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ABSTRACT 

Lovell, C.J. and Youngs, E.G., 1984. A comparison of steady-state land-drainage equa- 
tions. Agric. Water Manage., 9: 1--21. 

The physical assumptions and mathematical approximations leading to ten steady-state 
drainage equations for installations of parallel cylindrical drains laid above a horizontal 
impermeable barrier, are critically examined. Water-table heights were calculated from the 
equations for a range of depths of impermeable barrier and of rainfall rates, using the 
drain's radius obtained by the hodograph analysis for infinite depth of soil. A considera- 
t ion of the available solutions show that the water-table height is known with sufficient 
accuracy for small depths of impermeable barrier and for large depths, but  at inter- 
mediate depths the solutions lead to an unsatisfactorily large uncertainty in its position. 
Of the drainage equations Houghoudt's equivalent depth equation, when used with the 
opt imum drain radius given by the hodograph analysis for infinite soil depth, is the only 
one that gives results contained mainly within the known bounds that result from a 
consideration of the combination of equations. 

INTRODUCTION 

Solutions to Laplace~s equation for the hydraulic potential in problems of 
groundwater flow in drained lands provide a rational basis for the design of 
drainage installations by giving the water-table heights for known inputs of 
water from surface precipitation and artesian flow. In particular, these solu- 
tions yield "drainage equations" that relate the maximum water-table height 
to a steady uniform rainfall on the soil surface. 

The first drainage equation was derived by Colding (1872). By assuming 
horizontal flow in the groundwater region that is fed by steady uniform 
rainfall, he obtained an elliptic equation for the shape of  the water table 
between parallel drain lines, with the maximum water-table height propor- 
tional to the square root of the rainfall rate. While the assumption of 
horizontal flow must make this relationship approximate, only during the 
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last few decades have drainage equations been derived that do not  make this 
assumption and allow for a vertical component  of flow. However, even today 
certain physical and mathematical assumptions have generally to be made in 
the derivation of  drainage equations, leading to different mathematical forms 
for the same drainage situation. The drainage engineer is thus faced with a 
number  of different design equations that  are claimed to give correct drain 
spacings, wi thout  any guide to their applicability. Kirkham (1966) reviewed 
steady-state drainage theories for parallel drain lines and commented on the 
need for the various equations to be compared by computing numerical 
values for the same drainage geometry. While Wesseling (1964) and Hammad 
(1962) have made comparisons of  some equations, there has been no 
comprehensive examination and comparison of the collection of equations 
that  Kirkham reviewed. In this paper we at tempt to give this comparison of 
drainage equations that Kirkham (1966) suggested was required. A critical 
examination of  the physical and mathematical assumptions, used in the 
derivation of  the many different drainage equations that have been 
proposed, is made, and the equations compared numerically. 

THE PHYSICAL PROBLEM 

The physical situation that is considered here is the two-dimensional one 
most  commonly  analysed in land-drainage theory, shown in Fig. 1. Uniform 
steady rainfall is incident on the surface of a uniform soil and percolates 
through the soil to an installation of parallel cylindrical drains laid above a 
horizontal impermeable boundary.  A water table divides the saturated 
groundwater zone, where the soil-water pressure is positive and the potential 
¢ of the soil water is described by Laplace's equation: 

~2~ = 0 (1) 

from the unsaturated soil-water zone above, where the soil-water pressure 
is negative and the flow is described in the steady state by 

div (Ku grad ¢ ) = 0 (2) 
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Fig. 1. Two-dimensional land drainage with an installation of parallel cylindrical drains. 



where Ku is the hydraulic conductivity,  dependent  on the water content.  
The flow region consists of  both zones, with boundary conditions given by 
the flux through the soil surface and by the imposed potential at the surface 
of  the drain. Numerical methods can be used to solve for the potential ~, 
and hence the magnitude and direction of  the flux, at any point in the 
complete flow region, given the soil-water characteristics. However, for 
analytical solutions concerning the groundwater zone, it is convenient to 
consider each zone separately. Thus, to obtain the extent  of the saturated 
groundwater zone, we have to consider only the boundary conditions 
imposed on this zone which is bounded on top by the water table. 

