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S U M M A R Y  

Any satisfactory computer simulation model of a soil process must match actual 
behaviour in the laboratory or field; a model can be evaluated by how well it does so. This 
paper describes a method for assessing models using anion diffusion and nitrate leaching 
as examples. The method partitions the sum of squares of the differences between measure- 
ment and simulation into two components, one calculated from the differences between 
the simulation and the mean of replicate measurements (the ‘lack of fit’), and the other 
calculated from the variance within each set of replicate measurements (the ‘pure error’). If 
the former is not significantly larger than the latter than the data present no grounds for 
rejecting the model. Where a model simulates the change in a process with time the method 
can also take account of how experimental error in the initial measurements affects the 
goodness of fit of the simulation of subsequent measurements. 

The method is particularly valuable where it is difficult or costly to take many replicate 
measurements, such as often happens in soil science or agriculture; nonetheless, some 
replicates must be taken. 

I N T R O D U C T I O N  

Advances in computing power have led to a great expansion in computer modelling. Some models 
aim at understanding a process and prove their worth with the insights they provide. Others aim to 
predict one or more components of a process and so require verification to confirm that their 
predictions are reliable. Modellers need reliable techniques to help them choose the best parameters 
for their models, and to help them assess the model’s worth. As Addiscott & Wagenet (1985) noted 
when writing about leaching from soils, few authors have published sound methods for evaluating 
how well models fit or predict measured data. 

One obvious method is to plot simulations against measurements on a graph and leave the reader 
tojudge for himself. The better the model, the closer the graph will be to a straight line with a slope of 
unity passing through the origin; this is sometimes known as the line of perfect agreement (or 1:l 
line). This qualitative presentation does not allow the model user to assess ‘improvement’ to his 
model objectively, nor does it allow ready comparisons between different authors’ models simulat- 
ing the same data. Addiscott & Whitmore (1987) discussed several ways of quantifying the discrep- 
ancy between model and data. They concluded that any one method used alone might be misleading, 
but several methods used together could summarize satisfactorily the closeness of a model’s 
estimates and measurements. They considered: 

(i) the product moment correlation coefficient ( r )  between measurement and simulation 
(ii) the mean difference ( M )  between measurement and simulation 

I N  
M = : c (y i  - X i )  

N i = i  

where y i  is the ith measurement, xi its simulation and N the number of such pairs. 
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They also considered the dispersion of y i -x i ,  as have Richter et al. (1985). If 90% of the 
simulations are within some arbitrary, but important, range of the measurements, then the model 
may be satisfactory. This becomes meaningful in practice; if, for example, a farmer cannot apply 
fertilizer to crops more precisely than to the nearest 10 or 20 kg ha-', it is pointless to try to predict 
the optimum rate more precisely than this. 

In the statistical analysis of designed experiments the difference or deviation ( d )  between a 
measurement and its expected value is known as the residual. In evaluating a computer model it is 
expected that the simulations should agree with the measurements, so the residuals may be calcu- 
lated as the difference between measurement and simulation ( y i -x i ) .  Residuals can be positive or 
negative; in an unbiased model their sum will tend to zero. Greenwood et al. (1985) compared the 
size of the sum of the squares of the residuals with the total sum of squares in the data about their 
mean. Expressed as a percentage this is analogous to the per cent variation in the data accounted for 
by the model; however, it can exceed 100%. This quantifies neatly the comparison between models 
but takes no account of replicated measurements, except to include all replicates in both sums of 
squares. Some replicated measurements are bound to contain less experimental error than others, 
and it is sound technique to give these more weight when choosing parameters for, or testing, a 
model. 

If sufficient replicates were taken for each measurement in an experiment, it is possible to use 
Student's t-test to see whether a simulation is within the experimental error in the measurements 
(Snedecor & Cochran, 1980). The test is carried out by comparing each simulation ( x )  with the mean 
measurement for that simulation 7. The t-statistic is calculated as 

where SEis the standard error of the mean measurement, j j ,  anddis the mean deviation. Sutherland 
et al. (1986) used the t-statistic to assess the closeness of each simulation to a set of replicated 
measurements. They recorded the size and sign of each deviation and ranked these against the 
measurements. The model is biased if there is a significant correlation between rank order and 
deviation. The t-statistic is unreliable with very few degrees of freedom; for example, with two 
replicates t can reach 12.7 before the model must be rejected, or 4.3 for three replicates. These are 
fairly easy tests for a model to pass. However, it is often costly or time-consuming to take more than 
two or three replicates and a compromise must be sought. 

