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Abstract 

A critical analysis of numerical predictions of the long time averaged flow past a circular 
cylinder is presented. The flow regimes considered cover a wide range of Reynolds numbers 
with an emphasis on the transitional range, i.e. (104 to 107). In this study calculations are made 
using the standard k e model with an empirically imposed transition criteria. Our own 
simulations as well as those published by others with various turbulence models including those 
with vortex shedding are compared with experimental data. Significant differences were found 
among different predictions for the same flow conditions with essentially the same turbulence 
models. Reasons for these differences are elucidated. The transitional nature of the flow regime, 
and the grid size and its distribution, particularly inside the boundary layer, play a major role in 
obtaining vastly different predictions. The present calculations with the conventional k-e  
turbulence model and an empirically imposed transition compare favorably with those ob- 
tained from "more sophisticated" models such as large-eddy simulations. 

1. Introduction 

In spite of the simple geometry, numerical simulation of turbulent flow past 
a circular cylinder still remains a challenging problem for computational fluid dy- 
namicists. The simulations of Majumdar and Rodi [1] the review by Celik [2] and 
Celik and Shaffer [3] showed that there are significant differences between calculated 
and measured mean flow parameters. Furthermore, simulations using the standard 
k-e model, similar numerical procedures, and similar numbers of grid cells often 
produce predictions with striking differences. The discrepancies between experiments 
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and numerical simulations do not uniformly reduce as one increases the order of 
closure models for turbulence. In this paper, we present an analysis of these simula- 
tions and discuss possible reasons for differences among them. For completeness, we 
first present a brief description of the general flow characteristics followed by a review 
of previous calculations. 

1.1. General features of the flow 

In the Reynolds number, Re, range considered (104 to 107) the flow around 
a nominally "smooth" circular cylinder undergoes transitional changes. Four different 
flow regimes are identified each marked by a different behavior of the boundary layer. 
In the literature, various terminologies are used for these regimes by different authors 
(see, e.g., Ref. [4]). Here we adapt the terminology suggested by Achenbach [5] 
according to which the four flow regimes are (see Fig. 1): (i) subcritical, (ii) critical, 
(iii) supercritical and (iv) transcritical. The Reynolds numbers marking the beginning 
and the end of each regime can vary significantly for different experimental setups 
depending on the actual values of surface roughness, free-stream turbulence intensity 
and length scale, wind-tunnel blockage, length to diameter ratio, and model-end 
conditions. However, for "smooth" cylinders the following approximate ranges can be 
used as a basis for discussion: (i) subcritical flow, 2.0 × 102 < Re < 1.5 × 105; (ii) criti- 
cal flow, 1 . 5 x 1 0 5 < R e < 4 x 1 0 5 ;  and (iii) super critical flow, 4 x 1 0 5 <  
Re < 1. x 107; (iv) transcritical flow, Re > 1 x 107. 

In the subcritical flow regime the boundary layer remains completely laminar, the 
drag coefficient, Co ~- 1.0-1.2, remains fairly constant, the Strouhal number, S ~ 0.2, 
and the location of separation, ~bs, is approximately 75 o to 85 °. The transition from 
laminar to turbulent flow in the shear-layers takes place in the formation region of the 
wake [6] and it moves gradually upstream as Re increases. In the critical range, Co 
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Fig. 1. Illustration of flow regimes for the flow past circular cylinders (after Ref. [5]). 
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decreases suddenly from 1.2 to about 0.25, S increases from 0.2 to about 0.5, the 
location of separation moves downstream to about tPs = 120 °-140 °. First a laminar 
separation occurs followed by turbulent reattachment and eventual turbulent separ- 
ation thus forming the so-called "laminar separation turbulent reattachment-bubble". 
This regime is characterized by irregular vortex shedding, asymmetric formation of 
the bubble (i.e. on one or both sides of the cylinder), and lack of two-dimensionality 
(for a detail review and discussion of this regime see Refs. [4,71). In the supercritical 
flow regime, Co increases, S decreases to about 0.25, a fairly sharp transition occurs 
from laminar to turbulent flow prior to separation, and the separation point moves 
upstream to about q~ = 105°-115 °. Finally, in the transcritical flow regime Co 
reaches a new plateau, the transition point moves sufficiently close to the upstream 
stagnation point so that the location of separation is not influenced much by further 
increase in Re, hence the flow becomes independent of the Reynolds number. 

1.2. Review o f  previous computations 

Navier-Stokes solutions of the flow past circular cylinders have been the subject of 
numerous previous investigations. Most of these were reviewed by Majumdar and 
Rodi [11, Ishii et al. [8], and a broader review was presented by Celik [2]. For a long 
time Navier-Stokes solutions of the flow in question were limited to relatively low 
Reynolds numbers, Re < 10 4. Recently, there has been a number of reports on the 
same subject at high Reynolds numbers. A detailed review of all the previous 
computational work is a formidable task and it is beyond the scope of this paper. Here 
we shall restrict our review to only those concerning the high Reynolds number range, 
Re > 104. A summary of papers reviewed is presented in Table 1. 

Sugavanam [9], and Sugawanam and Wu [101 reported solutions of the 
Navier-Stokes equations for a turbulent flow around a circular cylinder at 
Re = 3.6 x 10 6. They used a hybrid integro-differential approach, HIDA, and em- 
ployed the standard k-e (SKEM) model for most of the flow field while using a mixing 
length model near the cylinder surface (up to 0.12 radii from the cylinder surface). At 
a first glance their results seem to be in good agreement with measurements of 
Achenbach [111, but as it is shown later in this paper a close look into the results 
reveals that they did not account for the large blockage effects (i.e. effects of the 
presence of tunnel walls), and their grid resolution was rather coarse. 

Majumdar and Rodi El] calculated the mean flow past circular cylinders using 
a finite volume method in body fitted curvilinear coordinates as well as polar 
cylindrical coordinates. They used SKEM with an artificial transition imposed im- 
mediately after the separation point. The predicted pressure distribution, the location 
of separation, and the wall shear stress were not found satisfactory in comparison with 
measurements. These authors concluded that separated turbulent flow past circular 
cylinders cannot be predicted realistically with a steady-flow model ignoring the 
periodic vortex-shedding motion. The results of Majumdar and Rodi shall be dis- 
cussed in detail in subsequent sections. 

