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Monte-Carlo simulations of a two-dimensional finite element model of a flood in the
southern part of Sicily were used to explore the parameter space of distributed bed-
roughness coefficients. For many real-world events specific data are extremely limited
so that there is not only fuzziness in the information available to calibrate the model, but
fuzziness in the degree of acceptability of model predictions based upon the different
parameter values, owing to model structural errors. Here the GLUE procedure is used to
compare model predictions and observations for a certain event, coupled with both a
fuzzy-rule-based calibration, and a calibration technique based upon normal and
heteroscedastic distributions of the predicted residuals. The fuzzy-rule-based calibration
is suited to an event of this kind, where the information about the flood is highly
uncertain and arises from several different types of observation. The likelihood (relative
possibility) distributions predicted by the two calibration techniques are similar,
although the fuzzy approach enabled us to constrain the parameter distributions more
usefully, to lie within a range which was consistent with the modellers’a priori
knowledge of the system.q 1998 Elsevier Science Limited. All rights reserved

Keywords: flood inundation models, roughness coefficient, parameter calibration,
likelihood, fuzzy logic, fuzzy rules.

1 INTRODUCTION

The principal purpose of this paper is to compare two
frameworks for the calibration and interpretation of the pre-
dictions of a flood model of a real event, in an extremely
complex system, on the basis of highly limited measure-
ments. The generalized likelihood uncertainty estimation
(GLUE) procedure9 is used here together with a fuzzy
measure of the acceptability of different possible model
structures and parameter sets. This is achieved by mapping
the parameter space, via multiple model simulations, to the
unidimensional space of a performance measure or objec-
tive function, which expresses our relative degree of belief
that the parameters provide a model structure which is a
good simulator of the system.

The application of this fuzzy calibration technique
represents a new paradigm in the way we interpret predic-
tions of physically based models, which moves away from
parameter optimization techniques which tend to imply that
the structure of the model can be precisely determined. In
general, there will be a degree of ambiguity, or non-random
uncertainty associated with the data and the structure of the
model, which is exposed if we view all the predictions
relativistically. There is much to recommend the fuzzy
calibration technique as a general approach to modelling
such complex systems, particularly where, as here, the
data set available for calibration is very limited.

In this study of the flood in the Imera Basin, the friction
resulting from floodplain and river channel roughness are
considered to be the most important parameters controlling
the large scale flow characteristics6,20. The initial stage of
this study, in which Monte Carlo simulations of the flood
event are made using different values for the roughness
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coefficients, is similar to the investigation made by Bates
et al.7. The authors report finding many different parameter
values giving rise to equivalent model simulations, in terms
of objective function values. This non-identifiability of
roughness parameter values highlights the need to avoid
reliance upon parameters, which were optimized at the
calibration stage. Data errors, choice of objective function
and the flow characteristics for any particular study5 can
affect optimized parameters. The GLUE procedure seeks
to allow for these problems, by placing emphasis on the
study of the range of parameter values, which have given
rise to all of the feasible simulations.

The GLUE procedure has previously been used by
Romanowiczet al.20 to produce flood risk maps on a section
of the River Culm from a simple flood routing model based
around the concept that in such extreme events, flow control
is dominated by frictional and gravitational effects. In her
study, the output from the simple flow model was calibrated
against the simulated results of a finite element flood
model6. This first approach provided the simple model
with unrealistically large amounts of calibration informa-
tion and was next developed to be based on maximum
inundation information alone, which is more consistent
with the information, which is usually available after a
real event19. Both of these applications utilized a statistical
error model for the distribution of predicted residuals in
order to derive a likelihood measure.

In this paper, objective functions, which are based upon
both fuzzy and statistical frameworks, are used to provide
likelihood measures, which can at later stages be used to
express the uncertainties in model predictions, via the
GLUE procedure. These measures will be referred to as
likelihoods throughout, although these should be understood
to represent ‘relative possibility measures’ to avoid any
confusion with orthodox definitions of likelihood functions.
The formulation of model predictions in a possibilistic
framework is considered, the ultimate aim being to use
this information to derive percentile risk maps for
inundation in flood events in a GIS framework.

It is suggested here that where the information available
to constrain the modelled system is limited and where it is
derived from observations of different variables, it would be
more easily incorporated by using objective functions which
are based on fuzzy rules. Further, fuzzy rule based
constraints can be made to be less stringent, which can
help to avoid situations in which the system is falsely
over-constrained.

2 THE HYDRODYNAMIC MODEL

The mass and momentum conservation equations for two-
dimensional shallow-water flow, when convective inertial
terms are neglected, can be written as follows:
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where H(t,x,y) is the free surface elevation,pðt; x; yÞ and
q(t,x,y) are thex and y components of the unit discharge
(per unit width),h is the water depth,Jx and Jy are the
hydraulic resistances in thex andy directions. If Manning’s
formula is adopted, the last terms in eqns (1b) and (1c) can
be expressed as:
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wherec is Manning’s roughness coefficient.

2.1 Numerical solution of the Saint-Venant equations

Eqns (1) are solved by using a finite element technique with
triangular elements. The free surface elevation is assumed to
be continuous and piece-wise linear inside each element,
where the unit discharges in thex and y directions are
assumed to be piece-wise constant. The use of the
Galerkin finite element procedure12,25 for the solution of
eqn (1a) leads to:∫

Q

]Ĥ
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whereNi ¼ Ni(x,y) are the Galerkin shape functions andn
is the total number of the mesh nodes. The interpolation
functionsĤ, p̂ and q̂ are defined as:

Ĥ(x,y) ¼
∑n

j ¼ 1
Nj Hj ; p̂(x, y) ¼ pe; q̂(x, y) ¼ qe (4)

whereHj is the free surface elevation at nodej andpe and
qe are the unknown unit discharge components inside the
elemente located around the point with coordinate vector
componentsx andy.