Addiscott & Bland (1987) have discussed the dangers that disregarding experimental error in 
input data can have on simulations. One model (Addiscott & Whitmore 1987), that simulates the 
change in soil mineral-N content over winter, is initiated with a measurement of the mineral-N 
content in autumn from which it predicts the mineral-N content of the soil in spring. It does this by 
taking daily account of the weather in the intervening period. It may be unreliable to initiate such a 
model with a single measurement in autumn because measurements of soil mineral-N in autumn are 
just as subject to spatial variation as any taken in spring. The model should be assessed on its ability 
to simulate the change within each replicated block of a field experiment. Ideally the change within 
any one block with time will be the same as within another; the extent to which this is not true is an 
additional source of experimental error. 

In this paper two related problems are addressed and it is demonstrated how published and novel 
techniques may be used to overcome them. First, it is shown how to examine the random and 
systematic deviations of simulations from measurement and, based on the relative sizes of these, a 
statistic is produced. This statistic should be minimized when choosing optimum parameters for a 
model. In statistical parlance this is fitting a model to data. It can also be used to assess how well the 
finished model predicts data independently of that used to develop it. The same statistic also 
quantifies how well different models estimate the same data, allowing a user to choose between 
them. Second, it is shown how to use the statistic with any model that predicts the change in a 
variable with time. Initial and final measurements are equally subject to experimental error: the 
statistic can take account of this and so be used to obtain a more reliable assessment of a model or its 
parameters. 
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T H E  M E T H O D  

Consider Fig. la and c. In these the same data are plotted in two different ways for a model which can 
be expressed as 

y N x =f(T) (3) 

where y are the measurements and Tis an independent variable such as time. The equation x = f (  T )  
then represents the output of a model. Both graphs display the data well, although, where x is a 
continuous function of T, la is usually preferred to Ic. Now consider Fig. lb. This is similar to 
Fig. la, and the model could be said to simulate both sets of data equally well. However, there is a 
difference in the ways in which the model does not fit the data. In Fig. la, a shift of origin could 
enable the model to simulate each experiment perfectly; that is to say, an extra input variable 
expressing the difference between the experiments could account for the systematic failure of the 
model to predict each experimental data point. In Fig. lb, the differences between model and 
measurement are about the same size as those in Fig. 1 a, but now the discrepancy is all random error 
or ‘noise’ in the measurements. Although Student’s t-statistic is not a useful test of agreement with 
two replicates, if the errors in all the measurements were pooled and the deviations of the model 
from their means also pooled, then comparison of error and deviation for all the data together 
would be much more reliable with additional degrees of freedom: that is essentially how the method 
works. 

Time 

Simulations ( x  ) 

Fig. 1. Relationships between duplicated (open vs closed symbols) measurements b) and simulations (x) where: 
in the case of (a) and (b) x is a continuous function of a third variable, say time, and for (c) and (d) there is no 
simple continuous interrelationship between the simulations (x). 

All the discrepancy between model and data, whether random or systematic, is in the residuals 
(d ) .  The sum of the squares of the residuals can be partitioned into two other sums of squares: that 
due to pure error (i.e. random variation) and that due to lack of fit (i.e. systematic variation). The 
sum of squares due to pure error is the sum of the squares of the differences between measurements 
and their mean within each set of replicate experiments. The sum of squares due to lack of fit can be 
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obtained by subtraction of the error from the residual sum of squares, or computed directly as 
shown below. It is a measure of the average deviation of the model from data in each experiment. 
The formula for calculating the sum of squares due to lack of fit is derived in the appendix. Where 
RSS is the residual, SSE the error and LOFZT the sum of squares attributable to lack of fit then 

N n. N n  

N N 

LOFIT = 1 .,a;. = 1 nJ(jj, - xj)' 
j =  I j =  I 

where N is the number of experiments, nJ the number of replicates within each, x, the simulation for 
thejth experiment and y,, the ith measurement in thejth experiment. The quantity y, is the mean of 
the measurements in thejth experiment, d,, is the deviation (JJ~-X,), and 3 the mean deviation is 

Dividing each sum of squares by its associated number of degrees of freedom gives a mean 
square (which is a variance). The relative sizes of the mean squares due to error and lack of fit can be 
compared using the variance ratio, or F-test (cf. Teng, 1981), and where the lack of fit is significantly 
greater than error the model could almost certainly be improved. The number of degrees of freedom 
in the residual is 

(JJ - x,). 