Ishii et al. [81 performed calculations in the range 1.0 × 105 <~ Re ~< 7.83 x 10 6. 
They used the Beam-Warming-Steger method with improved accuracy to solve the 
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Table 1 
Summary of previous computations for Re >~ 1.0 x 104 Navier-Stokes solutions 

Ref. Re Turbulence Numerical Comments 
model method 

[10] 3.6 x 106 SKEM HIDA 
and Mix. L. 

[l] 1.0 x 105, 1.4 x 10"s, 3.6 × 10 ~' SKEM FVOL 

[8] 1.0 x 105 7.83 x 10 ~' (none} FDIF 

[13] 1.4 x 105, 8.4 x 106 2D-PLES FVOL 

[12] 1.0 x 10 4 1.0 x 10 6 Inone~ FDIF 

/-18] 1.4 x 104 2ZKE FVOL 
2ZLRR 

[19] 1.0 x 10 4 LED F'ELM 
2D-PLES 

polar grid, 
steady 
BFC grid, 
2D unsteady 
non-orthogonal 
non-structured grid, 
unsteady 
2D and 3D 
unsteady 3rd 
order upwind 
QUICK 
scheme, 
2D unsteady 
upwind 
scheme, 
unsteady 

Notation: SKEM, standard k c model; LES, large-eddy simulation; PLES, pseudo-large-eddy simulation; 
2ZKE, two-zone k c model; 2ZLRR, two-zone Launder Reece Rodi (Reynolds stress transport) model; 
HIDA, hybrid integro-differential approach; FVOL, finite volume; FD1F, finite difference; FELM, finite 
element: BFC, body fitted coordinates. 

two-d imens iona l  N a v i e r - S t o k e s  equat ions  direct ly wi thout  any turbulence model .  
They did not  app ly  any explicit  filtering to set the scale of the diss ipat ive mechanism.  
Their  smallest  mesh size in the direct ion normal  to the cyl inder  surface was 1 x 10-  s 
cyl inder  d iameters  with a grid d is t r ibu t ion  of 481 x 120 in the whole plane. The  
predic ted  d rag  coefficient was in good  agreement  with exper iments  in this Re range; 
the predic t ions  being general ly lower than the measurements .  The results showed 
a t rans i t ion  from subcri t ical  to supercri t ical  regime, the recovery from crit ical  regime 
was significantly s lower c o m p a r e d  to the experiments .  These predic t ions  were found 
to be grid dependent  by T a m u r a  et al. [12]. 

Song and Yuan [13] presented  calcula t ions  with a two-dimens ional ,  pseudo- la rge  
eddy s imula t ion  (2D-PLES)  model.  They used an explicit  finite volume me thod  with 
M a c C o r m a c k ' s  p r e d i c t o r - c o r r e c t o r  scheme. The subgr id  scale cons tan t  was selected 
as 0.15 instead of  0.21 which was or iginal ly  suggested for the S imagor insky  model .  In 
the b o u n d a r y  layer, they in t roduced  some ad hoc modif icat ions.  In this sense their  
ca lcula t ions  seem to be fine tuned especial ly for this par t i cu la r  flow. They s imula ted  
Cantwel l  and  Coles '  [-14] exper iments  (Re = 1.4 x 105) and  ob ta ined  good  agreement  
of velocity d i s t r ibu t ion  in the wake, however  the pressure d i s t r ibu t ion  d id  not  agree 
well with Cantwel l  and  Coles '  measurements  (see also discussions in subsequent  
sections). Song and Yuan also calcula ted a case in supercr i t ical  flow regime at 
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Re = 8.4 × 10 6. The comparison of the predicted pressure distribution with Roshko's 
[ 15] measurements showed also good agreement between the two. It should be noted 
that these two-dimensional calculations are not really large-eddy simulations, because 
large-eddy simulations must be, by definition, three-dimensional and unsteady [16]. 
Hence the terminology PLES is used in the present discussion. 

Tamura et al. [12] presented a very interesting paper where they simulated the 
unsteady flow past cylindrical structures with a relatively accurate third order upwind 
finite difference scheme. They employed no turbulence model. The grid they used is 
slightly skewed, nearly orthogonal polar cylindrical grid. Their calculations demon- 
strated that the numerical solutions were highly sensitive to grid fineness. In particular 
they showed that at Re = 105 coarser grids lead to solutions with critical and 
supercritical characteristics and very fine grid solutions showed subcritical character- 
istics. The most sensitive range was in the critical flow regime, i.e. 1.0 × 104< 
Re < 1.0 x 10 6. This is not surprising given the fact that the flow is very sensitive to 
any kind of disturbance in this regime (see, e.g., Refs. [4,7]). Tamura et al. showed that 
the three-dimensional calculations, in this regime, were in better agreement with 
experiments compared to the two-dimensional calculations. This should be expected 
since the actual flow in the critical regime is highly three-dimensional [4,7,17]. They 
were able to predict the transition from subcritical flow to supercritical flow without 
employing any turbulence model or imposing any filtering. This might be explained 
on the basis of large-eddy simulations [16] with a self-induced filtering mechanism by 
the numerical scheme itself. 

A detailed numerical analysis of the unsteady flow past a circular cylinder at Re = 
1.4 × 105 was presented by Franke [18]. He used the well-known QUICK scheme in 
spatial coordinates and a first order implicit scheme in the temporal domain. Two 
different turbulence models were implemented, namely, a two-zone k-e, 2Z-KE, 
model, and a two-zone Reynolds stress (Launder, Reece and Rodi model), 2Z-LRR, 
model. The two-zone refers to using the one equation model in the vicinity of the wall 
where the k-equation is solved but e is determined from an empirical algebraic 
equation. Modifications were also made by Franke to account for the low Reynolds 
number nature of the flow in the boundary layer. He presented time averaged pressure 
distributions for Cantwell and Coles' [14] experiments. The 2Z-KE model resulted in 
significantly higher base pressure, which is believed to be the inherent deficiency of 
steady calculations [ 1 ]. The 2Z-LRR model gave somewhat better agreement with the 
measured distribution except in the vicinity of the rear stagnation point. Franke's 
results should show the influence of unsteady calculations, i.e. the influence of vortex 
shedding, as compared to steady mean flow calculations. But the unsteady calcu- 
lations with the KE model still resulted in a high base-pressure coefficient even though 
the vortex shedding is taken into account. A detailed discussion of his results follows 
later in the text. 

