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Abstract

This analysis is based on published measurements of nitrous oxide (N,O) emission from fertilized and unfertilized
fields. Data was selected in order to evaluate the importance of factors that regulate N;O production, including soil
conditions, type of crop, nitrogen (N) fertilizer type and soil and crop management. Reported N;O losses from
anhydrous ammonia and organic N fertilizers or combinations of organic and synthetic N fertilizers are higher than
those for other types of N fertilizer. However, the range of management and environmental conditions represented
by the data set is inadequate for use in estimating emission factors for each fertilizer type. The data are appropriate
for estimating the order of magnitude of emissions. The longer the period over which measurements are made,
the higher the fertilizer-induced emission. Therefore, a simple equation to relate the total annual direct NoO-N
emission (E) from fertilized fields to the N fertilizer applied (F), was based on the measurements covering periods
of one year: E =1 + 1.25 x F, with E and F in kg N ha~! yr~!. This relationship is independent of the type
of fertilizer. Although the above regression equation includes considerable uncertainty, it may be appropriate for

global estimates.

Introduction

Nitrous oxide (N20) plays an important role in the
atmospheric radiative balance and in the stratospheric
ozone chemistry. A large number of major and minor
sources of N,O emissions and sinks have been iden-
tified, yet there is considerable uncertainty about the
source and sink strengths, Khalil & Rasmussen (1992)
recently presented a global N,O budget indicating that
the uncertainty for most N,O sources amounts to at
least a factor of 2. Part of the uncertainty arises from
the paucity of measurements of N,O fluxes. Another
part stems from the difficulty of extrapolating measure-
ments of biogenic fluxes from soils and aquatic sources
to larger scales because of their extreme heterogene-
ity, both in space and time. For abiogenic sources,
such as fossil fuel combustion and industrial process-
es, political, economic and cultural factors are major
uncertainties in making extrapolations.

There is considerable uncertainty in the estimates
of N,O emission from soils - a major global source
(Watson et al., 1992). Few measurements of N,O flux-

es in agricultural fields have been published recently,
despite the concern about the increase in the concen-
trations of greenhouse gases in the atmosphere. Many
flux measurements were carried out between 1980 and
1990. For example, attempts have been made to esti-
mate N;O emissions caused by synthetic nitrogen (N)
fertilizers (Eichner, 1990), and synthetic and organic
fertilizers (Bouwman, 1990), based on published val-
ues. Recently, Watson et al. (1992) estimated a global
annual emission from cultivated fields of 0.03 - 3 Tg
N,O-N (Tg = teragram; 1Tg = 10'2g).

The direct efflux of N2O from agricultural fields is
possibly only part of the emission caused by N fertil-
ization. Denitrification of N leached from soils may
form a potential source of NyO fluxes from ground-
water or from surface waters by degassing. Nitrogen
taken up by plants may be consumed by humans or
animals. Denitrification of the nitrogen in their excreta
may also become a source of N;O.

Many reviews have been published on N>O produc-
tion by nitrification and denitrification (e.g. Firestone
& Davidson, 1989). The release of N,O may be a by-
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product of nitrifiers that denitrify nitrite (NO;) under
oxygen stress (Poth & Focht, 1985). Under moist and
oxygen-depleted conditions, denitrification is gener-
ally the major source of N,O, and both the rate of
denitrification and the conditions that influence the
ratio of N2/N,O determine the N,O emission (David-
son, 1991). Many factors, summarized below, regulate
nitrification and denitrification (Bouwman, 1990).

— Soil moisture and temperature, both of which affect
microbial processes

— The amount of mineralizable organic carbon, used
as an energy source for denitrifiers

— Soil oxygen availability, which controls denitrifi-
cation; oxygen supply is mainly determined by the
soil water content and the rate of microbial con-
sumption;

— Concentrations of NO; and NHJ; obviously the
plant roots play a role by consuming nutrients and
acting as a source of nutrients and carbon from
residues and exudates;

— Soil pH, which influences nitrification and denitri-
fication rates as well as the ratio of N, /N,O.