Substituting eqn (4) into the governing eqn (3) and using
Green’s formula for integration by parts yields:
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where the integration is over the single element areaQe, cos
nx and cosny are the direction cosines of the integration
domain boundaryL and ne is the total number of
elements.

From eqns (1b) and (1c) it is possible to obtain a unique
relationship between unit discharges and free surface
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elevations in the following discretized forms:
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From eqns (6a) and (6b) it follows:
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Lx ¼
pk

ghkDt
E (9a)

Ly ¼
qk

ghkDt
E: (9b)

The coefficientE, defined by eqn (8), is dimensionally
homogeneous to a transmissivity and represents the unit
discharge dispersion component per unit hydraulic gradi-
ent. Substituting eqns (8), (9a) and (9b) into eqn (5) and
assumingp̂¼ pkþ 1, q̂ ¼ qkþ1, one can obtain:∑ne
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andFkþ 1
i is the boundary flux nearby nodei, equal to the third

term of eqn (5) and computed at the time levelk þ 1.
Eqns (10) form a linear set ofn equations in then

unknownsHkþ1, whose corresponding matrix is symmetric
and positive definite. The solution of the system is easily
obtained with the use of conjugate gradient methods. The
integral terms in eqn (10) and eqns (11a) and (11b) are
approximated by multiplying the coefficientsE, Lx and
Ly, evaluated in the centre of elemente, by the area of the
same element. The unit dischargespkþ1 and qkþ1 can be
thereafter computed by substitution of the free surface ele-
vationsHkþ1 into eqn (7). Finally, it is possible to enhance
the stability of the time discretization scheme by changing
the evaluation of the capacity term in eqn (11a) with the

following equation16:

Cik
e ¼

Hkþ 1
i ¹ Hk

i

Dt
·
Qe

3
(12)

that is equivalent to perform the ‘lumping’ of the time-
dependent part of the matrix.

In the application of the proposed model, the topography
is represented as a smooth surface and elevations are
assumed piecewise linear inside the triangular elements.
One of the basic hypotheses assumed in eqns (1b) and
(1c) is that the bedslope is small and the vertical velocity
component is negligible. When the before mentioned
hypothesis does not hold in a given area of the model
domain, the subsequent error is not restricted to the same
area, but can lead to numerical instabilities, i.e. negative
water depths or distortion of flow lines.

To mitigate such effects Tucciarelliet al.24 and Aronica
et al.2 proposed splitting the original domain into several
subdomains connected by vertical discontinuities, as shown,
for example, in Fig. 1 (cross-section and plan view) for the
very common case of compound river sections.

3 OBSERVATIONS

3.1 Study area

The study area is located in the southern part of Sicily and is
crossed by the Imera river, one of the largest in the island
with a basin of about 2000 km2. The main watercourse is
about 150 km in length and it winds from the central part of
the island to the Mediterranean Sea near to the city of Licata
(Fig. 2). The alluvial areas are used intensively for agricul-
ture activities with extended irrigation and many important
transport facilities (railways, main roads, etc.). Residential
areas and tourist accommodation are also established within
the area at specific sites and the city of Licata (population
50 000) is located at the mouth of the river.

The area around Licata had been flooded several times in
recent years. Because the Imera river passes through the city
in a narrow channel, a project was developed in order to
divide the peak of the flood hydrograph in an upstream
reach, and to divert the resulting flow through an artificial

Fig. 1. Compound river section with vertical discontinuities.
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Fig. 2. Inundated area.
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channel, to a coastal area. Unfortunately, only a part of the
project was actually realized. A venturi flume was built in
the before mentioned river section, in order to increase the
water depth and to divert the excess flow through a side
channel spillway placed in one side of the venturi flume.
A small floodplain storage facility was constructed, close to
the venturi flume, but no connecting artificial channel was
made.

On October 12th 1991 heavy rainfall occurred over the
whole Imera river watershed and caused one of the most
severe inundations of the Licata plain in this century. The
heavy rainfall started at 6.00am 12/10/91 and stopped at
12.00pm 12/10/91 with a total duration of 21 h, the total
rain depth was 229 mm and the maximum intensity was
56 mm h¹1 with a total rain volume of 225 million cubic
meters. The flow overcame the river capacity in the venturi
flume and over-topped the flood banks in other sections,
before passing through the city of Licata, without any
significant urban flooding. However, the flood wave
spread from the floodplain storage on the right hand side
of the river, reaching a coastal area causing severe damage
(Fig. 2).

The data available from this event for the model calibra-
tion can be summarized as follows1:

1. The inundated area was delimited with a field survey
carried out a few days after the event, the collected
data was completed by analysing the requests for
damage reimbursements submitted by the farmers to
the government. The boundary of the inundated area
is reported in Fig. 2.

2. During the same survey the trace of the maximum
water level was observed and measured at 17 loca-
tions points, such as on piers or concrete walls. This
data is shown in Table 1. Further, maximum water
levels observed in a river cross-section near the city
and in an artificial channel near the bay, allowed the
estimation of outlet peak discharges and time to peak
in the bay (Table 2).

3. Because the upstream gauge was washed away during
the flooding, the volume and the shape of the input
flood hydrograph (Fig. 3) was obtained by a kine-
matic rainfall/runoff model using rainfall data from
several raingauges in the watershed area.