All the analytical solutions to the drainage problems have been obtained 
by making two simplifying assumptions, that have been validated by experi- 
ment, concerning the boundary conditions. The first assumption is that  
water percolates vertically from the soil surface through the unsaturated 
soil-water zone, so that  the uniform flux through the soil surface is also that 
through the water table. This was shown to be very nearly the case in electric 
analogue experiments done by Childs (1945) and in a numerical study by 
Gureghian and Youngs (1976). The boundary condition at the water table 
is then a uniform flux together with a potential equal to the water-table 
height. The other assumption concerns the potential condition at the surface 
of  the drain channel. In all analyses the drain pipe is supposed to be 
equivalent to a line sink at infinitely negative potential of strength Q/4~K, 
where Q is the drain flow per unit length of  drain and K the hydraulic 
conductivity of  the surrounding soil, with the surface of  the drain coinciding 
with an equipotential surface around this sink. For small radii, the deviation 
of  the equipotentials from a cylindrical shape is small, so that  the replace- 
ment  of the drain by a line sink in the analyses gives negligible error so long 
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Fig. 2. Groundwater region of the drainage problem. 



as the wall of  the cylindrical drain is continuously permeable and the drain 
is running full. However, the common agricultural drain is not  a 
continuously permeable cylinder but  is formed by clay-tile pipes but ted  
together or from plastic tubing with small perforations, so that the water 
flow converges to the openings with the result that the drain wall does not  
approximate to an equipotential cylinder. Nonetheless, experiments have 
shown that these non-ideal gappy drains may be considered to act as 
continuously permeable cylindrical drains with an equivalent drain radius 
usually much smaller than the actual drain radius (Childs and Youngs, 1958; 
Youngs, 1974, 1983). 

The flow region is shown in Fig. 2 for the drainage problem to which 
solutions of  Equations (1) are sought with boundary conditions: 

= H  

a¢ 
K-3-~ = q 

¢ = r  

a_9_  = o 
~x 

~¢ - 0 
Oz 

I at the water table 

on the drain wall 

on vertical planes of  symmetry 

at the impermeable barrier 

(3) 

where the potential ¢, expressed as a head of  water, is measured from a 
datum level through the drain axis, H is the water-table height above the 
datum level, q the uniform rainfall rate assumed to be the vertical flux 
through the water table, and r the equivalent radius of  the drain channel. 
In writing the potential condition ¢ = r at the drain wall, the drain is 
assumed to be running just  full with the soil-water pressure zero at the top 
of  the drain. Solutions are of  the form: 

q / g  = f(H/D, d/D, r/D) (4) 

where d is the depth of the impermeable barrier below the datum level 
and 2D is the spacing of  the drains. 

INFINITE DEPTH OF SOIL (did -~ ~) 

Hodograph solution 

Where there is infinite depth of  soil below the drains, solutions to the 
drainage problems shown in Fig. 2 are possible by  means of conformal 
transformations using the hodograph method  (Van Deemter, 1950; 
Engelund, 1951; Childs, 1959, 1969). The analysis shows that the height and 
shape of  the water table is dependent  on the drain radius and that  there is an 



opt imum drain radius for which the water is at its lowest  level and is drawn 
down to the top of  the drain channel. For drains smaller or larger than this 
op t imum size (assuming the drains to be running full wi thout  back pressure) 
the water table is raised overall and is flatter with less difference between 
maximum and minimum heights, midway and immediately above the drains 
respectively. 

The water-table heifihts H m and Ha, midway and immediately above the 
drain lines, are given 4oy: 

D ~ X "), 2 

and 

(5) 

H__Aa H m 2 
- ~ in(1 + X )  (6) 

D D ~ 

where 

l +'y = KIq  (7) 

and 

(K /q )  tan 0 + [(KIq) 2 tan20 + 1] 1/2 
1 + 7t = (8) 

tan0 + (1 + tan20) '/2 

In Equation (8), 6 is the maximum slope that the water table makes with the 
horizontal. The hydrostatic pressure head p at a height z immediately above 
the drain axis is given by: 

D p - ~ l [ q l n ( ~ - ~ )  +ln(X+2-5)]X+6 (9) 

where 5 is given by 

(10) 
_ (., D" 'ri'Uln\ X ' "~"-) (X ) + 21n - 72--8 

Since the drain is just running full, p = 0 at z = r, giving the value of  5 from 
Equation (9) to use in Equation (10) to find the drain radius r. Another 
equipotential for which p = 0 above the drain axis, passes through z = Ha, 
so that  another possible drain periphery coincides with this equipotential;  
that  is, the drain with radius r = Ha. For opt imum conditions, the water 
table is drawn down to the top  of  the drain and only one drain radius ro 
exists. Then 0 = ~/2 so that X = ~ and Equations (5) and (6) become: 

Hm 1 In 1 + + - In 



and 

ro Hm 2 
- - -  l n ( 1  + ~ )  ( 1 2 )  

D D zr7 

Equation (11) is an exact solution for the maximum water-table height 
in the drainage problem posed in Fig. 2 for an infinite depth of soil and for 
a drain radius given by Equation (12). The physical assumptions made are 
that  the flow is vertical through the unsaturated zone from the soil surface 
to the water table and that  the drain can be considered as a line sink. Since 
analogue, model and numerical studies show that  these give negligible errors, 
the hodograph solution, of  which Equation (11) is a particular case, has to 
be regarded as the most accurate drainage equation that  is available. 