The method proposed by Eichner (1990) to calculate
N,O emission from different fertilizer types was adopt-
ed by the IPCC for making country estimates (OECD,
1991). Computer models to simulate N,O emission
from fertilized fields are based on N application and
availability, weather conditions, soil properties, soil,
crop and water management. The models range from
simple mechanistic models (Mosier & Parton, 1985) to
more complex process models (Li et al., 1992). These
models were developed and validated for the condi-
tions of a single site. Extrapolation of flux measure-
ments should be validated for a wide range of condi-
tions. However, this requires soil data and daily weath-
er data currently not available on the global scale.

In this study published data of N2O emission in
relation to N fertilization were analyzed along with the
regulating factors of N, O production and the flux mea-
surements, On the basis of this analysis and comparison
with earlier estimates a method to estimate annual N,O
emission from fertilized fields will be described. Sev-
eral factors regulating production, consumption and
emission of N, O will be discussed briefly on the basis
of the data in the Appendix. Another important aspect
that will be discussed is the length of the period covered
by the flux measurements and their frequency.

Comparison of experiments
Methods

The data considered include experiments in cropped
and unplanted plots with different soils and different
types of N fertilizers, ranging from organic to combina-
tions of synthetic and organic fertilizers (Appendix).
The flux measurement technique, period covered by
the measurements and sampling frequency are indicat-
ed for all the experiments (Appendix).

Details on the measurement techniques used can be
found in the individual reports listed. Two types of gas
collection chambers or enclosures on the soil surface
are commonly used to quantify the N,O flux from the
soil to the atmosphere (Appendix). 'Open" chambers
have forced flow-through air circulation the gas flux
from the soil surface can be calculated from concen-
tration difference between incoming and outgoing air.
"Closed" chambers have closed-loop air circulation,
whereby the flux from the soil surface is calculated
from the measured concentration increase inside the
chamber. Other techniques in the Appendix include
the soil gas gradient method, whereby the gas concen-
tration gradient in the soil profile is used to estimate
the flux to the atmosphere, and micrometeorological
methods. Generally, in micrometeorological methods
the flux between the soil surface and the atmosphere is
assumed to be identical to the vertical flux measured
at the reference level some distance above the surface,
based on the concept that gas transport is accomplished
by the eddying motion of the atmosphere which dis-
places parcels of air from one level to another. Details
on the techniques can be found in the individual reports
listed. Reviews of the theoretical and practical prob-
lems which cause variability in gas flux measurements
are presented by Mosier (1989).-

Results

Overall emission of NyO The emission of N;O is
presented as: (i) the total N,O emission during the
period covered by the measurements; (ii) the fertilizer-
induced N, O emission, calculated as the difference in
emission between the fertilized and the control plot and
presented as a percentage of the fertilizer N applied;
(iii) the total N;O emission as a percentage of the
fertilizer applied. The fertilizer-induced N,O emission
varies between 0% and 7% of the N application for
87 experiments for mineral soils as recorded in the
Appendix that included a control plot. The total N,O



emission (not subtracting the emission from the control
plots) from 180 experiments for mineral soils recorded
in the Appendix ranges between 0% and 8% of the N
application.

Period covered by measurements The length of the
period over which the measurements were made may
influence the amount of N;O from fertilizers captured.
The average fertilizer-induced N>O emission for all
experiments with control plots is 0.6% (£1.1 % stan-
dard deviation; n = 88) of the N application based on
all experiments for mineral soils (Appendix). The aver-
age fertilizer-induced N,O emission was found to be
0.8 £+ 1.2% for experiments > 30 days (n = 70), 1.1 £
1.4% for experiments of > 100 days (n=43)and 1.6 &
0.4%, for experiments of > 200 days (n= 5). This sug-
gests that if N,O flux measurements are extended over
longer periods, more of the N,O emission induced by
N fertilization will be captured. Hence, it is necessary
to measure fluxes during prolonged periods to account
for all the fertilizer-induced emission.

Frequency of measurements Brumme & Beese
(1992) observed that N,O flux measurements done
once per week tend to overestimate the total emis-
sion estimate relative to daily observation by 20%. In
many studies the frequency of measurements is once
per day or once every 2 or 3 days, with the high-
est frequencies in periods of high fluxes shortly after
fertilizer application (Appendix). In some studies the
measurements were done only once per week. These
differences in frequency of flux measurements may
form another source of uncertainty.

Presence and type of crop Many studies included
fertilized but unplanted fields (Appendix). Since there
is no N uptake by plants, denitrification and associ-
ated N,O emission may be higher than in cropped
fields. The mean fertilizer-induced N,O emission for
unplanted fields was found to be 0.9 £ 1.4% of the N
application (n = 41), while the mean for fields with
crops or grass was 0.4 £ 0.6% (n = 47).