3.2 The finite element model domain

The limits of the finite element mesh were based upon the
basin morphology in order to cover the inundated surface
and to leave the upper areas out of the domain. The total
domain area is about 22 km2, discretized in 3154 triangular
elements. The geometric features (x,y,z coordinates) of the
1690 nodes were defined by digitizing contours from 1:2000
technical maps. The specific criteria in order to select the
mesh nodes were cast hierarchically as follows: (1) points
with known elevation; (2) points in areas with steep slope,
approximated with vertical discontinuities, including the
contour of the venturi flume and the flood-plain storage;
(3) distinctive points for describing geometrical patterns
of the river bed; and (4) distinctive nodes for describing
geometrical patterns of the ground morphology.

The mesh was created from these nodes by using the GIS
contouring package TIN that builds triangular irregular net-
works from point data15. The final mesh is shown in Fig. 4.

4 CALIBRATION

To calibrate the unknown values of the model parameters,
we want to find those which give simulated outputs (water
level or flows) as close as possible to the observed data.
Traditionally calibration of distributed model parameters

Table 1. Survey data

Sites Measured water depths (m)

1 10.50
2 0.30
3 0.40
4 0.20
5 3.90
6 0.60
7 0.80
8 0.40
9 1.70
10 1.70
11 2.20
13 0.10
14 0.50
15 1.30
16 6.50
17 1.60

Table 2. Survey data

Sites Estimations

Qp-river 1700 m3 s¹1 4 1900 m3 s¹1

Qp-bay 500 m3 s¹1 4 600 m3 s¹1

tp-bay h24.004 h01.00

Fig. 3. Flood hydrograph.
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has involved minimizing the ‘error’ between the
observation and the prediction. This error arises from
differences between the model structure and the system
being modelled and from the uncertainties in the available
information.

The error can be measured using different forms of
objective functions, based on a numerical computation of
the difference between the model output and the
observations.

In the traditional approach the purpose of calibration is
‘to find those values (an optimum parameter set) of the
model parameters that optimize the numerical value of the
objective function’23. Given that flood models are highly
non-linear, we can expect to obtain the same or very similar
values of the objective function for different parameter sets
(non-uniqueness of the solution of the inverse problem), or
different inflow series (for different flood events) can give a
different goodness of fit for the same parameter sets. In this
case, the idea that for a given model structure, there is some
optimum parameter set that can be used to simulate the
system loses credibility. There is rather an equifinality of
parameter sets, where different parameter sets and therefore
model structures might provide equally acceptable simula-
tors of the system. This then leads to uncertainty in the
calibration problem (parameter uncertainty) and related
uncertainty in the model predictions8.

The GLUE procedure9, transforms the problem of
searching for an optimum parameter set into a search for
the sets of parameter values, which would give reliable
simulations for a wide range of model inputs. Following
this approach there is no requirement to minimize (or maxi-
mize) any objective function, but, information about the
performance of different parameter sets can be derived
from some index of goodness-of-fit (likelihood measure).

In the proposed model the Manning’s roughness
coefficient in eqn (2) is the unique parameter involved in
the calibration. The model structure allows one coefficient
for each triangular element to be used, but, lacking a good
basis for allowing the roughness coefficient to vary, the flow
domain was divided into 2 principal regions, over bank flow
and river flow, and for both of these an ensemble average
roughness coefficient was assumed. As a first approxima-
tion, it is assumed that the effect of the inhomogeneities in
the floodplain roughness on the flood wave becomes
smoothed out and the overall response to a ‘lumped’ flood-
plain roughness is examined in this paper. This reduced the
dimensionality of the distributed parameter space from 3154
to just two for the calibration problem at this initial stage of
characterizing the overall finite element model response.
The roughness coefficients for these two regions were
varied between two limits (see Section 5), and the goodness
of fit was assessed using different objective functions. 1000
Monte Carlo runs of the flood model with different combi-
nations of these two parameters were made on the Paramid
parallel processing facility at Lancaster University, each
simulation taking approximately two and a quarter hours
on a single processor.

4.1 Calibration based upon statistical framework

For the type of complex distributed model considered here,
observation errors and model structural errors will always
exist, arising from a variety of indeterminate factors, so it is
helpful to consider the inverse problem in a statistical
framework. Unfortunately, there was no information
regarding the uncertainties in the observations of water
surface heights and these are taken to be absolute values,
although the treatment of such an error is discussed in
section 5.4.

4.1.1 Normal and heteroscedastic likelihood functions
The errors between the observed and predicted variables
have the form:

«i ¼ yi,obs¹ yi, , (i ¼ 1, …, r) (13)

whereyi,obs denotes the observed variables atith site and
yi,sim denotes the simulated variables at the same site. The
residual « i could be assumed to be white Gaussian and,
hence, its likelihood function would consist ofr multiplica-
tions of the conditional probability function for each
observation of the residual« i:

Normal Gaussian joint probability:

L(v) ¼
∏n

i ¼ 1

1����������
2pj2

i

p exp ¹
1
2

∑n

i ¼ 1

«2
i

j2
i

 !
(14)

where« i is the model residual ati-th site,j i is the variance
of the residuals at thei-th site andr is the number of data
points.

