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Abstract

Free convection-dominated melting of a phase change material in a rectangular cavity with an
isothermally heated vertical wall is simulated using the streamline upwind/Petrov±Galerkin ®nite element
technique in combination with a ®xed-grid primitive variable method. The enthalpy±porosity model is
employed to account for the physics of the evolution of the ¯ow at the solid/liquid interface. A penalty
formulation is used to treat the incompressibility constraint in the momentum equations. Inverting of
the container at an appropriate stage during the melting process is proposed as a simple but e�ective
technique for enhancement of free convection-controlled heat transfer in the phase change material. The
technique results in more than 50% increase of the energy charge rate during the melting process for
some speci®c cases. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Free convection-dominated melting along a heated vertical wall in a rectangular enclosure
has attracted considerable research attention due to its fundamental importance in various
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Nomenclature

A porosity function for the momentum equation
A � dimensionless form of A
Axy area of a computational domain
b a small constant
c speci®c heat
C constant
fH enthalpy±temperature function
Fo Fourier number
gi gravitational force vector
h enthalpy
H dimensionless enthalpy
k heat conductivity
Lx length of rectangular enclosure in x direction
Ly length of rectangular enclosure in y direction
ni surface unit normal vector
p ¯uid pressure
P dimensionless ¯uid pressure
Pr Prandtl number
q heat ¯ux
qa prescribed heat ¯ux
qc convective heat ¯ux
qr radiative heat ¯ux
Q instantaneous energy charged
QT total energy charged
QM maximum energy charged
Ra Rayleigh number
s boundary surface coordinate
Ste Stefan number
t time
T temperature
T0 reference temperature
Tm melting point of PCM
Tw isothermal wall temperature
ux velocity in x direction
uy velocity in y direction
ui velocity component
U dimensionless velocity of x direction
V dimensionless velocity of y direction
x, y coordinate
X, Y dimensionless coordinate

Z.-X. Gong et al. / Applied Thermal Engineering 19 (1999) 1237±12511238



technological applications, e.g. thermal energy storage systems. Several pioneering experimental
studies in this area [1±8] have already shown the e�ects of natural convection on the melting
heat transfer along a vertical wall in rectangular cavities. A number of numerical/analytical
studies [9±15] have also been developed over the past decade based on the well-known
Boussinesq's assumption.
Keller and Bergman [16] modelled numerically the steady-state melting and freezing in an

open rectangular cavity including buoyancy and surface tension forces in the liquid phase.
They found that surface tension-induced ¯ow could a�ect the solid geometry and, ultimately,
the melting and freezing rates. Bergman and Webb [17] extended Keller and Bergman's model
[16] to transient melting and freezing of a pure metal. Liu et al. [18] studied both numerically
and experimentally melting and solidi®cation of a pure metal in an open cavity with liquid
phase buoyancy and surface tension forces. Their numerical results were successfully veri®ed by
comparing them with the experimental ones.
Ho and Chu [19,20] simulated convection-controlled meting of n-octadecane contained in a

vertical square enclosure subjected to a time-dependent sinusoidal oscillatory wall temperature.
Later, Ho and Chu [21] simulated the coupled melting and free convection heat transfer in two
vertical rectangular composite cells, one of which is ®lled with a PCM while the other is an air
layer.
Webb and Viskanta [22] experimentally studied melting in inclined rectangular enclosures.

Greek symbols
a di�usivity
b expansion coe�cient
y dimensionless temperature
yB dimensionless boundary temperature
Dh latent heat
l porosity of a mush zone
G boundary
m viscosity
r density
o the angle horizontal direction to x axis
sij stress tensor

Subscripts
l liquid
s solid
x component of x direction
y component of y direction

Superscript
overbar, boundary value of the variable

0 initial value
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They reported that the e�ect of inclination from the vertical causes three-dimensional free
convection and signi®cantly enhances the overall melting rate. Melting of a phase change
material in an inclined rectangular enclosure was also studied both experimentally and
numerically by Inaba et al. [23,24].
In this paper, free convection-dominated melting of a phase change material in a rectangular

cavity with an isothermally heated vertical wall is studied with the aid of the streamline
upwind/Petrov±Galerkin ®nite element technique in combination with a ®xed-grid primitive
variable method to solve the governing two-dimensional conservation equations. Inverting the
phase change material (PCM) container at an appropriate stage during the melting process is
proposed and simulated as a simple but e�ective technique for enhancement of free convection-
controlled heat transfer in the phase change material. Simulations were carried out to
investigate the e�ects of di�erent parameters on the enhancement of the heat transfer rate by
inverting the PCM container. Sample results are presented and discussed.