Kato and Ikegawa [19] presented large-eddy simulations (LES), for the flow past 
circular cylinders. They used a streamline upwind finite element method with the 
classical Smagorinsky subgrid scale model to solve the unsteady three-dimensional 
equations of motion. The blockage effects were eliminated via appropriate boundary 
conditions at a distance of 10 diameters away from the cylinder surface. The grid used 
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was 80 × 50 × 10, in circumferential, normal and axial directions, respectively. They 
imposed an empirical transition to laminar flow in the sublayer by arbitrarily 
damping the turbulent eddy viscosity within one fifth of a diameter from the cylinder 
surface. They presented results for a case with Re = 1.0 × 104 from both 3D-LE 
simulations and 2D-PLE simulations which seem to indicate that the former (3D- 
LES) gives better agreement with the measurements of Cantwell and Coles [14] at 
Re = 1.4 × 105 compared to the latter (2D-PLES). However, as discussed later, it is 
very likely that their results are grid dependent. 

1.3. Present contribution 

As it is seen from the above review there seems to be many unresolved issues 
concerning the Navier-Stokes solutions of the turbulent flow past circular cylinders. 
Some of the major issues which should be addressed are the grid dependency of the 
solutions, the blockage effects, transition to turbulent flow, resolution of the boundary 
layer, two-dimensional versus three-dimensional, steady versus unsteady calculations, 
and the assessment of the relative performance of various turbulence models. There is 
also the question and a mixed opinion as to how good the results calculated by using 
the classical turbulence closure models, e.g. the k-e model are. In this paper we 
attempt to make an assessment of these issues with the help of our own calculations 
using a finite volume method with the standard k-e model. We present two-dimen- 
sional long time-averaged solutions and compare them with solutions with more 
sophisticated simulations as well as large-eddy simulations with the objective of 
assessing the performance of relatively simple and inexpensive calculations compared 
to others. This issue is important in large scale industrial applications, such as 
gas-solid two phase flow past heat exchanger tubes in boilers, and ocean currents past 
an array of platform supports. For such problems the time and cost involved in 
utilizing, for example, large-eddy simulations are still not at an affordable level. 

2. Computational details 

Simulations were performed using a commercial code, PHOENICS [20]. It is based 
on the well-known SIMPLE algorithm [21] and uses a control volume approach with 
a hybrid of upwind and central differencing schemes. The two-dimensional Navier-" 
Stokes or Reynolds equations written in terms of the primitive variables (i.e., the two 
velocity components and the pressure) for an incompressible fluid are solved. Several 
options are available for the turbulence models, but for this work only the standard 
k-e model [22] was utilized. The equations for this model are given in Appendix A for 
reference. The turbulence model constants were k = 0.435, Ewa~l = 9, Cd = 0.1643, 
C', = 0.5478 (C, = Co, C'u = 0.09), C1~ = 1.44, C2~, = 1.92, ak = 1.0 and as = 1.314. 
The notation for these constants are the standard notation (see, e.g. Ref. [22], see also 
Appendix A) the turbulence length scale is calculated from 

l, = Ca kl'5/e (1) 
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and the turbulent eddy viscosity is calculated from 

v, = C'u l, k 1/2, (2) 

where k is the turbulent kinetic energy and e is the dissipation rate of k. 

2.1. Transition to turbulence 

For the present calculations transition to turbulence was imposed by resetting l, 
such that a sufficiently small value of vt (e.g. v~ ,~ v, v being the kinematic viscosity) 
resulted from Eq. (2) in the laminar flow regions. Transitional values for It (hence for 
vt) were calculated by interpolation using a power law between the fully laminar and 
fully turbulent regions; downstream of the transition region it was calculated from 
Eq. (1). A similar transitional model was also applied by Majumdar and Rodi [1]. The 
location of the transition was determined using an empirical equation suggested by 
Celik et al. [23] as a guide; which is 

x t r /D = 0.15 (Rebc/Re) 1/2, (3) 

where Rebc -- 1.5 x 10 s is the Reynolds number marking the beginning of the critical 
flow regime. This equation gives the distance to transition location, Xtr, as a function 
of the cylinder Reynolds number up to the beginning of the critical flow regime, e.g. 
Re = 1.5 × 105. However, sensitivity analysis is performed by changing the transition 
location as one of the unknown parameters. For more details see Ref. [23] or Ref. [3]. 

2.2. Boundary  condit ions 

At the inlet uniform profiles were specified for axial velocity, U, and the y-compo- 
nent of the velocity, V, was set to zero (see Fig. 2 for notation). For cylindrical-polar 
grids the fixed Cartesian inlet velocity in the x-direction was converted to variable 
components in the r- and ~b-directions. In this case, the circular arc r = 10d, 
0 <~ ~b < rt/2 formed the inlet boundary, and r = 10d, r~/2 ~< ~b ~< rc formed the outlet 
boundary; q~ is measured from the upstream stagnation point clockwise (see Fig. 2). 
The velocities thus prescribed varied only 0.25% from the attached potential flow 
solutions. The turbulent kinetic energy was calculated from the experimentally speci- 
fied turbulence intensity and e was calculated from 

e = ka/2/ah, (4) 

where h is a characteristic length (i.e. the width of the wind tunnel) and a is a coefficient 
which was selected such that Eqs. (1) and (2) yielded sufficiently low turbulent eddy 
viscosity which typically was equal to the kinematic viscosity of the fluid. Uniform 
profiles were used for both k and e at the inlet. 

At the outlet convective outflow boundary conditions were imposed. This amounts 
to imposing zero first derivatives. 
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Fig. 2. (a) Example  of a cylindrical-polar  grid, whole domain .  (b) Example  of a cylindrical-polar  grid, near  
the cylinder. 

At the wall boundaries the wall function approach was used (see, e.g., Ref. [22]) 
with the shear stress calculated from the log-law. The wall values ofk and e were set at 
the first grid node inside the calculation domain according to 

. . . .  . - -  Cdk3. ,2  //3 
k = u , / , , /C , , ,  ~:-  - * , {5) 

h y  w h 'y  w 

where u, = x/ 'rw/p is the friction velocity, and Yw is the normal distance from the wall. 
In some calculations the generalized wall functions (see Ref. [24]) were also used. This 
did not produce any significant changes in the solutions. 