The N0 emission from ungrazed grassland plots
(0.3 £ 0.5%, n = 19) were found to be only slightly
lower than that from cropped fields (0.4 + 0.6%, »
= 28) Grasses take up N quickly and completely, and
have a longer growing season than crops, which could
lead to more N uptake and less denitrification in grass-
lands than in cropped fields. But the amount of readily
oxidizable organic substrate is probably more in grass
than annual crops. The data show only a slight differ-
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ence between grass and crops, possibly because most
measurements covered only the spring and summer
period and not the full year.

For most experiments it is impossible to determine
the contributions of crop, the amount and type of N fer-
tilizer, management practices and weather. However,
in some experiments the crop or the combined effect
of crop and management clearly determined the N,O
emission, e.g. wetland rice and leguminous crops. Wet-
land rice in experiments 15 and 36 showed low N,O
fluxes, and the N,O emission from dryland rice fields
was somewhat higher (experiment 23). This may be
caused by the low availability of oxygen, which is
unfavorable for nitrification. Moreover, low oxygen
availability may lead to a low N,O/N; ratio in den-
itrification products. However, Byrnes et al. (1993)
showed that drainage and subsequent reflooding of rice
fields may give rise to significant N,O emission. As
measurements during drained phases were not done in
experiments 15 and 36, the reported N>O emissions
may be underestimated.

Fields with legumes showed high N>O emission.
As leguminous crops usually receive little or no N fer-
tilizer, these high N2O emissions may be attributed to
N inputs from symbiotic N fixation. The only available
data is for alfalfa (2.3-4.2 kg NO-N ha=! yr~!, exper-
iment 17), soybeans (0.34-1.97 kg NyO-N ha—! yr~1,
experiment 41) and clover (0-0.07 kg N;O-N ha~!
yr~!, experiment 14). The measurements in the clover
fields did not result in high fluxes, perhaps because N
fertilizer added in this experiment prevented N fixa-
tion. Unfortunately the measurement period was not
reported for experiment 14.

Crop residues The data indicate that decomposition
and mineralization of crop residues may contribute to
N, O fluxes. The effect of crop residues is illustrated by
comparing experiments in Iowa on typic Haplaquolls
(experiments 5 and 6). Both the control and the fer-
tilizer treatment of experiment 6 showed much high-
er N2O emission than experiment 5. In experiment 5
maize residues were incorporated in the surface layer,
while in experiment 6 soybean residues were left on
the surface to decompose.

Experiment 20 included plots with rye grown as
a cover crop after harvest of the previous crop. The
rye was incorporated before planting tobacco and this
produced lower N,O emission than plots with manure
or alfalfa residue.
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Tillage. Surface application of N fertilizers to plots
with minimum or reduced tillage leads to high N,O
emission (experiment 20). This is consistent with
experiments 8 and 13, which showed lower N,O emis-
sion from ploughed plots cropped to winter wheat fer-
tilized with NH4NOj; than unploughed, directly sown
plots.

Source and amount of nitrogen. The variability in
N,O fluxes is extremely high for all N fertilizer types
and all application levels (Figure 1). Fluxes ranging
between 0 and 30 kg NoO-N ha~—! yr~! were observed
in plots with mineral soils. The results for the unfertil-
ized control plots (Appendix) range between -0.6 and
4.2 kg N,O-N ha~! (average 0.8, standard deviation
1.0 kg N ha~! n = 55). The variability may be caused
by many different factors, of which the weather condi-
tions and history of fertilization and management may
be important ones.

Some forms of N show higher N;O emissions
than other types. Fluxes of N;O from combinations
of organic and synthetic fertilizers are generally high.
The experiments listed in the Appendix showed the N
content of organic fertilizers as total N, including min-
eral and organic N. Hence, there is uncertainty in the
amount of available N because part of the organic N
is not directly available, and volatilization of NH; was
not accounted for here, just as for synthetic fertilizers.

Emissions from NOj3 -based fertilizers and com-
binations of organic and NOj fertilizers from experi-
ment 31 were found relatively high compared to other
fertilizer types. Measurements in experiment 31 were
carried out immediately after irrigation and rainfall
events, and this likely caused an overestimation of
both denitrification and N,O emissions extrapolated
over the growing season.