Hooghoudt's solution 

Hooghoudt  (1940) (see also Childs, 1969, pp. 385--388) obtained an 
approximate solution to the drainage problem with infinite depth of soil. 
He assumed that  the water-table height above the drain was small so that 
the flow region could be regarded as being bounded on top by a horizontal 
plane passing through the drain. The uniform surface precipitation q was 
assumed therefore to cause a uniform flux to pass through the horizontal 
plane OA' in Fig. 2. By superimposing a fictitious upward uniform vertical 
flux q, OA' is made a streamline. The potential at A' is then obtained by 
summing the potentials due to all the sinks of the drainage installation. 
Hooghoudt  then assumed that  the potential at A' was a good approximation 
to the water-table height; that  is, he assumed an infinite vertical hydraulic 
conductivity component  above OA' so that  there is no potential difference 
between the position A on the water table and A'. Hooghoudt 's  resulting 
drainage equation for infinite soil depth is: 

- + In - 0.454 (13) 
D D 7rK 

This solution, in addition to the approximation concerning the reduction of 
the flow region, also assumes (as does the hodograph method) that  there is 
vertical flow in the unsaturated soil-water zone above the water table and 
that  the drain tubes can be considered as line sinks. 

Effect o f  drain radius 

Both the hodograph analysis and Hooghoudt 's  solution give drainage 
equations that  show that  the height of the water table is dependent on the 
drain radius. This is illustrated in Fig. 3 where Hm/D is shown plotted against 
riD for q/K = 0.01. Similar results are found for other values of q/K with a 
minimum value for Hm/D found for an opt imum drain radius ro for both 
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Fig. 3. Variation of the water-table height (expressed as the ratio Hm/D ) with the drain 
radius (expressed as the ratio r/D) for cylindrical drains installed in a uniform soil of 
infinite depth whe'~ q /K  = 0.01, as calculated from the hodograph analysis (full line) 
and from Hooghoudt's analysis (dashed line). 

solutions. However, the value of ro obtained with the hodograph analysis 
was found to be less than that  obtained with Hooghoudt's equation for all 
values of q/K; the difference is presumably the result of the approximations 
used in obtaining the latter. 

In the derivation of these drainage equations, one requirement is that  the 
drains run full without  back pressure, as illustrated in Fig. 4a, so that the 
water pressure is zero at the top of the drain. Physical conditions have to be 
such as to produce this, for instance by arranging the height of  the outfall. 
If this is not done, in normal practice large drains will not run full but will 
run with the upper part of the drain being a surface of seepage where the 
potential is equal to the height above the datum, as shown in Fig. 4c. When 
this is the case, the water-table height does not increase with increase of  
drain radius since the drain channels then behave in the same way as open 
ditches. Van Deemter (1950, p. 37) compared the hodograph solutions for a 
ditch drain with that  for a cylindrical drain channel of opt imum radius (Fig. 
4b), and found little difference for the water-table heights when q/K < 0.1. 
It may be concluded from this that  drains of  radius greater than the optimum, 
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Fig.  4. Physical behaviour at the  drain channel: (a) drain running full (sub-optimum 
conditions); (b) drain running full (optimum conditions); (c) drain running partially full. 



when not  forced to run full but  allowed to empty,  will maintain the water 
table at the same height as if the drain were of  opt imum size. This was 
shown to be the case in the experiments reported by Collis-George and 
Youngs (1958). 

So that a comparison can be made between the drainage equations 
obtained by the hodograph analysis and those derived by Hooghoudt  using 
potential  theory with a simplified reduced flow region, values of  H m / D  
were calculated for a range of  q / K  values using the opt imum ro/D value 
found in the hodograph analysis for the particular q / K  value. The relation- 
ships are shown in Fig. 5. The water-table heights found from the 
Hooghoudt  equation were larger than those found by the hodograph analysis 
which may be assumed to give accurate values. This is to be expected 
because of  the smaller flow region assumed in Hooghoudt 's  derivation; this 
has the effect  of  increasing the length of  the streamlines to the drain from 
the water table. Hence the resistance to flow is greater, requiring a greater 
head of  water, and hence a higher water table, for a given drain discharge or 
steady rainfall rate. 
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Fig. 5. Relationship between Hm/D and q/K for optimum drain-size conditions with 
drains installed in soil of infinite depth as calculated from the hodograph analysis (full 
line) and from Hooghoudt's analysis (dashed line). 