N c n,; 
j =  I 

in the error 

N 

and in the mean squares due to lack of fit (obtained by difference) N .  
Where a model simulates the change in a variable (x) that must be measured at the start of 

computer simulations, the method can refine the estimates of lack of fit and error. Fig. Id shows 
three possible outcomes from duplicated measurements; to simulate these the model needs to be run 
twice, initiated with each duplicate in turn. In set 1 (0, W )  the model simulates the data perfectly and 
the experimental error is zero, in set 2 ( A ,  A) the model is not biased, and it simulates the data well 
given the experimental error. In set 3 (O,.), however, the random experimental error is tiny just as 
in set 1, because the model has estimated the same change in each duplicate; but it significantly and 
systematically underestimates them both. With the notation above, the equations for the various 
sums of squares where both initial and final measurements were replicated now become 
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where Zj is the mean of the nj replicate simulations for thejth experiment and X~ is the ith simulation 
in thejth experiment. Equation (9) is derived in the appendix. 

The way in which the calculations work becomes difficult to represent graphically with more 
than two replicates as in Fig. Id, but the statistics will obviously cope with three or more replicates. 

EVALUATION 

Using a computer simulation model of a continuous process 
Addiscott's (1982) model simulates the diffusion of anions within cubic or other regularly shaped 
objects. He tested his model by measuring the diffusion of bromide ions out of different sizes of chalk 
cube. Diffusion is supposed to take place between imaginary concentric volumes within the cube, 
and also between the outermost volume and the surrounding solution according to Fick's first law. 
In the limit, calculus might give an exact answer, but the program solves the equations numerically 
for a finite number of concentric volumes. The model requires the volume and initial concentration 
of anions in the cube (assumed the same in each concentric volume); in addition, the porosity and the 
tortuosity within a cube must be estimated. Once a cube is immersed in distilled water, gentle stirring 
begins and continues until an equilibrium concentration of anion is achieved in solution. Expressing 
the concentration C in solution at time T as a proportion of this equilibrium concentration (CJ 
gives acurve of the kind shown in Fig. la. Addiscott's (1982) actual data, Fig. 2, are reproduced with 
permission from the author. The model was tested in three different experiments by putting either 
20 mm, 40 mm or 75 mm chalk cubes, previously saturated with bromide solution, into distilled 
water. The increase in bromide ion concentration in the surrounding solution was then measured 
with time. Fig. 2a, b and c show C/Ceq plotted against time for bromide ion in solution. Table l a  
shows the mean squares attributable to the residual, lack of fit and pure error. Two separate 
experimental runs were made for each size of chalk cube; measurements made at the same time in the 
two experimental runs were treated as duplicates. Measurements were also used as duplicates, where 
their simulated values remained almost the same for a very small difference in time T. Table la shows 
that the model simulations taken as a whole do not differ significantly from the measurements made 
of diffusion of bromide out of the 20 mm chalk cube, but are just significant for the 40 mm cube. 
However, the lack of fit is very significantly larger than error for the 75 mm cube size and the bias at 
the beginning (T<  1000 min) is clear in Fig. 2c. Table 1 also has a statistic that shows what pro- 
portion the error and lack of fit together are of the total variation about the mean of the data 
(Greenwood et al., 1985). In all cases they are rather small. 