2. Mathematical formulation

For the mathematical description of a melting or freezing process, the following assumptions
are made: (1) heat transfer in the PCM is conduction/convection controlled, and the melt is
Newtonian and incompressible; (2) the ¯ow in the melt is laminar and viscous dissipation is
negligible; (3) the densities of the solid and liquid are equal; (4) the Boussinesq's assumption is
valid for free convection, i.e. density variations are considered only insofar as they contribute
to buoyancy, but are otherwise neglected; (5) the solid PCM is ®xed to the container wall at all
times. The last assumption is made only for the purpose of the present numerical study.
Based on the above assumptions and the enthalpy±porosity model [25,26], the governing

equations in tensor form are as follows:

ui,i � 0 �1�

r

�
@ui
@t
� ujui,j

�
� ÿp,i � �m�ui,j � uj,i ��,j ÿ rgib�Tÿ T0� � Aui �2�

r

�
@h

@t
� ujT,j

�
� �kT,j �,j �3�

In Eq. (2)

A � ÿC�1ÿ l�2=�l3 � b� �4�
in which b is a small constant introduced to avoid division by zero and C is a constant
accounting for the morphology of the mushy region. In general, b is assigned a value of 0.001.
For an isothermal phase change, C is assigned a value of 1.6 � 106.
The initial and boundary conditions are:
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initial conditions:

T�x,0� � T 0�x�

ui�x,0� � u0i �x� �5�
boundary conditions:

ui � �ui�s,t� on Gu

ti � sijnj�s� � �t i�s,t� on Gt

T � �T�s,t� on GT

q � ÿ�kT,j �nj�s� � qa�s,t� � qc�s� � qr�s� on Gq �6�

3. Charge of energy

An instantaneous temperature distribution in the PCM is obtained from the aforementioned
mathematical equations. The magnitude of the cumulative energy charge per unit length, Q, is
calculated as a function of time. This calculation is made by computing the enthalpy of the
PCM at each time increment using the solid PCM at its fusion temperature as the reference
state and then subtracting the enthalpy of the PCM at the beginning of the melting process.
The value of Q is zero at the beginning and increases over the melting process toward QT, the
cumulative energy charge for the whole melting process.
The maximum amount of energy which can be charged during the melting process is:

QM � rAxy� fH�Tw� ÿ fH�Tm�� �7�

4. Dimensionless form of the governing equations in two dimensions

For convection-dominated two-dimensional melting or freezing problems subjected to the
Dirichlet's boundary conditions, the dimensionless governing equations are:

solid region:

@H

@Fo
� ks

kl

Ste

�
@2y
@X 2
� @2y
@Y 2

�
�8�

liquid region:
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in which

H � cs

cl

Stey y<0

H � Stey� 1 y > 0 �13�
and

U � uxLy

al

V � uyLy

al

y � Tÿ Tm

Tw ÿ Tm

H � hÿ csTm

Dh
P � pL2

y

ra2l

X � x

Ly
Y � y

Ly
A� � AL2

y

ral

Fo � tal

L2
y

Pr � clm
kl

Ra � r2clgbL3
y�Tw ÿ Tm�
mkl

Ste � cl�Tw ÿ Tm�
Dh

�14�

It is clear that melting and freezing heat transfer including free convection is determined by the
following ®ve dimensionless parameters; Rayleigh number (Ra ), Prandtl number (Pr ), Stefan
number (Ste ), the ratio of solid/liquid speci®c heat (cs/cl), as well as the ratio of solid/liquid
thermal conductivity (ks/kl).
For melting of a solid PCM in a rectangular cavity with an isothermally heated wall, the

dimensionless initial and boundary conditions are as follows:

initial conditions

y�X,Y,0� � y0

U�X,Y,0� � V�X,Y,0� � 0 �15�
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boundary conditions

U � V � 0 on all the walls of the container

y � yB on an isothermal wall �16�

5. Validation of the model

The model is veri®ed by comparison of the numerical prediction with the experimental
results of Gau and Viskanta [7] and the implicit ®nite di�erence results of Lacroix [12] for the
melting of a pure metal (gallium) inside a two-dimensional rectangular cavity (height
Ly=0.0445 m; width Lx=0.089 m). The top and bottom boundaries are adiabatic. At time
t= 0, the temperature of the left vertical wall is suddenly raised to a prescribed temperature
above the melting point. The values of the governing dimensionless numbers and aspect ratio
are listed in Table 1 for the test problem.
Fig. 1 compares the predicted phase front with both the experimental results of Gau and

Viskanta [7] and the ®nite di�erence prediction of Lacroix [12]. It is seen from this ®gure that
the present model is in reasonably good agreement with the results of the references.
The discrepancy between the predicted phase front of the present model and the

experimental results is due to two possible reasons. First, in the experiment, the solid showed
an initial sub-cooling of approximately 28C. This degree of sub-cooling is signi®cant in the
light of the fact that the heated wall was only 88C higher than the melting temperature of
gallium. The second reason is that it is di�cult to impulsively heat the vertical wall to a desired
temperature in reality. The discrepancy of predicted phase front between the present model and
Lacroix's model is due to the di�erence of the numerical methods used. Lacroix used a front
tracking method while this model uses a ®xed-grid enthalpy±porosity approach to model the
phase change e�ects.