For mean flow calculations the only parameter that is of importance, as far as the 
turbulence is concerned, is the eddy viscosity, rather than the actual values of the 
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turbulent kinetic energy, k, and its dissipation rate, e. Hence, we conclude that the wall 
boundary conditions imposed on k and e using the log-law should have no particular 
significance concerning the mean flow predictions when y+ < 11.5, which is an 
empirical cutoff value beyond which the log-law is assumed to be valid. 

2.3. Grid distribution 

Cylindrical-polar grids were used to allow the desired distribution of grid points 
very close to the cylinder surface and to overcome the problems inherent to general- 
ized BFC grids (see Ref. [25] for a discussion). 

The grid points were spaced in proportion to the magnitude of the potential flow 
velocity gradients. Outside the boundary layer and upstream of the separation point, 
the velocity gradients are reasonably approximated by the potential flow theory. This 
fact is used to distribute the grid in the radial direction at equal increments of 
azimuthal velocity. A consequence of this method is that it gives large radial cell 
widths far away from the cylinder hence leading to large grid aspect ratios. To avoid 
this, the cell width is set to a constant (a fraction of the cylinder radius between 0.5 and 
1) when the potential flow distribution method gave a larger cell width. Within the 
boundary layer the velocity gradients are much higher and spacing the grid at equal 
velocity increments would produce large cell aspect ratios. This is undesirable because 
high cell aspect ratios can lead to problems with numerical diffusion and convergence. 
To reduce the cell aspect ratio the number of tangential grid lines would have to be 
increased to an unreasonably high value. To avoid these problems, the grid within 
a distance of 2% of the cylinder diameter is distributed to keep the radial cell 
expansion ratio equal to 2. The region within 2% of the cylinder diameter is identified 
as the boundary layer region. This was chosen as a typical boundary layer thickness 
near the separation point for Reynolds numbers in the range of l0 s to l0 T [26]. In the 
azimuthal (~b) direction, the grid was distributed with equal spacing. 

For this study, two potential flow grid distributions were tested outside the 
boundary layer region. The first grid distribution, GRID1 has grid points in the radial 
direction spaced at 5% changes in azimuthal velocity. The cell width is set equal to the 
cylinder radius if a 5% change in velocity gives a larger cell width. This gives a total of 
35 cells in the radial direction. The grid is spaced uniformly in the azimuthal direction 
with 40 cells. 

The second grid distribution, GRID2 is similar to GRID1 but the grid is made 50% 
finer outside the boundary layer region. The grid is spaced in the radial direction at 
3.33% changes in velocity with a maximum cell size of 0.67 radii. This gives 55 cells in 
the radial direction outside the boundary layer region. There are 60 cells in the 
azimuthal direction. 

To investigate the effect of the grid distribution close to the cylinder surface grid 
points were incrementally added to the boundary layer region of GRID 1 and GRID2. 
The grid points in the boundary layer region were distributed to yield a radial cell 
expansion of 2 (as described above). The number of grid points in the boundary layer 
region ranged from 0 to 9. A suffix, N B # ,  was added to the GRID1 and GRID2 
names to identify the number of grid points in the boundary layer region. For 
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example, GRID1NB3 identifies GRID1 with 3 grid points added to the boundary 
layer region. An example of a cylindrical-polar grid, GRID2NB5, is shown in Fig. 2. 

Finally another fine grid was generated using a uniform grid expansion ratio of 1.3 
in the radial direction. This (100 x 150; radial by axial) grid had 25 points within 2% of 
the cylinder diameter from the surface with 60 cells from 0 ° to 90 ° and 90 cells from 
90 ° to 180 °. The smallest cell had a radial height of 6.67 x 10 - 6  times the cylinder 
diameter. Such a small cell size was selected to approximately match the smallest cell 
size used by Ishii et al. [8]. 

2.4. Calculation domain 

Because of the elliptic nature of the flow considered, in particular the pressure 
distribution being governed by a Poisson equation, and also because of the boundary 
conditions not being well defined at the open (free) boundaries, the numerical 
solutions are very sensitive to the relative size of the calculation domain. A systematic 
investigation of the domain influence [23] showed that a calculation domain extend- 
ing to r = 10d was adequate to minimize this effect. This domain size, which was used 
in the present calculations, is the same as that used by Majumdar and Rodi [1]. It is 
also close to that used by Ishii et al. [8] which extended from - 8.5d to 18D in the 
streamwise direction and from 0 to 8.5d in the y-direction. 

2.5. Convergence 

Convergence was found to be rather slow with the iteration procedure employed for 
the present simulations. This was particularly true for grid distributions with cells 
close to the wall (5 < y+ < 20) where the dissipation rate, e, is large. Larger cell aspect 
ratios also seemed to cause convergence problems. After extensive experiments with 
relaxation factors it was found that false time step relaxations close to the Courant 
limit [20] gave the fastest convergence rate for most grids. 

Three criteria were monitored to determine if a case is converged: (i) the relative 
residuals (ratio of the absolute residual to the total flux of a property into computa- 
tional domain) of pressure and velocities had to be less than 0.1%, (ii) the property 
values at a grid point in the boundary layer just past the separation point could not 
change significantly over a large number ( > 500) of iterations, (iii) the change in the 
pressure coefficient over 0 o < ~ < 180 ° is negligible over a large number of iterations. 
For most cases these criteria were exceeded considerably. The actual values of the 
residuals for typical cases can be found in the report by Celik and Shaffer [23]. 

2.6. Laminar bench-mark cases 

First fully laminar flow simulations were performed to validate the overall calcu- 
lation procedure and to ensure correct implementation of the code. The predicted 
pressure coefficient around the cylinder was compared with the experimental data (see 
Ref. [25]) of Grove et al. [27] for a Reynolds number of Re = 40; an excellent 
agreement was found between the two. Another laminar flow measurement by Shaffer 
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[28,29] at a Reynolds number of 2000 was simulated. Here the actual flow was 
unsteady due to the vortex shedding. Experiments [6,29] have shown that the flow 
becomes turbulent in the wake at this Reynolds number. The transition occurs 
between 1 to 3 diameters downstream of the cylinder center. However, this should not 
significantly affect the mean flow around the cylinder. This case was simulated with 
a BFC grid fitted to the exact geometry of the wind tunnel in which the measurements 
were made. A comparison of the long-time exposure pathline measurements [2] with 
our calculated streamlines showed again very good agreement. The separation point 
as well as the overall size of the recirculation zone is reasonably predicted. The good 
agreement observed for the Reynolds number of 40 and 2000 indicated that the code is 
reliable and is being implemented properly (see Refs. [23,25] for more details). 