DRAIN ON IMPERMEABLE FLOOR (d/D = O) 

There is no accurate analytical solution for the drainage problem for a 
cylindrical drain laid directly on top of  an impermeable barrier. Engelund 
(1951) gives a solution for a trench drain that is level with an impermeable 
floor, while Youngs (1965) argued that for a ditch: 

x/-qx/-qx/-qx/-qx/-~K < H m / D < x/ ( q / g ) / (1 - q / K )  (14) 



The left hand side of Inequality (14) is the same as that  obtained using the 
Dupuit-Forchheimer analysis and obtained by Colding (1872), while the 
right hand side is Engelund's solution for his trench drain. In view of the 
equivalence of  an installation of ditch drains and of one with cylindrical 
drains of opt imum size, as shown by Van Deemter (1950), where there is 
infinite soil depth, it may be tentatively assumed that ditches and optimum- 
sized drains give the same water-table control when there is an impermeable 
barrier at some finite depth and even zero depth. Thus Inequality (14) is 
considered to be applicable for cylindrical drains of  opt imum size laid on 
top of  an impermeable barrier. 

IMPERMEABLE BARRIER AT SOME DEPTH BELOW DRAIN LEVEL (0 < d i D  < ~ ) 

The general problem shown in Fig. 2 with the drain lines at some height d 
above an impermeable barrier has no exact analytical solution. Many 
solutions, however, have been derived by making various simplifying assump- 
tions, both in the physical model and in the mathematical analysis. The 
drainage equations that  result all have the general form of  Equation (4) with 
the drain radius explicitly involved. A comprehensive comparison, involving 
many drain radii would be long, and, in view of the remarks made earlier 
concerning the nature of field drains, not  very pertinent. In the comparison 
here, the opt imum drain radius that was obtained for the given q/K value by 
means of the hodograph method for infinite depth of soft, was therefore 
used. While it cannot be expected that the opt imum drain radius is indepen- 
dent  of  soil depth, the use of one value for all values of diD for  a given q/K 
value is seen to be acceptable from an analysis due to List (1964). In his 
exact solution of  the drainage problem, the impermeable boundary below 
the drain was a slightly undulating surface. The opt imum drain radius when 
the water table was drawn down to the top of the drain was found to vary 
little with the position of the impermeable barrier. 

In a series of  experiments in a hydraulic model sand tank and with electric 
analogues, the effect  of  the depth of  an impermeable barrier on the relation- 
ship between water-table height and steady rainfall rate was investigated by 
Collis-George and Youngs (1958). The water-table height was found to 
decrease as the depth of the impermeable barrier below the drain channels 
increased from zero until diD ~ 0.3, after which no further change was 
observed. The effect was much greater for small values of q/K because of the 
proportionally greater increase in the extent  of  the flow region as diD 
increased from zero. Childs (1969) fitted the results of Collis-George and 
Youngs (1958) to the empirical equation: 

Hm H [ ( H o  _ 1 )  1 0 _ 5 . ~ / D + 1 ]  
D-= D H~ 

(15) 
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where H® and H0 are the maximum water-table heights when diD-~ o o  

and 0, respectively. Collis-George and Youngs' results are useful in assessing 
the applicability of the drainage equations derived for finite depth of soil. 

Hooghoudt's equivalent depth equation 

Hooghoudt (1940) argued that the flow of water was approximately 
horizontal in the region midway between drains and radial near the drains as 
the flow converged towards them. To separate the two regions, Hooghoudt 
chose the vertical plane along which the potential difference between the 
water table and the impermeable barrier is a minimum. He assumed this 
plane was very nearly an equipotential, located at a distance d/x~2 from the 
drain. Practically, Hooghoudt found it easier to adopt the horizontal flow 
hypothesis throughout, accounting for the radial flow to the drain by 
considering the horizontal flow in an equivalent layer of soil of depth de. 
Thus Hooghoudt proposed the drainage equation: 

Hm de [( del2 q]1/2 
- + + ( 1 6 )  

D D -D! 

where 

de _ / t  [ (2D'-~2d)2' + 1__ lnx/--~ro (17) 
D III4L 16dD ~r 

Although founded on a physical model, it is not possible to be very specific 
concerning the effect that the approximations make on the relationship, 
and Hooghoudt's equivalent depth equation should be regarded as an 
empirical equation to which one is led by physical considerations. 

Childs' hodograph analysis 

The hodograph analysis, as given by Van Deemter (1950), of the drainage 
problem for infinite depth of soil also includes upward artesian flow as well 
as steady uniform rainfall. The combination of the two flows results in there 
being a dividing streamline PO separating them, as shown in Fig. 6. This 
dividing streamline may be replaced by an impermeable barrier without 
changing the potential and streamline configurations. Childs (1960) 
calculated the position of the stagnation point P. He then approximated the 
horizontal plane PP' passing through P to the dividing plane PO of the 
upward and downward flows. This gave the drainage equation with optimum 
drain radius: 

- - n + - -  + - - l n  1 (18) 
D n 7 7 2 
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Fig. 6. Shape of the impermeable barrier that emerges in Childs' hodograph analysis. 

with the depth of the impermeable barrier given by 

- + - i n  + ( 1 9 )  

where ~/ is now (K-q)/(L+q) with L the fictitious upward artesian flux used 
in order to give the boundary PO. For d-* ~, L-~ 0 and Equation (18) 
becomes Equation (11). 