Using eqn (14) is equivalent to making the following

Fig. 4. Finite element mesh.
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two assumptions concerning the probability distribution
of the errors23:

1. The joint probability of the errors over the available
data record is Gaussian with mean zero,

2. The errors are independent of each other with
constant variance.

Very often data may violate these assumptions11 and the
effects can be non-trivial. Sorooshian and Dracup22 devel-
oped maximum likelihood based objective functions to
properly account for the presence of either autocorrelation
(non-independence) or hetroscedasticity (changing var-
iance) of data errors. Assuming uncorrelated errors, which
may be appropriate in this case since the measurement sites
are generally well separated, the form of the maximum like-
lihood criteria was called HMLE (heteroscedastic maximum
likelihood estimator) and has the form:

HMLE(v) ¼

1
n

∑n

i ¼ 1
wi«

2
i

∏n

i ¼ 1
wi

" # 1
n

(15)

where:wi is the weight assigned to sitei, computed as
wi ¼ h2(l ¹ 1)

i,obs andl is an unknown parameter linked to the
variances.

The HMLE estimator is the maximum likelihood, mini-
mum variance, asymptotically unbiased estimator when the
errors in the output data are Gaussian, uncorrelated with
zero mean and have variance related to the magnitude of
the output.

4.1.2 Application of the statistical error model to the
calibration problem
Using the statistical framework, the different premises were
based only upon the residuals of the water surface height
predicted at 17 sites where observations were available. In
eqn (14) and eqn (15) the residuals could alternatively be
derived from differences between observed and predicted
discharges or time to peak.

However, the ambiguity and scarcity of the information
does not permit the analysis of the statistical properties of
this alternative field data.

4.2 Calibration based upon fuzzy rules

The use of fuzzy logic to construct a set of ‘‘if/then’’ rules is
most suited to situations where there is very little informa-
tion and where available information is highly ambiguous,
such as the case in this study. A rule might be of the form: if
the modelled flow is ‘well predicted’ on the basis of one
objective function (the premise of a rule) then there is a
‘strong’ possibility that the model structure is relatively
good (the consequent of a rule). The fuzziness in these
qualitative terms can be represented geometrically in the

form of a membership function which allows for different
degrees of membership of a set, e.g. the set of ‘well
predicted’ flows.

Fig. 5 shows how the universe of predicted times to peak
discharge of the flood in the Imera Basin at a certain site can
be divided into membership functions expressing our
knowledge of the system in terms of fuzzy sets.

The arrows represent the three rules:

1. If predicted time to peak in bay is ‘too small’ then
likelihood measure is ‘poor’

2. If predicted time to peak in bay is ‘OK’ then like-
lihood measure is ‘good’

3. If predicted time to peak in bay is ‘too large’ then
likelihood measure is ‘poor’

The premises in the sketch were chosen since they repre-
sent one of the most ambiguous sets of information which
were used in the calibration of the flood model. The shapes
of the individual membership functions were chosen to be
trapezoidal, since the flat top represents a lack of informa-
tion regarding the true time to peak in the bay.

For the case before, there is only one premise for each
rule, but more generally there are multiple premises which
must be combined, as described in the next section.

4.2.1 Fuzzy sets
The formal definition of a fuzzy set4 is given here for
example of the different predicted times of arrival of the
peak flow in the bay

Let T be the set (universe) of predicted times of arrival of
the peak flow in the bay. letTOK be a subset of ‘OK’ times to
peak flow in the bay (i.e. the subset of predicted times to the
peak discharge in the bay which roughly agree with the

Fig. 5. Example of membership function.

Roughness coefficient in a flood propagation model 355



observations).TOK is called a fuzzy subset ofT, if TOK is a
set of ordered pairs:

TOK ¼ { (t,mTOK
(t)); t [ T,mTOK

(t) [ [0,1] (16)

wheremTOK
is the grade of membership oft, the predicted

time of arrival of peak flow in the bay, inTOK and is termed
the membership function ofTOK. A membership of 0 or 1
implies t absolutely does not or does belong toTOK, respec-
tively. Those membership grades between imply thatt has
partial membership ofTOK. Three fuzzy subsets of ‘T’ are
used to describe the complete set of predicted times in
Fig. 5, given by ‘too early’, ‘OK’ and ‘too late’, each
having trapezoidal membership functions. The fuzzy sets
of times of arrival of the peak discharges used here are
special cases of the general description of a fuzzy set
given by eqn (16), called fuzzy numbers. A fuzzy number
satisfies the requirements:

1) For at least one value oft, mT(t) ¼ 1
2) For all real numbersa, b, c with a , b , c:

mT(c) $ min(mT(a),mT(b))

(the convexity assumption) (17)

wheremT refers to the membership function of an arbitrary

fuzzy subset ofT. In this study triangular and trapezoidal
shaped membership functions are used as shown in Fig. 5,
which can both satisfy the before requirements4.

The support of a fuzzy number (for example the subset of
‘OK’ times of arrival of the peak discharge in the bay) is the
range of values for which the membership function is
non-zero, or formally:

supp(TOK) ¼ { t,mTOK
(t) . 0: (18)

The general form of a fuzzy rule consists of a set of pre-
mises,Ai,f in the form of fuzzy numbers with membership
functions mAi, f

, and a consequenceLi (in this study the
consequent will always refer to a likelihood measure),
also in the form of a fuzzy number:

If Ai, 1 # Ai, 2 # …… # Ai, f thenLi (19)

where i refers to the rule number, andf to the piece of
information the relation pertains to, for example in eqn
(19), rule number 1,A1,2 might refer to the premise: ‘the
predicted time to peak discharge is OK’. The operator#

is the fuzzy logic equivalent of the Boolean logic ‘and’ or
‘or’ statement which is used to combine premises based on
different pieces of information. The above rule might read

Fig. 6. Schematic fuzzy inference system (based on Matlab fuzzy toolbox) showing fuzzy implication and fuzzy aggregation techniques
(see text, section 4.2).
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‘if the predicted time to peak in the bay is OK and predicted
peak discharge is OK then the likelihood measure is
strong’.