3. Results and discussion 

3.1. Subcritical flow simulations 

Simulations were performed at Re = 1.0 x l0 s as an example for the subcritical flow 
regime. This Reynolds number marks approximately the beginning of the critical flow 
regime. In this flow regime the boundary layer along the cylinder surface remains 
laminar up to and after the separation point. The flow becomes turbulent somewhere in 
the wake formation region (see, e.g., Ref. [6]). Unless the approaching flow is turbulent, 
the flow over most of the cylinder should be laminar. For this case, simulations were 
performed with a fully laminar model, a model with a transition to turbulence imposed 
just after the calculated separation point, and a fully turbulent model. 

Majumdar and Rodi's [1] and our predicted pressure distributions are compared 
with three sets of experimental data [11,14,30] in Fig. 3. Here, the experimental data 

C . - -  "~It_ - - - -  a ~ x S ~ . M ~ m l r & R ~ i O ~ ' )  
v . o  - -~  ~ GmO2NIB2 

~ t .  C, mO'ZN~ 
0 ~ ~3 ~ n , , ~ ( ~ i ~ )  

I I  ~ and ~ (1988) 

~° , • °o 

i , . ~ .  ._,,_~_~,¢,.,;....... 

--I "i' ~ ~ v  I 

-2.~ , I I " " l ' "  I I I , I 
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¢) 

Fig. 3. Experimental and predicted pressure coefficient profiles for the subcritical regime. All predictions 
are for a Reynolds number  of 1.0 x 10 s. 
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have not been corrected for blockage to stress the point that comparison with 
experiments may be misleading without correction (see Fig. 6 where the same data are 
presented with correction for blockage). Not all the predictions using GRID1 and 
GRID2 are shown here; only representative examples are shown. 

It is obvious that the experimental data from various sources differ significantly for 
about the same Reynolds number, namely, 1.0 x 105 [11], 1.4 x 105 [14], and 2.0 x 
105 [30]. Furthermore, the data do not show a trend corresponding to the Reynolds 
number. This of course, is due to many factors which are not identical in the 
experiments. For example, the blockage ratio (width of the tunnel/cylinder diameter) 
was 17.75%, 3.32%, and 16.67% for Achenbach's, Cantwell and Coles', and Guven's 
experiments, respectively. 

It is also seen from Fig. 3 that the predictions are very sensitive to the grid 
distribution in the boundary layer the predictions can be changed drastically just by 
adding a few grid points closer to the cylinder surface. Notice that the only difference 
between GIRD2NB2 and GRID2NB5 is three grid points in the boundary layer 
region. The distance of the first grid point from the cylinder for GRID2NB2 is 0.5% of 
the cylinder diameter. For GRID2NB5 the distance of the first grid point is 0.065% of 
the cylinder diameter. Our predictions with GRID2NB5 show fairly good agreement 
with the experimental data up to and including the separation point (see also Fig. 10). 
Adding two or four more points (GRID2NB7, GRID2NB9) closer to the cylinder 
surface did not significantly change the predictions. The grid dependence between 
Majumdar and Rodi's 38 x 51 and 81 x 81 predictions is also noteworthy. Their 
calculations were performed with transition to turbulence imposed immediately after 
the separation point. 

In Fig. 4 the calculated wall shear stress distribution is compared with Achenbach's 
[11] measurements. The wall shear stress, rw, is made non-dimensional as ~w = 
(rw/p U2~ ~ ) x / -~.  Again, only representative predictions are shown here. 

Results from two different grids (GRID2NB3 and GRID2NB5) illustrate the 
dependence of the predictions on the grid distribution in the boundary layer region. 
As with the pressure profile prediction, adding more grid points closer to the cylinder 
(e.g., GRID2NB7, GRID2NB9) did not change the prediction obtained with 
GRID2NB5. For GRID2NB5 the wall shear stress was calculated with two different 
approximations of the radial gradient of the azimuthal velocity, du/dy. First, du/dy is 
approximated by a linear fit through the first two grid points. Then, it is approximated 
by a cubic curve fit through the first three grid points i.e., u = ay + by 3. As is shown in 
Fig. 4 the parabolic approximation slightly improves the agreement between predic- 
tions and the experiments. The predicted separation angle of 80 • matches (within 
experimental uncertainty) the experimental value of 78~. It is noteworthy that 
Majumdar and Rodi [1] with their transitional model predicted a separation at 89" 
with their 81 x 81 grid. Judging from our results, this could be due to placing the first 
grid point too far from the cylinder surface. This could not be verified, however, since 
Majumdar and Rodi did not report their exact grid specifications. 

Beyond the separation point the predictions differ significantly from the experi- 
ments and the fully laminar flow predictions oscillate. The predicted velocity fields 
show multiple zones (see Fig. 5) associated with these oscillations as evidenced by the 
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Fig. 5. Predicted velocity distribution illustrating multiple eddies, Re = 1.0 x l0  s. 
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change in sign of the wall shear stress. The authors do not know at this stage whether 
this represents some type of critical flow behavior or if it has any real significance. 
However, Ishii et al. [8] did report shear stress calculations which showed a very 
similar behavior to that shown in Fig. 4. Tamura et al. [12] also reported on multiple 
recirculation zones (eddies) similar to those shown in Fig. 5 in their calculations with 
no turbulence model. Their calculations showed that the number of the eddies 
increased and the location of separation moved upstream as they made the grid 
spacing finer and finer. The predictions of Majumdar and Rodi do not show this 
oscillatory behavior. This could be due to their imposition of transition to turbulence 
after the separation point. 

To test this hypothesis we applied our transitional model to the same case. 
However, along with the transition phenomenon we had to reconsider grid depend- 
ence under the guidance of the Tamura et al.'s calculations which showed continuous 
dependence on grid fineness. The blockage effects were also considered in detail. In 
what follows these issues are addressed one by one. 