When L > 0, in order to give the dividing streamline, the flow region 
that  accommodates the steady rainfall is less than that  if there were a hori- 
zontal impermeable barrier PP' at depth d below the drain. Thus, for the 
same rainfall rate, a greater head is required for the barrier PO than for the 
horizontal barrier PP'; that  is, a higher water table emerges in the hodograph 
solution than would occur if the impermeable barrier were actually hori- 
zontal. The difference in water-table heights for the two situations is greatest 
for small values of q/K when there is proportionally a greater difference in 
the extents of the two flow regions. 

List's hodograph analysis 

An at tempt  to obtain a more accurate drainage equation for drains laid 
above an impermeable barrier was made by List (1964), again making use 
of  the hodograph method. In his analysis a fictitious upward vertical flow 
from infinite depth was removed by a lower fictitious drain while the actual 
drain at a higher level removed all the water originating from the uniform 
flux through the water table. This arrangement of flows created the dividing 
streamline PP', as shown in Fig. 7, that, as in Childs' analysis, can be 
regarded as if it were an impermeable barrier. The boundary is undulating 
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Fig. 7. Shape of the impermeable barrier that emeNes in List's analysis. 

in shape, highest under the drains and lowest midway between drains, but, 
unlike the one in Childs' treatment, does not pass through the drain. 

The analysis gives the maximum water-table height midway between 
drains as: 

where I~ = (K + q)/(K-q), and v = q/(K-q), and ~o and 771 are related by 

coth 770 + coth 71~ = ( K  + q ) / q  (21) 

for optimum conditions when the water table is drawn down to the top of 
the drain that is assumed to be running full without back pressure. Equation 
(20) is for a depth of impermeable barrier d a immediately below the drain 
given by: 

da Hm 2__ l In rsinh(~ + ~/0) sinh(~ + ~).] f 
- + u s  - v ( 2 2 )  

D D [ co[~;~ cosh,, 

where ~/= - a  is the root of the equation 

u [coth(~/-7/0) + coth(7/-~h) + 2] + coth(~/+~/0) + coth(~/+~h) = 0 (23) 

and for a depth of impermeable barrier dm midway between drains given by : 

- + U ~  - v I n  ( 2 4 )  
D D ~?0 cosh 7/1 

where/~ = -~ is the root of the equation 

p[tanh(~/-~/o) + tanh(7/-~l) + 2] + tanh(~/+~/0) + tanh(~+~h) = 0 (25) 
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Consideration of  the extent  of  the flow region that emerges in the 
analysis, using the same arguments as for the trend of  the error in Childs' 
hodograph analysis, show that the water-table height given by Equation (20) 
is smaller than that for a horizontal barrier at a depth d a below the drains 
but  larger than that for one at a depth din. List's analysis thus gives upper 
and lower bounds for the relationship between water-table height and depth 
of  impermeable barrier at a given q/K value. No exact relationship is 
possible, even though the boundary conditions at the water table are exactly 
satisfied, because of  the undulation of  the pseudo-impermeable barrier. 
This undulation becomes significant for a shallow flow region; that is, for 
small diD and q/K values. 

Youngs' inequality 

From arguments based on the potential and streamline patterns for 
drainage to ditches, Youngs (1975) concluded that the water-table height in 
drained lands with drains laid above an impermeable barrier was given by: 

+ 2  1 - - -  > > - - -  (26) 
D 

In view of  Van Deemter 's  (1950) observations concerning the little differ- 
ence between water-table heights in lands drained by ditches and by drains 
of  opt imum radius, Inequality (26) may be considered to give bounds for 
drains of  opt imum size as well as for ditches. Youngs' (1975) calculations 
showed that Inequality (26) was useful for small values of  d/D, giving little 
difference in bounds when ( d / D ) ~ )  < 0.5, especially for small values 
(<0.01) of  q/K. This is in contrast to List's t reatment where the bounds are 
closer for large values of  d/D, 

Hooghoudt's potential analysis 

Hooghoudt  (1940) extended the potential analysis that he used for an 
infinite depth of  soil to the situation where there is a finite depth of  soil 
below the drain by considering a series of  image drains at a distance d 
below the impermeable barrier. As before, the flow from the water table to 
the horizontal plane through the drain is considered to be vertical wi thout  
resistance so that the flow region is bounded on top by a horizontal plane 
through which the flux is the uniform rainfall rate that should properly be 
considered to pass through the water table. Hooghoudt  also simplified the 
analysis by considering the superimposition of  one horizontal row of images 
instead of  the infinite array that would give the correct result for his 
assumed flow region. The drainage equation that  results is: 

1 1 n~4 [(2n-1)2D2+4d212 1 r H m _ 2q In D___ 0.454 + In 
D ~K r 32 = (n2D-~d-2)[(-~--1-)2D---~++~ 2] + D (27) 
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Because of the approximate nature of the analysis, as well as the restricted 
flow region assumed, Equation (27) cannot be expected to give accurate 
results. 