6. Results and discussion

Using the above-described numerical model, simulation runs were carried out for melting of
a pure PCM in a rectangular cavity with an isothermally heated vertical wall. The top and

Table 1
Parameters used in the accuracy test runs

R Aspect ratio, Ly/Lx 0.5
Ra Rayleigh number 2.2 � 105

Pr Prandtl number 0.021

Ste Stefan number 0.042
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bottom walls as well as the other vertical wall are assumed to be adiabatic. The parameters for
the selected problem are listed in Table 2. The dimensional values were chosen to be within a
realistic range for thermal energy storage of a sample PCM used (n-octodecane, 99% pure).
Grid-dependence tests indicated that the maximum di�erence for the dimensionless

cumulative energy charge, QT/QM, is within 3.6% between using 20 � 20 elements with a
dimensionless time step of 4.32 � 10ÿ5 and 30 � 30 elements with the same time step, while the
di�erence is only 1.5% between using 30 � 30 elements with a dimensionless time step of
4.32 � 10ÿ5 and 40 � 40 elements with a time step of 2.16 � 10ÿ5. Therefore, 30 � 30 elements
with a dimensionless time step of 4.32 � 10ÿ5 were used for this and all the subsequent
computations considering both accuracy and computing time.
Fig. 2 shows the predicted streamlines (Fig. 2(a)) and isotherms (Fig. 2(b)) at various Fo for

the simulated problem. As expected, the ¯ow pattern has just one recirculation in the melt
zone. In Fig. 2(b4) and 2(b5), the isotherms are almost parallel. Such thermal strati®cation
greatly decreases free convection and, therefore, the heat transfer rate.
Fig. 3 presents the variation of the dimensionless cumulative energy charge as a function of

dimensionless time. This ®gure shows that the dimensionless cumulative energy charge
increases linearly during the ®rst half of the melting process. Afterwards, the charge rate begins
to decrease. This is mainly caused by the thermal strati®cation mentioned earlier. At the
second stage of the melting process only a small part of the solid remains at the bottom of the

Fig. 1. Comparison of the predicted phase front with experimental data.

Table 2
Parameters used in the simulation runs

R Aspect ratio, Ly/Lx 1.0
Ra Rayleigh number 2.844 � 106

Pr Prandtl number 46.1
Ste Stefan number 0.138
cs/cl Ratio of solid/liquid speci®c heat 0.964
ks/kl Ratio of solid/liquid heat conductivity 2.419

yi Initial dimensionless temperature ÿ0.0256
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Fig. 2. Streamlines and isotherms for melting with an isothermally heated vertical wall.
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container. Thermal strati®cation occurs and signi®cantly decreases the temperature gradient at
the phase change interface and, therefore, the phase change heat transfer rate.
To enhance the heat transfer rate during the second half of the melting process, it is

proposed to invert the PCM container once the phase change interface reaches the right
vertical wall of the container. A schematic sketch representing this idea is shown in Fig. 4.
Simulations were carried out to investigate by how much the heat transfer rate can be

enhanced by inverting the PCM container and what parameters in¯uence the enhancement of
heat transfer rate, if any. Due to extensive computing time requirements, no attempt is made
to perform a complete parametric study of this problem. Only the e�ects of Rayleigh number
(Ra ) and Stefan number (Ste ) on the enhancement of heat transfer during melting of a PCM
are investigated. It should be noted that no di�erence in enhancement has been observed for
Prandtl numbers larger than 10. For Pr>10, the hydrodynamic boundary layer is already
much thicker than the thermal boundary layer and thus further increase in Pr makes no
di�erence in the convective hydrodynamic and thermal ®elds.
It is reasonable to assume that the liquid phase is well mixed and the melt is stationary upon

Fig. 3. Dimensionless energy charge curve.

Fig. 4. Schematic diagram of the physical system studied.
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Fig. 5. Streamlines and isotherms for inverted PCM container.
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inverting the PCM container. Numerical experiments indicated that whether or not the liquid
phase is assumed to be well mixed and stationary has little e�ect on the resulting heat transfer.
This is due to the fact that the formation of convective ¯ows in the melt from stationary state
requires a very short time compared with the total heat transfer process simulated. Therefore,
in subsequent simulations, the temperature and velocity ®elds were not modi®ed after the
container is inverted.