Table 1. Statistics to evaluate the method for assessing: (a) model simulations of the 
diffusion of bromide out of three sizes of chalk cube, (b) simulations of soil mineral-N in 

spring 
~ ~~ 

"RSS "MSE "MSLOFIT "Ratio "% Variance 

(a) 
b20 mm 0.02178 0.0002404 0.0005557 2.312 1.41 
b40 mm 0.01657 0.0001449 0.0005214 3.600 2.46 
b75 mm 0.03619 0.0000482 0.001703 35.35 2.43 

(b) 
5498 92.4 205.0 2.22 27.3 

"RSS= residual sum of squares; MSE=mean square due to pure error; MSLOFIT= 
mean square due to lack of fit; Ratio = MSLOFIT/MSE; 

N "I 

(RSS/ 1 1 (y,, - yJ2 after Greenwood ef at. (1985); bsizes of chalk 
cubes. ,-I , = I  
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Addiscott (1982) suggested that the initial distribution of bromide within the 75 mm cubes might 

not have been as uniform as in the 20 mm and 40 mm cubes. Such lack of uniformity violates 
assumptions within the model. Assumptions may need careful examination in the light of exper- 
imental or model results. The method assesses how closely the model simulates the data but it cannot 
distinguish, in this instance, between failure of the model and experimental error in the input data. 
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Fig. 2. Duplicate (0 and V )  simulations made by the model of Addiscott (1982) of the diffusion of bromide ions 
with time out of chalk cubes of sizes: (a) 20 mm, (b) 40 mm, and (c) 75 mm. 

This becomes possible only where the number of separate experiments is large and each is replicated, 
as is usually the case when simulating discontinuous data. 

Using a model to simulate data from unrelated experiments 
Where a model simulates results from many experiments the relationship between measurement and 
simulation is discontinuous. Addiscott & Whitmore (1987) describe an example of this use of a 
model. Their model estimates the amount of mineral-N in soil in spring at the time farmers apply N 
fertilizer to winter wheat. It determines the amounts of nitrate-N leached, ammonium-N released 
from soil organic matter and nitrified to nitrate-N, and the N taken up by the crop each day. The 
inputs to the model are daily rainfall, evaporation and soil temperature, the water-holding capacity 
and texture of the soil, the mineral-N in the soil at the start of the computer simulation, the soil 
moisture deficit at the end of August, the sowing date of the crop, and the recent cropping history of 
the field. The model must be assessed with different experiments from different years and in different 
parts of the country because only one or two sets of replicated experiments are likely to be made 
during a growing season and because the model is intended to be used throughout the country. 
Diagrams similar to these in Fig. lc and d provide the best graphical representation of the 
performance of this kind of model. 

Addiscott & Whitmore (1987) modelled the change in mineral-N content of the soil over the 
winter period starting with a measurement made in autumn. They assessed their simulations against 
results from many experiments, but only those experiments where duplicate measurements were 
made in both autumn and spring are used here. In Fig. 3 all the measurements made in spring (that is 
both duplicate measurements) are plotted against simulations. There is no elegant way of repre- 
senting the connection between each pair of duplicates graphically as in Fig. Id, which shows 
different symbols for threeexperiments only. Table 1 b shows the mean squares attributable to error, 
lack of fit and the residual sum of squares. The variance ratio is significant but not large for 
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the 20 sets of data. The residual variation (between model and measurement) is about 27% of 
the variation in the measurements about their mean; this suggests that the model is sound and that 
the range against which it has been tested is fairly large compared with experimental error and lack 
of fit. 

I00 
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E 

0 

Simulated mineral N (kg  ha-') 

Fig. 3. Simulations of the amounts of mineral N in soil in spring made by the model of Addiscott & Whitmore 
(1987) compared with duplicate measurements (0 and V). 

DISCUSSION 
The design of an experiment contributes much to its success. A poorly designed sampling arrange- 
ment can lead to the rejection of a good model or the acceptance of a poor one. In any scheme for 
collecting data resources are limited, which sets bounds on the number of measurements taken. 
However, it is advisable that each measurement should be replicated. It is equally sensible to test the 
model fully throughout its intended range of application, keeping replication to two or three. This 
range may be a time period for a continuous model or the whole country for one that estimates soil 
mineral N. In this way the numbers of degrees of freedom of pure error and lack of fit will be similar. 
Poor estimates of a model's success may result if either of the pure error sum of squares or the sum of 
squares due to lack of fit contains most of the degrees of freedom. If the error term contains most of 
the degrees of freedom then the model might be tested best by comparing the individual simulations 
with means of the measurements using a t-test as described by Sutherland et al. (1986). 