Within the group of synthetic fertilizers, anhydrous
ammonia induced the highest N;O fluxes. This may
not, however, be the result of the type of fertilizer, but
merely of the mode of application (see below).

Mode of fertilizer application. Some experiments
indicated an important effect of the mode of fertil-
izer application. Most fertilizers were broadcast onto
the soil surface and incorporated by tillage. Anhy-
drous ammonia must be injected as a gas into the soil.
This produces highly alkaline zones of high ammoni-
um concentration (various references quoted in Bre-
itenbeck & Bremner, 1986a) that may lead to high
N0 production (Bouwman, 1990). Experiments 4, 5,
6 and 10 showed that deeper injection of anhydrous

ammonia lead to higher N,O emission than shallower
injection. Another example of the effect of high pH
in experiment 36, in which urea drilled into the soil
caused higher N,O emission than top-dressed urea for
the same high N application rate of 180 kg N ha~!.

Itis dificult to explain why deeper injection resulted
in higher N,O emission. The N loss by NHj3 volatiliza-
tion from applied anhydrous ammonia is probably low-
er for deep than for shallow injection. However, if the
ammonia is injected deeper, the transport of the N,O
formed is over a longer distance, which increases pos-
sibilities for further N,O reduction.

Timing of fertilizer application. The data set does
not include enough experiments on the effect of tim-
ing of the fertilizer application to draw conclusions.
Applications in periods when the crop actually takes
up nutrients will reduce N losses by denitrification and
leaching, thereby also reducing N,O losses (Mosier,
1993).

Soil type and properties In experiments 4 and 7 dif-
ferent soils were included to measure the effect of dif-
ferent N fertilizers on N;O emission Unfortunately,
the authors did not explain the differences. A possible
explanation may be the soil textures, as indicated by
experiments 7 and 8. The heavy textured soils showed
higher N,O emission has than the lighter textured ones,
possibly because heavy textured soils show stronger
anaerobicity, which may extend over longer periods
than light textured soils. In contrast, the light textured
soils in experiment 4 showed higher emissions than
heavier textured soils, possibly due to the dominating
role of the weather conditions on the texture effect.
Drained organic soils with no fertilizer additions
showed much higher N,O emissions than mineral soils,
up to 100 kg N2O-N ha~! yr~! (experiments 17 and
43). Mineralization of organic N in organic soils may
be as high as 1400 kg N ha~! yr~! (Terry et al., 1981;
Appendix). Using these numbers, the observed N;O
emission from the organic soils constitutes a fraction
of < 1 to > 10% of the N mineralized (Appendix).
Another soil property that may affect NoO emission
is the soil pH, which may affect nitrification, denitrifi-
cation and the ratio of N2/N,O. Generally, it is thought
that N, O reduction is inhibited at low pH (various ref-
erences quoted in Bouwman al., 1993). However the
same soils modified to different pH gave no measur-
able differences in N,O emission (experiment 20). This
may be due to adaptation to soil pH of denitrifiers since
1962 when the soils were limed (Parkin et al., 1985).
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Figure 1. Relation between N fertilizer application and N,O emission from mineral soils for experiments listed in the Appendix independent
of the period covered by the measurements. Data are presented for (a) anhydrous ammonia (NH3); (b) ammonium (NH4)-based fertilizers;
(c)ammonium nitrate (NHsNO3); (d) nitrate (NO3)-based fertilizers; (e) organic fertilizers, and combinations of organic and synthetic fertilizers,
and (f) urea.
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Table 1. Average and standard deviation of the fertilizer-induced N,O emission ? for
different types of N fertilizer reported by Eichner (1990) compared with results from this

study
Type Eichner (1990)® This study
Average SD rf Average SD r°
N (%)
Anhydrous ammonia 23 20 12 1.6 16 23
Ammonium nitrate 03 0.3 8 0.3 03 10
Salts of ammonium 0.1 01 17 0.1 01 20
urea 0.1 0.0 7 0.3 06 14
Saltes of nitrate 02 05 15 0.2 04 16
Organic/combinations of ndd nd nd 1.5 0.5 5

organic and synthetic fertilizers

# The fertilizer-induced emission is calculated as emission from the fertilized plot minus
that from the control plot, presented as percentage of N fertilizer application.
b Recalculated from the data used by Eichner (1990), including N applications > 250 kg
N ha~1!, The errors recorded in Eichner’s tables in the measurement data from Seiler &
Conrad (1981), Conrad et al. (1983) and Christensen (1983) were corrected.