There are several possible fuzzy logic equivalents of
‘and’ or ‘or’, although Bardossy and Duckstein4 report
that there appears to be no great difference in the perfor-
mance of the rule systems with respect to the choice of
operator. Operators based on the product techniques were
used here, since these maintain information from every pre-
mise (so long as there is non-zero membership), whereas
other techniques (min and max) work on the extreme values.

The degree of fulfilment,vi of each rule,i, is a measure of
how well the rule is satisfied overall and is used to implicate
the membership grade (indicated by the shaded regions in
Fig. 6) in the consequent likelihood fuzzy number. The
degree of fulfilment for the simple, one premise rule ‘if
predicted time to peak discharge is OK then likelihood is
strong’, is simply the membership grade of the predicted
time to peak discharge in the fuzzy subset of ‘OK’ times
to peak. The degree of fulfilment for a multi-premise rule
depends on the choice of operator e.g. fuzzy logic equiva-
lents of and can be the minimum or the product of the
different membership grades for a particular vector of pre-
mises (Ai,1…, Ai,f). Here ‘product inference’ based rules are
used to determine the degree of fulfilment corresponding to
‘‘and’’ ( uA

i in eqn (20)) and ‘‘or’’ (uO
i in eqn (21)):

uA
i (Ai, 1 and Ai, 2…and Ai,3) ¼

∏F

f ¼ 1
mAi, f (af ) (20)

whereF is the total number of pieces of information,af are
the arguments to which the rules are to be applied. As an
example we refer to the rule based on two pieces of infor-
mation: ‘if the predicted time to peak in the bay is OK and
predicted peak discharge is OK then the likelihood measure
is large’.a1 is the predicted time to peak discharge,a2 is the
predicted peak discharge in the bay. The membership
grades of these predictions in the fuzzy sets ‘OK times to
peak’ and ‘OK discharges’ are:mAi, 1

(a1) andmAi, 2
(a2). The

degree of fulfilment of the rule overall is then the product
of these two quantities.

For the probabilistic or statement, eqn (21) are used recur-
sively for F pieces of information (for the example before
there are only 2 pieces of information, so the first expression
need only be evaluated):

uOi(m1,m2) ¼ m1 þ m2 ¹ m1m2

uOi(m1, …,mF) ¼ uO
i (uOi(m1, …,mF ¹ 1),mF) (21)

wherem1 and m2 are shorthand for the quantitiesmAi, 1
(a1)

andmAi,2
(a2) which were described before.

The degree of fulfilment is then used to shape the conse-
quent fuzzy number,Li, usually by truncating the member-
ship function somehow. In this study a product type
approach is used, where the degree of fulfilment is used to
multiply the height of the apex of the triangular likelihood
fuzzy number. The resulting ‘altered’ fuzzy numbers in the

consequent (likelihood measure) universe are shown
schematically in Fig. 6, where it can be seen that they are
generally overlapping. In the regions of overlap, different
rules can influence the same part of the consequent universe,
so a method of combination is once again required. This is
achieved through the use of eqn (21) again, which represents
a fuzzy union operation.

Finally, the resulting likelihood fuzzy numbers are defuz-
zified by finding the centroid,C(L), which becomes the crisp
output of the system, which in our case is a possibility
measure for a particular parameter set21:

C(L) ¼

∫
mL:ldl∫
mLdl

(22)

where l is the likelihood measure orx-axis in Fig. 5. The
crisp values,C(L), then define the likelihood surface in the
parameter space.

4.2.2 Selection of the membership functions
The support of a membership function would normally be
assigned based upon a set of training data comprising inputs
and outputs, for instance see Bardossyet al.3. The universes
of the premise and the consequent variables are typically
divided up into a number of classes and assigned a linguistic
description, such as a ‘small’ flow depth of water at each
site. The number of classes we choose will depend upon the
amount of information represented by the data, if we have
very little data, then only a few classes are used. In this
study, by reducing the continuum of modelled flow depths
at any particular site into three sets, we can then incorporate
our limited number of fuzzy observations. However, for the
calibration problem, there is initially no ‘sample’ informa-
tion concerning how the likelihoods (relative possibility
measures) should be distributed. Therefore, we have to
interpret the relationships between modelled and observed
flows in terms of their partial memberships in fuzzy sets
corresponding to poor, good and strong likelihoods. The
support assigned to, for example a ‘strong’ likelihood, is
chosen in order to correspond with our perception of how
accurate the flow prediction needs to be in order that the
model can be said to be a good predictor of the system, to
within the uncertainties (fuzziness).

The amount of overlap of the fuzzy sets strongly influ-
ences the shape of the resulting likelihood surface and for
the case where there is no overlap, the surface becomes
more unrealistically ‘stepped’. Clearly the choice of overlap
is subjective in this study, although it was suggested that a
good empirical rule is to allow 25% overlap17. The sensi-
tivity of the likelihood surface to a parameter which varied
the amount of overlap for one of the fuzzy sets is discussed
in later sections.

4.2.3 Application of fuzzy sets to the calibration problem
In this study, the different premises were based upon the
residuals of the water surface height predicted at 17 sites
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where observations were available, the time to peak discharge
in the bay, the peak discharge in the bay and at an observation
point in the river (this making a total of 20 pieces of
information). This illustrates the flexibility of the rule-based
system, as different sources of information can be combined
in the derivation of the consequent likelihood measure.

The information about the discharges and the information
about the water surface height residuals were used to pro-
duce two independent sets of fuzzy rules, which were exam-
ined independently and in combination, by taking the fuzzy
product (fuzzy logical ‘‘and’’ statement) of the re-normal-
ized likelihoods (see figures later).