If the aim is to find parameters for a model by fitting it to data, then it is unwise to neglect lack of 
fit which warns of bias. If the aim is to assess a model then Fig. 2c and Table 1 illustrate a very 
important point: no predictive model can ever be perfect. There will always be small differences 
between measurements and simulation. A given level of significance can always be reached by taking 
more measurements; and so users should not put too much reliance on the significance (in the 
statistical sense) of the lack of fit. According to the criterion of Greenwood et al. (1985) the model 
used to describe the loss of anions from a 75 mm chalk cube was a good one-it explained more 
than 97% of the variation in the data during an experiment lasting over 4000 min. Analysis of lack 
of fit warns us that the model may be less good if used solely to predict the loss of anion after say 
500 min. 

In pooling variances or testing their relative magnitude it is assumed that although the means 
of sets of replicates from the various experiments differ, the variances are similar and the data 
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independent and normally distributed. For instance, if most replicates differ from their means by 10 
units (min, or kg N ha-’ say) then a single one which differs by 100 or even 1000 units may invalidate 
the analysis. Measurements that appear to be widely different from the rest should be investigated 
separately in case they bias the results. The data in Fig. 3 and Table lb  illustrate this point. Some of 
the experimental blocks were waterlogged over winter (R. J .  Darby, personal communication), 
which is not a fair test of a model that assumes the soil is freely draining. If such extraneous variation 
is commonplace, as appears to be the case in Table I b, then it may indicate that the model is missing 
some important factor. By examining the individual sets of residuals it should be possible to identify 
the experiments where the model fails, and elucidate the reasons and any deficiencies such as the 
need to model waterlogging. 

CONCLUSIONS 

To choose parameters for a computer model or assess how well it predicts independent data I 
suggest the following procedures. In all cases plot the data on a graph. 

( i )  Where none or few of the measurements were replicated 
Choose the best parameters for a model by minimizing the sum of squares of the deviations 
(Greenwood et al., 1985). To evaluate a single model compute the product moment correlation 
coefficient ( r )  together with the mean difference ( M ) .  Specify the acceptable error in the prediction at 
the outset. The model may be checked to see what fraction of its predictions fall within this range. 
Models are best compared with a single statistic, for example Greenwood’s. Compare models giving 
advice against the acceptable error. 

( i i )  Where most or all of the measurements were replicated 
Partition the sum of squares of the deviations between simulation and measurement into the 
components due to lack of fit and to pure error. Choose parameters for a model that minimize the 
lack of fit; reduce it to zero if possible. If lack of fit is significantly larger than error overall, then 
examine the individual experiments. Where lack of fit is generally much larger than error, this 
implies that the model or its parameters are poor. If the lack of fit is greater in just a few experiments, 
inspect the data; though poor data would normally inflate the error as well. You are more likely to 
have omitted some important feature common to these experiments from the model; if so you must 
decide whether to include this feature or restrict your use of the model. 

Evaluate a model or compare different models with the ratio of the mean square lack of fit to the 
mean square error. Keep in mind that only a very good model indeed will have a statistically non- 
significant result with more than 10 or 20 data; it may be more meaningful to test models giving 
advice against the acceptable error. 

(iii) For models that simulate changes in a property and for  which both initial andjinal measurements 
of this property were replicated 
Compare error and lack of fit as above. Lack of fit is now a more robust indicator of failings in the 
model. Minimize lack of fit to find the optimum parameter for a model, examine lack of fit carefully 
for signs of systematic bias in the model. Evaluate or compare models as in (ii) above. 

The author’s FORTRAN computer program calculates the sums of squares due to error and lack of 
fit, and copies can be supplied to interested readers. 
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A P P E N D I X  

(i) Derivations without including the error in input data 

N "I N n1 

RSS = 4J = 1 c ( y ,  - xJ)2 
/ = I  ! = I  J = 1  I = ]  

"I 

then RSS-SSE = (yo  - xJ)' - 1 ( ( y ,  - xj) - (7, - x,) 
i =  1 

N 

and LOFIT = RSS-SSE 

(ii)  Derivations including error in input data 
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and LOFIT = RSS - SSE 