Kirkham's potential solution 

Kirkham (1958) assumed the same restricted flow region as did Hoog- 
houdt  (1940) in his potential analysis, but correctly considered the infinite 
array of images required to give the correct potential distribution in the 
assumed flow region. In subsequent work (Kirkham, 1960) he accounted for 
the head loss within the water-table arch by applying a correction factor 
1/(1 - q/K), giving the revised drainage equation: 

H m 2q t ln  2D ~ ~ [ 1 (  n~rr ) (  n~rd ) ] I / ( _ K )  - - -  + c o s ~  - cos nn coth - 1 1 q 
D ~K ~r ~--1 2D D 

(28) 

This is an upper bound for the water-table height at a given q/K value, since 
the water is assumed to follow longer path lengths than in the actual 
situation, requiting a greater head from a higher water table. 

Dagan ' s solution 

Dagan (1954) a t tempted to overcome the inaccuracy of applying the 
Dupuit-Forchheimer theory to the flow of water to drains where the flow is 
not  approximately horizontal because of the convergence of flow towards 
the drain channels. He accepted that  the Dupuit-Forchheimer analysis was 
sufficiently accurate to describe the flow in the region midway between 
drain lines. For the flow in the vicinity of the drains, he supposed that the 
flow from the incident rainfall through the soil surface was also that  through 
the horizontal plane at the level of  the lowest point of the water-table arch. 
The width of this region was assumed to be 2d. With these boundary condi- 
tions, he used potential theory on this region. The drainage equation that  he 
obtained combining both regions, is: 

H m - 2 K [ d  D 7r 2 ln(2 c°sh ~--~r - 2)]  d (29) 

The boundary conditions of the two flow regions assumed in the derivation 
of  this equation do not  match at their common boundary. This fact, 
together with the approximations used, makes the use of this equation of 
uncertain value. 

Ernst's equation 

Ernst (1962) obtained a solution to the drainage problem by supposing 
the total resistance to flow within the groundwater region to be the sum 
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of  a vertical resistance impeding the flow from the water table to a 
horizontal plane through the lowest point on it, a horizontal resistance 
impeding lateral flow, and a radial resistance associated with the conver- 
gence of  f low towards the drain channels. The drainage equation that he 
proposed, becomes for uniform soil: 

- + -  I n  + - ( 3 0 )  
D 2(d + r)K nK \ - - ~ r ]  K D J I \  

Ernst's equation was derived originally for layered soils. It is to be regarded 
as an empirical equation based on physical arguments. 

Hammad' s equation 

Hammad (1962) obtained a solution to the potential problem posed by 
land drains fed by uniform rainfall, that satisfied exactly all boundary 
conditions except  at the water table. At the latter boundary the potential is 
assumed to be the same over the whole surface; that is, it is assumed to be 
horizontal. The potential condition of  a free surface is thus satisfied, but  
only for very high water tables can the uniform flux condition be approx- 
imately satisfied. Hammad's  analysis resulted in the drainage equation: 

H m -  q In + (31) 
D ~K ~2d 

The condition assumed by Hammad of a flat water table is not  observed even 
approximately for the opt imum drainage situation when the water table is 
drawn down to the top of  the drain. The larger flow region assumed in 
deriving Equation {31) leads to lower water-table heights being predicted 
than do actually occur. 

COMPARISON OF DRAINAGE EQUATIONS FOR FINITE DEPTH TO 
I M P E R M E A B L E  B A R R I E R  

Maximum water-table heights at mid-drain position are given in Table I 
for a range of depths of  soil between the drains and a horizontal imperme- 
able barrier below them for q/K = 0.001, 0.01 and 0.1, calculated from all 
the drainage equations reviewed in the last section. All calculations have 
been made using the opt imum drain radius obtained by the hodograph 
analysis for infinite depth of  soil for the particular q/K value. The results 
from List's (Equations (20) to (25) analysis and Youngs' Inequality (26) 
give lower and upper bounds for the relationship between Hm/D and d/D; 
those from Childs' hodograph (Equations (18) and (19)) and Kirkham's 
potential  (Equation (28)) treatment give over-estimates of  Hm]D , whereas 
those from Hammad's  (Equation (31)) analysis give under-estimates of  
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T A B L E  I 

Ca lcu la ted  mid-dra in  water - tab le  he igh t s  

Drainage e q u a t i o n  H m ] D  for  d i D  = 

0 0.01 0 .02 0 .04 0.08 0 .16 0.32 

q / K  = 0.001,  ro/D = 0 .00020  

Childs  (empir ica l )  
H o o g h o u d t  (equiv. d e p t h )  
Chi lds  ( h o d o g r a p h )  
List  ( u p p e r  b o u n d )  