The different sources of information were not explicitly
weighted, but, rather the relative degrees of fuzziness in the
different sources were designed to be accounted for in the
construction of the membership functions and fuzzy rules.
For example, the fuzzy information about time to peak
discharge was deemed less important than the fuzzy infor-
mation about the water surface height, so the rules were
constructed such that there was no premise based on the
time to peak which results in a ‘strong’ possibility measure
(whereas a ‘very small’ water surface height residual does
lead to a ‘strong’ possibility measure).

Clearly a conditional statement in the form of eqn (19)
which links together all 20 pieces of information available
about the flood, using the fuzzy logic equivalent of ‘‘and’’ is
highly stringent and would most likely result in very few
cases where the likelihood had a high membership of the set
of relatively ‘strong’ likelihoods. Conversely, a statement in
the form of eqn (19) based upon the fuzzy logical equivalent
of ‘‘or’’ tends to be too lenient a condition. For this method
of combination, we can have the condition that if there is a
single relatively small residual then, depending on the
degree of membership of this residual in the fuzzy set of
‘small’ residuals, the overall likelihood measure will be
relatively ‘strong’. The two extremes (‘and’ and ‘or’ com-
bination) can be combined using a weight,g, such that the
degree of leniency can be varied4 to provide an overall
degree of fulfilment,Di, as in eqn (23):

Di ¼ g 3 ui(Ai, 1or…orAi, f ) þ

þ (1¹ g) 3 ui(Ai,1 and…and Ai, f ): (23)

In this study a similar weighting function,G, is used after
the aggregation and defuzzification stages such that the
weighted sum of the two crisp outputs of the extremal
cases becomes the overall output:

C(L) ¼ G 3 CO(L) þ (1¹ G) 3 CA(L) (24)

whereCO andCA are the centroid of the consequent fuzzy
set when fuzzy equivalents of ‘or’ and ‘and’ are used,
respectfully. The two techniques before will essentially
have the same effect, although the resulting crisp outputs
will be slightly different because of the non-linear
operations involved in the aggregation and defuzzification
techniques. The possibility surface generated using
different values ofG is examined in section 5.2 later.

The first three fuzzy sets for the time of arrival of the
peak flood at the bay, and the discharges at the bay and
the river sites were of similar form to those in Fig. 5.
These rules are represented schematically in Fig. 6, where
the implication, aggregation and defuzzification processes
are represented and were constructed using the Matlab fuzzy
toolbox13.

The residuals of the maximum water surface height at
each of the 17 sites (at which measurements had been
made) were determined and compared against similarly
constructed fuzzy sets, only one of which is shown in
Fig. 7 for conciseness.

4.2.4 Sensitivity analysis of variable parameters in fuzzy
system
Two variable parameters at the calibration stage were used
to demonstrate the sensitivity of the resulting likelihood
surfaces to changes in fuzzy-rule-based system construc-
tion. The first,G, has already been introduced as a factor
which exerts influence on the stringency or leniency of the
rules. The other parameter,Sa, is the extent of the support
for the membership function of a ‘small’ residual in Fig. 7.
If Sa is relatively small then there will be a tight criterion for
residuals which have a high membership in the fuzzy set of
‘small’ residuals. Consequently, there will be a smaller
membership of model predictions which are ‘strongly’
likely.

Equal intervals for the supports of the membership
functions for residuals at each site were used in this study,
although separate rules could be defined for each site which
incorporated varying supports which could then account for
heteroscedasticity in the residuals.

Fig. 7. Membership functions for sample input (water surface
depth residual) and output (likelihood measure) to a fuzzy rule.
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Fig. 8. (A) Likelihood measures for statistical calibration: water depth information only. (B) Likelihood measures for fuzzy-rule-based
calibration: water depth information only.Sa is the support (defined in eqn (18)) of the fuzzy subset ‘‘small’’ residuals.G is the parameter

stringency defined in eqn (24).
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5 THE GLUE PROCEDURE

The GLUE procedure9 comprises several steps between
generation of the likelihood surface over the parameter
space and producing estimates of uncertainties in the pre-
dicted model responses. These steps are outlined in the next
few sections, in which those figures associated with the
statistical calibration and the fuzzy-rule-based calibration
are labelled (A) and (B) respectively.

5.1 Selection of the parameter ranges

The first step of theGLUE procedure is to decide upon the
range of the parameter space to be examined, which relies
upon ‘expert knowledge’ of the system. The two physical
parameters to be calibrated in this study are the Manning
coefficients, one to represent the roughness of the flood
plain region and the other to represent the river bed. Clearly,

such a simple model structure does not reflect the true
distributed roughness in the basin, and it becomes less
imperative to find an optimum fit, as discussed earlier.

However, the initial decision as to the range of parameter
space to be examined can exert an influence on the decisions
to be made later, on the basis of the predicted uncertainties.
For instance, having generated uncertainty bounds for the
model predictions on the basis of a truncated range of rough-
ness coefficients, caution must be taken when using these to
disregard certain outlying predictions or to disregard obser-
vations (the modeller might wish to use a truncated range of
parameter values in order to assert somea priori knowledge
about the physical situation in the field). It is considered that
this problem can be largely overcome by initially using
ranges of parameters which cover the extremes of feasible
values, for example, in this study, Manning coefficients
corresponding to bare soil, all the way to values correspond-
ing to a highly rough floodplain were used10. This resulted

Fig. 9. (B) Likelihood measures for fuzzy-rule-based calibration, user discharge information only.G is the stringency parameter defined in
eqn (24).
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in a range of roughness coefficients forc of 0.025 m¹1/3 s¹1

and 0.2 m¹1/3 s¹1 to be used, with the restriction that the
roughness of the river could not exceed the roughness of
the floodplain, hence, the triangular parameter domain on
the possibility measure plots. Bateset al.7 used Manning
values for the channel ranging betweennc ¼ 0.01 m¹1/3 s¹1

(corresponds to a concrete lined channel) to
nc ¼ 0:05 m¹ 1=3 s¹ 1 (corresponds to a mountainous
stream with a rocky bed) and for the floodplain, they used
nf ¼ 3nc þ 0.01. The 1000 different combinations of the
Manning coefficients within the triangular domain
described before were used to generate the likelihoods or
relative possibility measures.

