturally to testing hypotheses 
about distributional form. For example, for the exponential distribution, Gail and 
Gastwirth (1978) showed that the 'Gini index', which we recognize as the sample 
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TABLE 3 
Root-mean-square error of quantile estimators for a GEVdistribution with shape parameter k = - O.2t 

n Method F 
0.9 0.99 0.999 

25 L 0.27 0.45 0.98 
ML 0.32 0.98 > 1 

50 L 0.19 0.33 0.63 
ML 0.22 0.40 0.68 

100 L 0.14 0.24 0.42 
ML 0.15 0.25 0.44 

tL denotes the method of L-moments; ML denotes maximum likelihood. Tabulated quantities are {root-mean-square 
error of f(F)}/lxF). 

L-CV 12/11, has mean 2' variance 1/12(n - 1) and an asymptotic normal distribution. 
Thus the statistic 

= {12(n-I)}'12(12/l1-) 

may be used as a test of exponentiality, with critical values obtained from the standard 
normal distribution. Gail and Gastwirth found this test to be a powerful test of 
exponentiality against a variety of alternatives and recommended it as the best of 
those considered in their simulation study. 

In a similar spirit it can be shown that for a normal population the statistic t3 iS 
asymptotically normally distributed with zero mean and variance 0.1866n -. This 
approximate variance is a little inaccurate when n is small: unpublished simulation 
studies by J. R. M. Hosking and J. R. Wallis imply that a better approximation to the 
variance is vn = 0.1866n-1 + 0.8n-2. Thus we propose 

n = Vn 1/2t3 

as a test statistic for normality against skew alternatives; again, critical values are 
obtained by reference to the standard normal distribution. 

Tests of parametric hypotheses can also be obtained. For example, testing whether 
the shape parameter k of the GEV distribution is zero may be regarded as testing 
whether the distribution is Gumbel, the Gumbel distribution being the special case 
k = 0 of the GEV distribution. Hosking et al. (1985) derived a test of this hypothesis 
based on the statistic (n/0.5633)112k, where / is the L-moment estimator of the GEV 
shape parameter k and is a function of the statistic ?3 based on the plotting position 
(i - 0.35)/n. Monte Carlo simulations found the performance in small samples of the 
L-moment test to be almost equal to that of the modified likelihood ratio test recom- 
mended by Hosking (1984); the L-moment test involves much less computation. 

5. FINAL REMARKS 
We have shown that L-moments provide a unified approach to statistical inference 

for complete samples from continuous univariate distributions. Some extensions of 
the approach may naturally be considered. 
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L-moments can be used with discrete distributions: definition (2.1) remains valid 
and the estimators Ir defined by equation (3.1) are still unbiased estimators of the Xr. 
The inversion theorem, theorem 2.3, is valid for discrete random variables, provided 
that the quantile function is 'normalized' in the sense of Widder (1941), i.e. that 

lim I{x(F+E) + x(F-e)} = x(F) for allFe (0, 1). 

Expressions for L-moments of common discrete distributions tend, however, to be 
complicated. For a binomial distribution with parameters n and p, for example, 
expectations of order statistics have been derived by Ramasubban (1958) and imply 
that 2 = np(l -p)2F1(l - n, 2; 2; 4p(l -p)), where 2F1 denotes the hypergeometric 
function. 

Censoring of data poses in principle no obstacle to the use of L-moments. Consider 
for example the sample L-moment 12 calculated from a sample of n - m observed 
values, m observations having been censored above a threshold. If the threshold 
value, xo say, is known, then 12 has mean IE(X2:2 - X1:2 I X2:2 < Xo); if the number of 
censored values was prespecified, then 12 has mean 

m(7) E{EE (Xjn- Xi:n). 

Parameters of distributions can be estimated by equating the sample L-moments to 
their expected values, but the estimates are rarely so computationally simple as for 
complete samples. 

No extension of L-moments to multivariate distributions is immediately apparent. 
The seemingly most promising approach would measure the association between 
random variables Xand Yby a ratio of linear combinations of concomitants of order 
statistics, as defined by David (1973). Such measures have been derived by Barnett 
et al. (1976) and Schechtman and Yitzhaki (1987) but are asymmetric: the association 
between X and Y is not in general the same as that between Y and X. 
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