( lower  b o u n d )  
Youngs  ( u p p e r  b o u n d )  

( lower  b o u n d )  
H o o g h o u d t  (po ten t i a l )  
K i rkham 
Dagan 
Erns t  
H a m m a d  

q / K  = 0.01,  ro/D = 0 .0020  

Chi lds  (empir ica l )  
H o o g h o u d t  (equiv. d e p t h )  
Chi lds  ( h o d o g r a p h )  
Lis t  ( u p p e r  b o u n d )  

( lower  b o u n d )  
Youngs  ( u p p e r  b o u n d )  

( lower  b o u n d )  
H o o g h o u d t  (po ten t i a l )  
K i r k h a m  
Dagan 
Erns t  
H a m m a d  

0 .0316  0 .0269  0 .0241  0 .0196  0 .0134  0 .0076  0 .0049 
- -  0 .0234  0 .0181  0 .0126  0 .0085  0 .0062  0 .0053  

0 . 0 4 3 4  0 .0393  0 .0355  0 .0296  0 .0217  0 .0141  0 .0087  

- -  0 .0068  0 .0064  0 .0060  0 .0056  0 .0052  0 .0049  
0 .0316  0 .0247  0 .0224  . . . .  
0 .0316  0 .0232  0 .0174  0 .0110  0 .0060  0 .0031 0 .0016  

- -  0 .0055  0 .0055  0 .0055  0 .0055  0 .0055  0 .0055  
- -  0 .0447  0 .0242  0 .0141  0 .0091  0 .0066  0 .0056  
- -  0 .0518  0 .0272  0 .0152  0 .0093  0 .0067  0 .0055  
- -  0 .0504  0 .0266  0 .0147  0 .0089  0 .0062  0 .0051 
- -  0 .0037  0 .0035  0 .0032  0 .0030  0 .0028  0 .0026  

0 .1002  0 .0924  0 .0848  0 . 0 7 2 3  0 .0555  0 .0398  0 .0326  
- -  0 .0905  0 .0823  0 .0696  0 .0543  0 .0416  0 .0347 

0 .1206  0 .1160  0 .1120  0 . 1 0 4 6  0 .0931 0 .0721  0 .0543  
. . . . . .  0.0588 

-- 0.0490 0.0472 0.0441 0.0407 0.0372 0.0343 

0.1005 0.0915 0.0844 0.0755 0.0718 -- -- 

0.I000 0.0905 0.0820 0.0677 0.0481 0.0287 0.0153 

--  0 .0402  0 .0402  0 .0402  0 .0402  0 .0401 0 .0401  
-- 0.4338 0.2292 0.1271 0.0765 0.0519 0.0406 

-- 0.5029 0.2573 0.1368 0.0787 0.0519 0.0406 

- -  0 .4206  0 .2332  0 .1281  0 .0737  0 .0477  0 .0366  
- -  0 .0294  0 .0272  0 .0250  0 .0228  0 .0206  0 .0184  

q / K  = 0.1;  ro/D = 0.021 

Chi lds  (empir ica l )  0 .323  0 .306  0 .290  0 .266  0 .232  0 .201 0 .186  
H o o g h o u d t  (equiv. d e p t h )  - -  0 .306  0 .296  0 .277 0 .245  0 .205  0 .172  
Childs  ( h o d o g r a p h )  0 .341 0 .335 0 .332  0 .324  0 .309  0 .284  0 .246  
List  (uppe r  b o u n d )  . . . . .  0 .274  0 .206 

( lower  b o u n d )  - -  0 .274  0 .267 0 .256  0 .239  0 .218  0 .198 
Youngs  ( u p p e r  b o u n d )  0 .333 0 .324  0 .315 0 .299  0 .274  0 .250  - -  

( lower  b o u n d )  0 .316  0 .306  0 .297 0 .279  0 .246  0 .194  0 .130  
H o o g h o u d t  (po ten t i a l )  - -  0 .252  0 .252  0 .252  0 .252  0 .252  0 .251 
K i r k h a m  --  4 .599  2.351 1 .229 0 .673  0 .403  0 .284 
Dagan  - -  4 .786  2 .395 1 .210 0 .634  0 .367 0 .255 
Erns t  - -  1 .672  1 .264  0 .854  0 .533  0 .332  0 .233 
H a m m a d  - -  0 .218  0 .197 0 .175  0 .154  0 .133  0 .113 
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Hm/D. The other equations axe founded on approximations and assumptions 
that make any judgement on the calculated values difficult. Equation (15) 
of Childs is wholly empirical, being a fit of the experimental results of Collis- 
George and Youngs (1958). 