5.2 Generation of likelihood surfaces

The calibration was broken up into three parts so that the
influences of the different types of information could be

examined more closely. Fig. 8 shows the likelihood
measures over the parameter space for the case where
only the water surface height information is used. Fig. 9(B)
shows the likelihood surface for the case where only the
information about the peak discharges was used and finally
Fig. 10(B) shows the likelihood surface were all the 20
pieces of information are used.

For the fuzzy calibration, the sub-plots in each case
demonstrate the effect of varying the two calibration para-
meters discussed before. The variation of the support sizeSa

was included to demonstrate how its choice can influence
the overall output. Normally it would be selected at an
intermediate value, based on experience, which allowed a
reasonable number of parameter combinations to influence
the resulting surface. It can be seen that for smallSa and
large G, the condition for a strong possibility measure is
harder to meet, so relatively little of the possibility surface
is sensitive. As the stringency of the rules is increased, so

Fig. 10. (B) Likelihood measures for fuzzy-rule-based calibration: combined information.Sa is the support (defined in eqn (18)) of the
fuzzy subset of ‘small’ residuals.G is the stringency parameter defined in eqn (24)).
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the technique becomes more similar to an optimization
process.

From inspection of the different figures, for all the differ-
ent combinations ofG and Sa, it becomes clear that the
roughness values for the river with the greater likelihood
measures are in the approximate rangec ¼ 0.04 m¹1/3 s¹1 to
0.06 m¹1/3 s¹1. Since the ‘ridge’ of relatively more possible
parameter combinations exhibits an insensitivity to the
floodplain roughness for most of the likelihood surfaces,
then we should conclude that there is insufficient data
with which to constrain the current model in order to gain
more information about the floodplain roughness.

However, inspecting more closely the lower right sub-
plot of Fig. 10(B), which utilizes all of the calibration
information and represents the most stringent set of fuzzy
rules, the truncated ridge of more possible floodplain rough-
ness values (c ¼ 0.025 m¹1/3 s¹1 ¹ 0.12 m¹1/3 s¹1) can be
interpreted as representing the region of more feasible
Manning coefficients. Such results however need careful
interpretations. The fact that we have used the stringent
fuzzy calibration requires that in order for the likelihood
measure to be strong, all of the residuals for the water
surface heights must be independently small and the predic-
tions concerning the discharges be all independently good.
In making this assertion, we are relying on these pieces of
information to be independent. If we wish to make conclu-
sions about the approximate ranges of more acceptable
manning coefficients for the two regions, then our conclu-
sions should therefore be ‘On the basis of the Monte Carlo
analysis, the floodplain roughness was constrained to lie
within the approximate range (c ¼ 0.025 m¹1/3 s¹1 ¹

0.12 m¹1/3 s¹1) and that the river roughness can be
approximately constrained to lie within the range (c ¼

0.04 m¹1/3 s¹1 to 0.06 m¹1/3 s¹1)’. Earlier in the study we
assumed independence in the residuals, on the basis that the
measurement sites corresponded to regions within the flow
domain which were spatially far apart. If we discover new
information which contradicts our assumption then we must
consider that the set of rules which were used in order to
produce the constrained range of Manning coefficients,
represent an over-constrained system.

5.3 Generation of cumulative likelihood plots

The next stage of the GLUE procedure is to arrange the
residuals or other predicted observables into ascending
order and to plot the cumulative likelihoods determined
before against the size of the predicted observable (Fig. 11).

Considering the water surface height residuals only, (for
which the information available is less fuzzy) it is apparent
that at one of the sites, in the river, the water surface is
highly sensitive to the roughness coefficients. In case
these large variations were caused by unusual parameter

Fig. 11. (A) Cumulative likelihood of 17 predicted depths using
the statistical calibration. (B). Cumulative likelihood of predicted
depths at 17 sites using the fuzzy calibration (G ¼ 0.5,Sa ¼ 0.3).
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combinations, an analysis was made whereby the parameter
pairs which gave rise to predicted water surface height
residuals greater than 1 m were excluded. However, this
resulted in over half of the parameter pairs being excluded,
many of which were predicting sensible residuals else-
where. For this reason the sensitivity was put down to a
more physically intuitive explanation: the roughness coeffi-
cients determine whether or not a large volume of water will
be directed through the relatively narrow river channel, so
the water surface height at this point was bound to be
sensitive to the roughness parameters.

Conversely, there are some sites at which the water
surface height is highly insensitive to the roughness
coefficients, which correspond to locations on the
extensive flat regions of the basin, where damping would
be expected.

At one site, there is apparently a double peak to the
possibility measure, which results in a pronounced point
of inflection on the cumulative plot. This demonstrates the
importance of avoiding parameter optimization.

5.4 Generation of the uncertainty bounds on the
predictions

Predicted observable pairs corresponding to the 10% and
90% percentiles limits of the cumulative distributions
are used next to estimate uncertainties in the model
predictions.