6.1. E�ects of Rayleigh number on the enhancement of phase change heat transfer rate

Three cases were computed to investigate the e�ects of Rayleigh number on enhancement of
the energy charge rate by inverting the PCM container. All the parameters used in this
investigation are held constant and identical to those listed in Table 2 except for the Rayleigh
number. Table 3 shows the computed cases and comparison of the energy charge rates at
di�erent Rayleigh numbers. In this table, the `®rst period' designates the period before
inverting the container and the `second period' refers to conditions after the container is
inverted.
From Table 3 it is seen that the energy charge rate can be enhanced 56.5% in the `second

period' simply by inverting the PCM container for the case of Rayleigh number equal to
2.844 � 106. It is seen also that enhancement of the heat transfer rate increases with an
increase in Rayleigh number. This is due to the fact that the larger the Rayleigh number the
larger the role free convection plays in melting phase change heat transfer. Since heat transfer
is mainly conduction-dominated during the second stage of the melting process in the case of
non-inverted container, increasing Rayleigh number hardly improves the melting heat transfer
rate. However, in the case of inverted PCM container, the `second period' of the melting
process is mainly controlled by free convection. Therefore, with an increase in Rayleigh
number, the melting heat transfer rate increases.
Displayed in Fig. 5 are the predicted streamlines and isotherms at di�erent dimensionless

times (Fourier numbers) for the `second period' in the case of inverted PCM container for
Rayleigh number equal to 2.844 � 106. It is seen from Fig. 5(b1)±(b3) that no obvious thermal
strati®cation occurs at the second stage of the melting process. Due to this fact, the role which
free convection plays does not diminish during the second stage of the melting process. This
explains why the energy charge rate is enhanced by inverting the PCM container.

Table 3
E�ects of Rayleigh number on energy charge rate

Ra First period Second period, (DQ/QM)/DFo

DQ/QM Fo No inverting Inverting Enhancement

7.11 � 105 0.582 0.302 0.687 1.047 52.4%
2.844 � 106 0.532 0.467 0.961 1.504 56.5%

5.688 � 106 0.515 0.251 1.099 1.766 60.1%
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Fig. 6(a) compares the dimensionless cumulative energy charge curves between the two cases
of inverted and non-inverted cases. Fig. 6(b) is an ampli®cation of Fig. 6(a) for the `second
period' of the melting process (after Fo= 0.302). In Fig. 6(a), the energy charge curves for
inverted and non-inverted cases are identical before Fo = 0.302. This is because the inverting
action is taken after Fo= 0.302. From Fig. 6(a), no obvious slow-down in the energy charge
rate is seen for the case of inverted PCM container during the second stage of the melting
process.
Fig. 7 presents comparison of the dimensionless cumulative energy charge curves at di�erent

Rayleigh numbers corresponding to the computed cases in Table 3 for both inverted and non-
inverted cases. It is seen from this ®gure that, for both cases, the larger the Rayleigh number
the higher the energy charge rate.

Fig. 6. (a) Comparison of dimensionless cumulative energy charge. (b) An ampli®cation of Fig. 6(a).

Fig. 7. E�ects of Rayleigh number on energy charge rates: comparison of QT/QM for inverted and non-inverted
containers.
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6.2. E�ects of Stefan number on the enhancement of heat transfer rate

Three cases were computed to investigate the e�ects of the Stefan number on the
enhancement of the energy charge rate by inverting the PCM container. All the parameters
used in this investigation are held constant and identical to those listed in Table 2 except for
variation of the Stefan number. Table 4 shows the computed cases and comparison of the
energy charge rates among di�erent Stefan numbers. From this table, it is clear that the larger
the Stefan number the smaller the enhancement of the energy charge rate. This is mainly due
to the fact that the larger the Stefan number the smaller the latent heat e�ects. In the limiting
case of Ste41, i.e. the latent heat is equal to zero and the PCM can be taken as a liquid.
Inverting the container of a liquid has little e�ect on convection heat transfer rate when heated
at the side wall of the container.

7. Concluding remarks

Melting of a phase change material in a rectangular enclosure with an isothermally heated
vertical wall was simulated. To enhance the heat transfer rate, inverting the PCM container at
an appropriate stage in the melting process is proposed as a novel yet simple idea which was
investigated numerically. Numerical experiments showed that the heat transfer rate can be
greatly improved by inverting the PCM container. The magnitude of the enhancement of the
heat transfer rate varies with Rayleigh number and Stefan number. This idea can be
implemented in new PCM thermal energy storage devices. If a full inversion is not practicable
in some applications, it is also possible to tilt the container by a few degrees to achieve some
enhancement.
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