From Table I it is seen that Childs' empirical equation lies outside the 
known bounds for q/K = 0.001. For this value of q/K, the relationship 
between Hm/D and q/K obtained experimentally by Collis-George and 
Youngs had to be extrapolated. Hooghoudt's equivalent-depth equation 
(Equation (16)), on the other hand, is contained mainly between the known 
bounds for all q/K values. However, the other equations that have been 
derived with some at tempt at satisfying physical requirements, do not  give 
such good predictions. Thus Hooghoudt's equation (Equation (27)) which 
is an extension of the potential analysis that he applied in the case of infinite 
soil depth, gives water-table heights that are little affected by the depth of 
the impermeable barrier, and hence the equation does not  represent the 
known physical behaviour. Dagan's (Equation (29)) and Ernst's (Equation 
(30)) results both give values of Hm/D greater than the known upper bound. 

In Figs. 8, 9 and 10 the shaded areas give the known bounds for the 
relationship between Hm/1:) and d/D, obtained by combining the results from 
the several analyses of known merit, for q/K = 0.001, 0.01 and 0.1, respec- 
tively. Results from Childs' (Equation (15)) and Hooghoudt's (Equation 
(16)) relationships are also shown. 

Computations show that Kirkham's equation gives generally high values of 
Hm/D, particularly for large values of q/K. Childs' hodograph analysis gives, 

0.031 

D 
0.02- 

0 I 

0 0'~ o'2 0'3 
d 
D 

Fig. 8. Rehtio~hip between Hm/D and did for q/K = 0.001. The shaded area defines 
the uncertainty in the relation~I~ip obtained from Youngs' bounds (Inequality (26)) 
(full line), List's bounds (equations (20) to (25)) (dashed line) and Kirkham's Equation 
(28) (dash-dot line). Calculated values from Childs' empirical Equation (15) are shown 
by open circles, and those from Hooghoudt's Equation (16) by closed circles. 
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Fig. I0. Same as Fig. 8 but for q/K = 0.I. 

as expected, also too high values. List's analysis gives an upper bound only 
for large values of d/D because of the shape of the undulation in the 
boundary that emerges in the solution. Youngs' prediction (Inequalty (26)) 
gives close bounds for small values of d/D, especially for small values of q/K. 
Hammad's Equation (31) gives values lower than the lower bound predicted 
by Youngs or List. 
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The results of  the computat ions with List's analysis show that the water- 
table height when q / K  = 0.1 is 8.0% higher when the impermeable barrier is 
located with da = 0.30 below the drain than at an infinite depth. For q / K  = 
0.01 it is 7.8% higher, and for q / K  = 0.001 it is 6.2%. Because of  the greater 
f low region assumed in List's analysis than occurs in the situation of  a hori- 
zontal impermeable barrier at a depth d = da ,  the water-table height in the 
latter situation must be even higher than in the former. Thus, the finding 
from experimental work that drain performance is the same for depths of  
impermeable barrier with d > 0.3D as for infinite soil depth is seen not  be to 
be strictly correct. For  the water-table height to be not  more than 1% 
greater than for infinite soil depth, List's analysis gives d a ~ 0.65D for q / K  = 
0 . 1 ,  d a > 0.66D for q / K  = 0.01, and d a ~> 0.63D for q / K  = 0.001. 

CONCLUDING DISCUSSION 

Figs. 8, 9 and 10 that show the relationships between H m / D  and d iD for 
q / K  values of  0.001, 0.01 and 0.1, respectively, for opt imum drain size 
conditions, summarise the present theoretical state concerning the solution 
to the drainage problem most commonly  analysed and shown in Fig. 2. 
Some available solutions appear to be adequate where an impermeable 
barrier lies close to the drain and where it lies very much deeper. None is 
very satisfactory at intermediate depths when the physical assumptions and 
mathematical approximations in the analyses lead to a greater uncertainty 
in the values of  H m / D  at a given value of  d iD and for a given value of  q/K. 
Thus an accurate general analytical solution to the drainage problem is still 
awaited. Kirkham and Powers (1964) claimed to have derived a procedure 
to obtain a series solution to the general potential problem of groundwater 
flow to drain lines. However, because of the complexity in obtaining the 
coefficients of the series and the slow convergence of  the series that pose 
difficulties in computing, the procedure does not  appear to have produced 
a solution to the drainage problem discussed in this paper. Indeed, it would 
appear that a numerical solution would give a solution with only a fraction 
of  the effort  that is required for the evaluation of  this analytical solution. 
Our calculations show that Hooghoudt ' s  (1940) equivalent depth solution, 
although founded on approximate physical theory, gives generally values 
within the known limits of uncertainty when used with the opt imum drain 
radius obtained by hodograph theory. Since it has been argued that the 
opt imum drain radius is the more realistic drain radius to use in drainage 
theory, Hooghoudt ' s  equation with this radius of  drain can be used with 
reasonable confidence for drain design purposes. 
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