Predicted observables, which fall outside these limits, are
generally considered, in relation to all the other predictions
covering the feasible parameter space, as outlying points.
This presents some contradictions for the cases such as that
at site 7, where there are two ranges (there may be multiple
ranges) of water surface heights which both apparently have
fairly strong likelihood measures. For this reason, it is sug-
gested that, before making any strong inferences based upon
the uncertainty bounds, the distributions of the likelihood
measures for all of the predicted depths are examined
carefully.

It can be seen from the plots Fig. 12 that the water surface
heights at sites 8, 12, 13 fall outside of the error bars (sites 8
and 12 are only just outside the error bars). It is possible that
some of these deviations are caused by errors in the
observed data, e.g. wave induced errors. Although there
was apparently no wind at the time of the flood, the
maximum tide mark at different sites will inevitably been
affected by surface waves. There are also errors arising
from the difference between the interpolated finite
element mesh and the actual topology. These might be
estimated to give uncertainties of approximately 5%–
10%. In the light of this information, the only problematic
site is number 13.

Fig. 12. (A) 10 and 90% percentiles of model predictions using
the statistical calibration (observed data ‘o’). (B) 10 and 90%
percentiles of model predictions using the fuzzy calibration

ðG¼ 0:5;Sa ¼ 0:3Þ:
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However, the possibility that the model structure is not an
adequate representation of the flow processes must also be
considered because of the poor fit at site 13, this will be
investigated in future work by increasing the number of
different regions having different roughness parameters, to
reflect more accurately the heterogeneity of the true basin
roughness. Similarly, the apparent failure to predict the cor-
rect water surface height everywhere may were caused by
an error in the modelled input hydrograph. Nonetheless,
considering that once the uncertainties in the observations
were taken into account, only the water surface height at site
13 is not within the 10% and 90% percentiles, the hugely
simplified floodplain roughness parameterization was
shown to be relatively flexible. Of course the approach
requires additional data for further validation, since there
are clearly relatively few observations available in this
study.

6 FURTHER DISCUSSION

The possibility surfaces and the uncertainty plots produced
by the various techniques are remarkably similar, which
affords a degree of confidence in the techniques.

The possibility surfaces, which were obtained from the
simple ‘if/then’ rules, appear to be equally, if not more
useful than the measures obtained using the statistical
error models, in the context of this study. The variation of
the stringency parameters was found to be especially useful
for visualizing the variation of the likelihood measure as
they were varied from highly stringent (comparable to an
optimization process) to less stringent (to allow a wider
spread in the likelihood surface).

The uncertainty in the observations could in future be
incorporated into the objective function, by formulating
the observation as a fuzzy set and calculating the ‘fuzzy
distance’4 between this and the fuzzy sets comprising
different classifications of residuals.

With a more detailed set of observations, the information
about correlations between measurement sites and the
resulting correlations between error measurements could
be included into the fuzzy framework. For instance, if the
error measurements at two sites are strongly correlated, then
there is a redundancy of total information, which can be
gained from the two sites. The possibility measure could
easily be made to reflect this by penalizing information
from strongly correlated sources.

We aim to update the likelihood measures, as more
information becomes available. This can be achieved in a
Bayesian framework18 or an equivalent fuzzy updating
technique, which is currently being tested.

7 CONCLUSIONS

The GLUE procedure was applied to a complex distributed
model, on the basis of very little information, using two

different techniques, based around statistical error model
and fuzzy-rule-based systems. Both techniques clearly
incorporate judicious assumptions, whether it be inferences
about the correlations in the distributed errors in the error
model or the selection of support sizes for membership
functions in the fuzzy model. However, this does not negate
the usefulness of the two techniques, which if combined
with expert knowledge of the system in hand and used
sensibly to produce relative likelihood or possibility
measures via the GLUE procedure, allow for a greater
understanding of the model predictions. For instance, if
there is equifinality (in terms of likelihood measures) of
different model predictions to within the uncertainties in
the measurements and model structure (as was found before
with models of this type), then the GLUE procedure exposes
this behaviour.

The fuzzy calibration therefore addresses the problem,
which stems from attempting to fit a certain structure of
physically based model on the basis of uncertain data. We
argue that there will always be a degree of non-random
uncertainty in our knowledge of systems as complex as
the Imera basin, so the chimera of a precisely defined
model structure will disappear each time we discover a
new model structure which is equally acceptable on the
basis of the data (the equifinality problem). It is accepted
that the data set in use here is highly sparse and the model
structure does require further improvements (more sub-
domains having different roughness, etc.), but we have put
forward the fuzzy calibration techniques as a general
technique.

The statistical calibration technique, despite its
advantages, e.g. it is easy to incorporate into both the
statement of defining the inverse problem and into the
GLUE procedure, is limited in this type of analysis
where there is ambiguous initial data and limited observa-
tions. For such scenarios, it is often difficult, if not
impossible, to evaluate properly the statistical properties
of the residuals.

On the contrary the fuzzy calibration technique, in so far
as it was developed for use with the GLUE procedure, is
useful on several accounts:

1. The rules are transparent and simple to implement;
2. Different sources of information and their relative

importance can be incorporated into the rules;
3. The decision-maker for the acceptability of a given

model structure can be assigned different degrees of
‘decisiveness’. The usefulness of this is best
explained by example, take the case of a model
based upon a sparse data set in which there are cor-
relations present in the model structure (in higher
dimension parameter space these become even more
difficult to quantify) then a stringent optimization pro-
cess could result in assigning too much precedence to
information from sources which are essentially sup-
plying the same information, leading to a falsely
constrained system.
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