3.2. Blockage effects 

Most simulations presented in the literature for flow past circular cylinders are 
without any blockage, i.e. the cylinder is in a uniform flow without any tunnel walls. 
Experiments, on the other hand, are performed in tunnels with finite blockage. To 
account for this, the experimental pressure data were corrected for blockage using the 
semi-empirical formula suggested by Allen and Vincenti and later modified by Farell 
et al. [31]. This procedure gives a good estimate for blockage effects in agreement with 
experimental observations of Richter and Naudasher [32]. Without blockage the 
minimum pressure coefficient, Cpm, and the base pressure coefficient, Cpb, decrease in 
absolute value. This, as expected, results in a decrease in the drag coefficient. When 
predictions are compared with corrected pressure distributions the observed "good 
agreement" may deteriorate. Hence, in the rest of the presentation the experimental 
data were corrected for blockage whenever possible before comparing them with 
predictions. The influence of tunnel blockage can be seen by comparing the experi- 
mental data presented in Figs. 3 and 6 without and with correction, respectively. The 
experimental data from different sources collapses to a narrower band when corrected 
for blockage, and the agreement that is seen in Fig. 3 between predictions and 
measurements indeed deteriorates. 

3.3. Influence of transition 

Fig. 6 shows the predicted pressure distribution for a Reynolds number of 1.0 x 105 
with transition imposed at various locations. The location of the transition, q~tr, shown 
in Fig. 6 indicates the middle of the transitional region. The experimental data used 
for comparison have been corrected for blockage. The collapse of the data to 
a narrower band after blockage correction is noteworthy. The location of the 
transition has a significant influence on the pressure distribution as its is seen in Fig. 6. 
The predictions exhibit a significantly different flow behavior compared to that of the 
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experiments. When the transition is between 90 ° to 110 ° the predicted flow shows 
a supercritical behavior, when it is beyond 110 ° it shows a critical flow behavior. 
Comparison of the fully laminar flow calculations (case lam6nb5) with others indi- 
cates that even if the transition is imposed after the separation point it still greatly 
affects the pressure distribution in the upstream region. With transition, the magni- 
tude of the base pressure increases leading to a better agreement with experimental 
data. 

The calculated skin friction distributions with the transitional model are shown in 
Fig. 7. When q~t, is beyond 110 ° the location of the laminar separation is predicted 
correctly at 82.50 °. The imposed transition to turbulence causes the flow to reattach 
thus forming the so-called "laminar-separation-turbulent reattachment bubble". This 
is apparent from the relatively flat region on the pressure distribution curve (Fig. 6, 
case tr6nb5b and case tr6nb5d) between 90 ° to 100 ° as well as from the sign changes 
in the friction coefficient in Fig. 7. Hence, these predictions do simulate an experi- 
mentally observed phenomenon (see also Fig. 9) but at an effectively lower Reynolds 
number compared to the experiments. When the transition point corresponds to 
a location upstream of the separation point, i.e. supercritical flow regime, this 
manifests itself by a sudden increase in the wall shear stress as it is depicted in Fig. 7 
(case tr6nb5a, tr6nb5c). This is also an experimentally observed phenomenon as it is 
illustrated qualitatively in Fig. 8. Here, the transition to turbulence was enhanced by 
the free stream turbulence, Tu = 0.9%, in the experiments at a Reynolds number of 
4.45 x 105. This suggests that, probably due to the relatively coarse grid used, the 
present calculation produces a solution at an effectively large Reynolds number than 
the imposed one. This may be caused by the influence of the high artificial viscosity 
inherent to the numerical scheme used in the present calculations. This point shall be 
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investigated further by decreasing the grid size. However, before that, we illustrate the 
sensitive nature of the flow in this Reynolds number range by referring to another set 
of experiments, namely that of Fage and Falkner [32]. 

Fig. 9 shows several pressure distributions measured by Fage and Falkner [33] at 
Reynolds numbers close to Re = 1.0 x 105 along with predictions with transitional 
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(cases tr6nb5cv, xtr = 0.026d; tr6nb5dv, Xtr = 0.3d), fully laminar (case lam6nb5), and 
fully turbulent calculations (case tur6nb5). The experiments show the significant 
effects of the Reynolds number and free stream turbulence on the flow regime in this 
Reynolds number range. Increasing the Reynolds number from 1.06 × 105 to 2.12 × 
105 causes the flow to switch from the subcritical to supercritical regime. Introducing 
some turbulence to the approaching stream, via thin ropes in this case, at 
Re = 1.08 × 105 results in a critical flow regime with the reattachment bubble present. 
Another case with a blockage ratio of 6.1% as opposed to 12.3% for the other cases 
shows the influence of blockage which seems not to be so large for these experiments. 
It is interesting to note that at Re = 1.0 x 105 all three flow regimes can be produced 
numerically by simply manipulating the location of transition in the model. This 
confirms the assertion that the flow is very sensitive to any disturbances in this 
Reynolds number range. The occasionally obtained good agreement between experi- 
ments and predictions in this figure may also be deceiving as it shall be illustrated next 
by using a finer grid distribution. 

3.4. Fine grid solution 

Fig. 10 shows the calculated pressure distribution in comparison with experiments 
for the same Reynolds number as before (Re = 1.0 × l0 s) but with a much finer grid of 
100 × 150 (y-, x-directions) described in Section 2. Comparison of this figure with 
Fig. 6 shows the significant grid dependence of previous calculations. The experi- 
mental data is bounded by the fully turbulent and the fully laminar calculations except 
for the base pressure coefficient. A good agreement is obtained with the transitional 
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model with q~tr > 110 °. The significant improvement in the predicted base pressure 
coefficient with transition is noteworthy. The corresponding skin friction distribution 
is presented in Fig. 11. Here the focus should be on the shapes and sign changes rather 
than the actual magnitude because the wall shear stress, rw, is indirectly approximated 
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from calculated velocity profiles. Nevertheless, this figure shows that with the 
transitional model the location of the separation is predicted at 82 ° in close agreement 
with experiments. The oscillations seen in the wake region with the fully laminar 
model are suppressed to a large extent when the transition is imposed. These 
oscillations, which are not seen in measurements, were also present in the time 
averaged skin friction distributions presented by Ishii et al. [8] from their unsteady, 
two-dimensional calculations with no turbulence model. It seems that these are the 
results of instabilities arising from the intermittent characteristic of the transitional 
flow immediately after separation. The experiments indicate a fully turbulent flow in 
this region without any oscillations in the ~, distribution. When the fully turbulent 
flow model is used, the predictions do not show such oscillations. 