°n = number of experiments.
dnd = no data.

Soil drainage. Experiment 11 concentrated on
drainage of a poorly drained soil with stagnant water.
Draining the soil caused a decrease in the N,O emis-
sion. The soils of all the experiments were classified
according to soil drainage class based on data given in
the reports or on the soil taxonomic class. For exam-
ple, Paleudalfs are considered well drained, while the
name Calciaquolls suggests hydromorphic properties
and poor drainage. However, there was no clear rela-
tion found between soil drainage and N,O emission
for the experiments listed.

Determining the direct contribution of fertilizer to
N,O emissions

The method presented by Eichner (1990) attempts to
estimate fertilizer-induced emission, i.e. the emission
from a fertilized plot minus that from a control plot,
determined during the measurement period. Eichner
(1990) calculated the fertilizer-induced NoO emission
as a percentage of N fertilizer applied for a number
of fertilizer types (Table 1). There are a number of
uncertainties in this methiod:

— The data sets used by Eichner (1990) and in this
study represent only a small number of climac-
tic, soil and management conditions. For example,
Eichner based the median and range of N,O emis-
sion induced by anhydrous NH; on only a few

experiments, mostly carried out in Iowa (exper-
iments 3-7). The highest fertilizer-induced N;O
emission (6.8%, experiment 6) was observed in
fields where soybean residues were left on the sur-
face to decompose. This may not be representative
of worldwide practices in fields where anhydrous
ammonia is applied.

Addition of observations to the data set of Eichner
(1990) can result in changes in the calculated aver-
age N,O losses caused by fertilization. This study
included 14 measurements for anhydrous ammo-
nia that were not reviewed by Eichner (1990); the
result is a 30% lower fertilizer-induced emission
(Table 1). This has important consequences for the
estimated emission from the application of anhy-
drous ammonia, which contributes about 45% to
the global N,O emission from fertilizers based on
Eichner’s method. The greatest difference is found
for urea, where the N;O emission resulting from
this study exceeds the estimate of Eichner (1990)
by a factor of 3, brought about by the addition of
only 7 measurements.

Fertilizer-induced N>O emission does not yield an
estimate of the fotal annual emission. Most mea-
surements listed in the Appendix cover the crop
season or shorter periods. Most of the N>O is gener-
ally emitted within one month after fertilizer appli-
cation, after which emissions decline to a "back-
ground" level. Although the background emission



may be low its contribution to the annual flux may
not be negligible. Moreover, it is very likely that
this background emission level is influenced by the
fertilization and soil management during previous
years. Hence, to estimate the full effect of fertiliz-
ers, annual emission estimates should account for
this background level.

A simple method is proposed here to calculate the
total annual N, O emission from fertilized fields, inde-
pendent of crop, management, soil conditions and fer-
tilizer type. As noted above, the length of the measure-
ment period seems to be important in determining the
total N;O emission. Figure 1 shows the relationship
between N-fertilizer application rate and N,O emis-
sion for all experiments on mineral soils. Clearly, there
is no correlation between N application rate and NoO
emission if the duration of measurements is not con-
sidered. For experiments with a full year of N,O flux
measurements, the correlation is much better. Data pre-
sented in Figure 2 for cropped fields and ungrazed grass
plots include a variety of different fertilizers (includ-
ing synthetic, organic, and combinations of organic and
synthetic N fertilizers), weather conditions and soils.
The results from experiment 2 were excluded because
of reported abnormally low precipitation. The results
from leguminous crops (experiments 17 and 41) were
also excluded because the input from N fixation was
not reported.