One other interesting feature of the fine grid solution with the fully turbulent model 
is the sudden increase in ~, around q~ = 70 o. This indicates a fairly sharp transition 
from laminar to turbulent flow in the boundary layer as it is seen in Fig. 12 from the 
dimensionless eddy viscosity variations. For these calculations the first point was at 
about 0.015 % of the cylinder diameter from the surface. The calculated eddy viscosity 
at this point was less than the laminar viscosity (see Fig. 12). It is interesting to note 
that a transition to turbulence is predicted in both axial and radial directions as it is 
depicted in Fig. 12. 

3.5. Comparison with other calculations 

In Figs. 13 and 14 we present a comparison of previous computations from the 
literature with each other, as well as with experiments and our own calculations. The 
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references cited in these figures are discussed in Section 1.2 and a summary is given in 
Table 1. 

Fig. 13 shows the comparison of previous computations with various experimental 
data corrected for blockage. Franke's [18] predictions with the two-zone k-~, model 
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resembles our predictions with the fully laminar model. The predictions by Franke 
were obtained by time averaging from unsteady, two-dimensional calculations. In this 
respect they should account for the influence of vortex shedding phenomenon. It is 
surprising to see that the predicted base pressure is still too low in absolute value. The 
two-zone Reynolds stress transport model predictions (2ZLRR) of Franke seem to 
give a better agreement with experiments except in the vicinity of the rear stagnation 
point. Here, an unexpected increase is observed in the magnitude of the calculated 
base pressure. The pseudo-LES of Kato and Ikegawa 1-19] does not predict the 
subcritical nature of the flow; the base pressure is too high contrary to all other 
calculations. The reader is reminded that Kato and Ikegawa's calculations are for 
Re = 1.0 x 104 and include some ad hoc transition criteria in the direction normal to 
the cylinder surface. Their full 3D LES results are in good agreement with experiments 
except for the base pressure which is relatively large. The two-dimensional pseudo- 
large-eddy simulations (2D PLES) of Song and Yuan [13] are as good as the 3D LES 
by Kato and Ikegawa. Intuitively, these calculations should give significantly different 
results (see for example 2D versus 3D calculations presented by Tamura et al. [12]). 
An explanation to this may be found in different ways of handling the boundary 
layers, and the different subgrid coefficients used in the Smagorinsky model. The 
particular grid distribution used by each investigator may also play a role. 

In Fig. 14 the computations presented in Fig. 13 are compared with another set of 
experiments [33]. This figure also confirms the good agreement obtained with the 3D 
LES [19] and the 2ZLRR model predictions [18]. The 2D PLES of Kato and 
Ikegawa seems to result in a critical flow regime like our own calculations with 
a course grid (see Fig. 12) which indicates that these calculations are most probably 
grid dependent. 

In Fig. 15 we compare our fine grid simulations with the fully laminar and the 
transitional model with other computation. It is seen that our 2D steady calculations 
are in good agreement with the 3D LES of Kato and Ikegawa, and the 2ZLRR model 
predictions of Franke. Our calculations predict a relatively low base pressure coeffic- 
ient in magnitude compared to the others. However, we cannot say that this is because 
of the fact that we did not account for the effects of the unsteady vortex shedding. The 
2D unsteady calculations with the 2Zk-~ model by Franke do also produce low base 
pressure coefficient. 

3.6. Supercritical flow simulations 

Simulations were also performed for a fully turbulent flow at a Reynolds number of 
3.6 × 106. This case was experimentally investigated by Achenbach [11]. He used 
a pressurized wind tunnel with a blockage ratio of 17.75% and a free stream 
turbulence intensity less than 0.7%. The measured pressure distribution (Fig. 16), 
separation angle, and drag coefficient all indicate a supercritical flow. According to 
Achenbach, in his experiments the critical flow regime covered a range of 
3 x 105 < Re < 1.5 x 106. In Fig. 16, representative calculated pressure distributions 
from this work and from the literature are compared with Achenbach's experimental 
data. In this figure both corrected and uncorrected pressure coefficients for blockage 
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are depicted for comparison. Predictions with the 40 x 40 grid show similar character- 
istics to Majumdar and Rodi's predictions with their 38 × 51 grid. Simulations with 
finer grids (80 x 80, 80 × 120 and 100 x 150) improve the predictions significantly as 
shown in Fig. 16. With the 80× 120 and 100x 150 grids, the separation angle is 
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predicted at 118 °. This is in good agreement with the measured value of 115 o. The 
predictions with the 100 x 150 grid were practically the same as those with the 
80 x 120 grid. This indicates that the predictions with the 100 x 150 grid are most 
probably grid independent. The significant improvement in the prediction of the base 
pressure compared to the previous predictions is noteworthy. However, there is still 
a significant difference between the measured and calculated base pressures. As 
suggested by Majumdar and Rodi, one reason may be that the model does not 
account for the effects of vortex shedding. Another contributing factor may be the 
well-known shortcomings of the standard k - e  turbulence model in predicting separ- 
ated flows with strong adverse pressure gradients [34]. 

An important difference between the 100 x 150 grid simulations and the coarser 
40 x 40 grid simulations is the location of the first grid point. For the 100 x 150 grid 
the y÷ value at the first grid point ranged from 2 to 18 from ~b = 0 ° to 180 °. For the 
40 x 40 grid the y ÷ value ranged from 11 to 81 from ff = 0 o to 180 °. Depending on the 
way the shear stress is calculated these y÷ values can be smaller by about a factor of 2. 
As mentioned earlier, when the first point is very close to the wall the usual wall 
boundary conditions for k and e should not have a strong influence on conditions 
farther away from the wall [1]. Hence, the nearer the first grid point to the surface, the 
less important should be the uncertainties involved in the wall function approach as 
far as the mean flow predictions are concerned. Indeed, this seems to be the case in the 
present simulations. 