Least squares fitting of the data in Figure 2 to a
linear function result in equation (1) with an r? of 0.8:

E =1400125xF (1)

here E = emission (kg NoO-N ) and F = fertilizer appli-
cation rate (kg N ha~! yr™!). This relationship was
based on only 20 experiments, with measurements
covering a full year; its global applicability is high-
ly uncertain. The background emission of 1 kg N,O-N
ha=! yr~! is based on only five estimates for unfertil-
ized plots, with a range of emissions from -0.6 to + 3.2
kg N2O-N ha~! yr~! (experiments 30 and 19, respec-
tively). It is, however, consistent with the average of
the 33 measurements covering more than 100 days in
unfertilized control plots of 1.2 £ 1.1 kg N ha~! yr~1,

The fertilizer-induced N,O emission of 1.25% is
close to the calculated 1.1% (£ 1.4%) fertilizer-
induced N;O emission based on 43 experiments with a
duration of measurements of > 100 days where a con-
trol plot was included. The 1.25% fertilizer-induced
emission is also consistent with Mosier’s (1993) esti-
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mate of 1% and with the 0.5-2% N;O emission from
fertilizers estimated by Bolle et al. (1986).

Discussion and conclusions

Although the factors that control N,O production are
known, it is impossible to predict their interaction
under field conditions on the basis of the available
information. These factors greatly affect the N,O emis-
sion generated by fertilizers (Appendix). The processes
of nitrification and denitrification, and the controls of
the reduction of N,O to N3, have specific optimum
conditions. Redox, moisture and C sources change
during the year and from one year to another, and the
importance of the different NO producing process-
es also changes as a consequence. The variability in
the data is caused by a variety of factors related to
weather and management and their interaction, such
as local rainfall and temperature, timing and frequen-
cy of irrigation, history, mode and timing of fertilizer
application, presence or absence of crops, type of crop
and soil management.

Byrnes et al. (1990) concluded that N>O emissions
may be more closely related to soil properties than to
the N source. However, the comparison in Table 1
suggests that there may be differences in N,O emis-
sion caused by fertilizer type. With the variability in
estimates and the small number of experiments, the
addition of a few experiments drastically changed the
calculated emission factors, as was shown for anhy-
drous ammonia and urea. Therefore, the data set is too
limited to calculate the N, O emission specific for each
fertilizer type and sufficient new data is not likely to be
generated in the coming years. However the available
data are adequate to estimate the order of magnitude
of emissions.

A simple approach was developed on the basis of
a background emission of 1 kg NoO-N ha~! yr~! plus
a fertilizer-induced N>O emission of 1.25% of the N
application. This method has been shown to be inde-
pendent of fertilizer types, and may not be adequate
to estimate emissions for local conditions or specif-
ic crops. The absolute range of uncertainty for the
fertilizer-induced N, O emission is 0.25 - 2.25% based
on the data set but excluding the extremes (AR Mosier,
1994, personal communication).

The method may be adequate for global analyses.
Assuming that the global N fertilizer use of 80 Tg
N yr~! in 1990 (FAO, 1991) is applied exclusively to
arable fields and that no organic fertilizers are used, the
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Figure 2. Relationship between N fertilizer application and N, O emission for experiments on plots with mineral soils for N application rates
< 500kg N ha~! yr—! with a measurement period of one year. Results for experiment 2 and measurements for leguminous crops (Appendix)
were excluded. The squares indicate both measurements in cropped fields and ungrazed grasslands.

background emission calculated for the global arable
land area of 1440x 10%hais 1.4 Tg NyO-N yr—! and the
fertilizer-induced emission is an additional 1 Tg N,O-
N yr~1). Hence, arable lands are a major source in the
global N,O budget of 13-16 Tg yr~!. The fertilizer-
induced N, O emission is about equal to the global N,O
emission from animal excreta (Bouwman et al., 1995).
The contribution of global synthetic fertilizer use to
the atmospheric increase of N,O of 4 Tg yr~! is about
25%.

This estimate does not include N,O emissions from
leguminous crops. These crops usually receive little or
no N fertilizer. The N,O emissions from fields with
leguminous crops may be considerable. These high
N,O emissions may be attributed to inputs from sym-
biotic N fixation. The global area of leguminous crops
is 145 Mha (FAO, 1991), about 10% of the total arable
land. This area does not include legumes grown as
green manures not reported by the FAO (1991), and
legumes in grasslands and N-fixing grass species. The
N inputs from legumes to agricultural systems may
be of the same order of magnitude as global synthetic
N fertilizer use (Duxbury et al., 1993), indicating the
potential importance for the N,O cycle.

Finally, the above method does not account for the
high reported fluxes of N,O from cultivated drained
organic soils and other wetland areas. Although the
global area of arable land with organic soil may not be
important, this may be a significant local source.
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