Sugavanam and Wu [9,10] have published predictions showing exceptional agree- 
ment with Achenbach's experimental data (as it appears in their paper). However, 
Majumdar and Rodi [1] questioned Sugavanam and Wu's predictions. The present 
authors agree with Majumdar and Rodi. We duplicated Sugavanam and Wu's grid 
but our predictions were quite different from theirs. This is perplexing because the 
turbulence model and the wall functions are essentially the same. Furthermore, our 
studies indicate that the 20 cells used by them in the azimuthal direction are far too 
few to produce a grid independent prediction. 

Fig. 17 compares the measured and the calculated wall shear stress, z,,, distribution. 
It is seen that the measurements are not symmetric on the two sides of the 
cylinder. This is characteristic of the flow regime in the critical flow regime. It is not 
clear whether the supercritical flow regime is fully established at this Reynolds 
number. The predictions with the standard wall functions over predict the shear stress 
by a factor of 3. The maximum dimensionless shear stress is predicted as 13.7 at 70 o. 
The flow separation is predicted at 117 o. The measured Zmax is about 4 at 65 °, and q~s 
is 115 °. Our predictions are comparable to Majumdar and Rodi's predictions (not 
shown here) with the 38 x 51 grid. They reported a maximum dimensionless shear 
stress of 11.25 at or about 65 °. Since for the fine grid solution the first grid was in the 
sublayer or at most in the buffer layer, we calculated the shear stress also from 

--- Iz(du/dy). The derivative of the velocity was approximated from the first two 
grid points. This is consistent with the velocity being proportional to the distance, 
y, from the wall within the sublayer. The shear stress calculated from the derivative 
of the velocity was not significantly different than the one calculated from the 
log-law. 
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3.7. Pressure gradient effects 

It is well known (see e.g., Ref. [26]) that the boundary layer around a circular 
cylinder does not exhibit a state of local equilibrium, i.e., the production of turbulent 
kinetic energy, k, is not equal to its rate of dissipation, r,. This is especially true near the 
separation point. The deviation of velocity profiles from that of the equilibrium 
boundary layers as a result of pressure gradient effects was investigated by Patel [35]. 
He proposed a modified log-law which explicitly includes the pressure gradient as 
a parameter. Since most of the discrepancies between the predictions and the measure- 
ments are seen in the adverse pressure gradient region, it is plausible that using Patel's 
wall function formulation should improve the predictions. Preliminary calculations of 
the wall shear stress using Paters function did indeed indicate this. However, at the 
time of this report a careful study had not been completed - a full implementation of 
the new wall function is necessary before reaching a definite conclusion. An alternative 
way of accounting for the pressure gradient effects is to use a one-equation turbulence 
model [34] in the near wall region as suggested by Patel [36]. This approach employs 
a prescribed mixing length distribution which does not seem to be affected by the 
pressure gradient. 

3.8. Wag damping oJ'v~ 

In some calculations (see, e.g., Refs. [13,19] ) the eddy viscosity, v,, is modified in the 
vicinity of the wall to account for wall damping. This was also investigated by us. Our 
predictions (not shown here) like those of the above authors with wall damping gave 
excellent agreement between predicted and measured pressure distribution at 
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Re = 3.6 × 10 6 and Re = 8.4 × 10 6. However, a close examination of the velocity 
profiles in the boundary layer revealed unreasonable multiple inflection points prior 
to separation. For this reason, we did not include these predictions in this paper, but 
they can be found in a report by Celik and Shaffer [23]. Since the other authors did 
not present details of the velocity profiles, it is not possible to access their results from 
this perspective. 

4. Conclusions 

The mean turbulent flow past "smooth" circular cylinders is analyzed using a 
readily available Navier-Stokes solver. Attention was focused on subcritical and 
supercritical flow regimes. For the subcritical flow regime, fairly good agreement can 
be obtained up to and including the separation point between experiments and 
predictions with the transitional model. This is contingent on having a sufficient 
number of grid points placed in the thin boundary layer of the cylinder. After the 
separation point agreement between predictions and experimental data is not so 
good. This could be attributed to the fact that the model does not account for the 
presence of vortex shedding, the influence of which should be seen immediately after 
the separation point. However, predictions from the literature including unsteady 
vortex shedding do not indicate a significant improvement in this region. Other effects 
such as surface roughness and the presence of an adverse pressure gradient are 
probably important. 

For the supercritical flow predictions, we found that the pressure distribution, and 
the location of separation can be predicted in fairly good agreement with measure- 
ments. But, the wall shear stress is over predicted with unreasonably high values. This 
should be the result of the actual distribution of the turbulent eddy viscosity in the 
boundary layer. As with the subcritical case, the predictions are strongly influenced by 
the grid distribution in the boundary layer. Our best predictions are achieved when 
the first grid point is placed within the viscous sublayer. 

In all cases a lower pressure coefficient in absolute value is predicted compared 
to experiments. Considering only mean flow quantities, it has been found that 
when carefully applied, and the grid is distributed properly, the long time- 
averaged solutions using the standard k - e  model with a transition criteria are as 
good as those of more expensive models. A true comparison with large-eddy 
simulations cannot be made because the only three-dimensional transient LESs 
known to us was performed at Re = 1.0 x 10 4 with ad hoc transition criteria in 
the boundary layer. Furthermore, in these calculations grid dependency was not 
investigated. 

Finally, there is some incertitude when simulations are evaluated using the experi- 
mental data presented in this paper. For example, to draw definite conclusions the 
exact experimental conditions, including the tunnel blockage and the surface rough- 
ness, must be simulated. This, of course, is not always possible. We suggest that in 
addition to evaluation by experimental data, predictions be compared with bench 
mark cases produced by direct or by strictly large eddy simulations. 
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Appendix A 

Equations f o r  the s tandard k - e  model  

k-equa t i on :  

Ui~--  = + Pk -- e. 
(~xi Ox# 

(A.1) 
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e-equation: 

U'sx~ -5x,\cr~Sx,/+ C ~ P k  -- C2,,-k, (A.2) 

where 

(SUi ~U~SU, 
Pk = V, \ ~ X j  + ~ X / / ~ X  ~ , (A.3) 

v, = C~,k2/I ". (A.4) 

Wall function 

1 
U/u, = - In (Ewallyu,/v), (A.5) 

K 

where ak, at, C1~, C2,:, and EwaH, a r e  the model  constants  u ,  is the wall friction 
velocity, v is the kinemat ic  viscosity, and v, is the turbulent  eddy viscosity. 


