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SUMMARY

Because of the multiple layers of dissimilar materials and large deformations involved in the subsidence of
a land"ll system, large-scale computer simulation of the geomechanical response to subsidence with the use
of conventional numerical methods are problematic. The Material Point (MPM),1,2 which was recently
developed for dynamic problems such as penetration and perforation, is a newly emerging numerical
method. The MPM is modi"ed in this paper to simulate the geomechanical response of a land"ll cover
system that includes a geomembrane under quasi-static loading conditions. Sample problems, for which an
analytical solution is available with certain assumptions, are considered to demonstrate the proposed
solution procedure. Future work is discussed based on current research results. Copyright ( 1999 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The degradation and creep of the contents of a land"ll will cause the surface to subside. The
amount of subsidence can be very large, on the order of 25 per cent or more of the original height
of the waste.3 These large deformations cause a number of deletrious e!ects on the surface cover
system. The surface cover, an engineered system comprised layers of soils and synthetic materials,
is principally designed to limit water movement into the underlying waste. A principal concern
regarding subsidence is its a!ect on low-permeability barrier layers within the cover system.
Compacted soil layers have historically been a common barrier layer component of many land"ll
covers. Compacted soil layers are susceptible to tension cracking and multiple shear rupturing
in response to subsidence (e.g. References 4 and 5), resulting in dramatic increases in their
hydraulic conductivity. Many newer land"ll cover systems now incorporate geomembranes
(e.g. high-density polyethylene) which are often placed on the top of a compacted soil layer to
form a composite barrier to in"ltration of water through the cover system. An attribute of
geomembranes in contrast to compacted soil layers is that they can withstand large tensile
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strains corresponding to large di!erential settlements (e.g. Reference 6). Oweis7 sugges-
ted that geomembrane may be able to support di!erential settlements well in excess of
10 per cent.

Due to the highly nonlinear response, numerical simulations are commonly used to predict the
impact of subsidence on the integrity of a land"ll cover. The "nite element method has been used
in many cases (e.g. References 8 and 9). Simulating subsidence of a land"ll cover that includes
a geomembrane is challenging for existing numerical methods as the cover includes multiple
layers of dissimilar materials experiencing very large absolute and relative deformations. To
accommodate the expected di!erential movement between the soil layers and the geosynthetic
layers, interface elements are usually used to simulate a frictional interface. To obtain reasonable
results, "ne discretization is required in the vicinity of the subsided zone, resulting in a huge
degrees of freedom. Additionally, the numerical formulation must be capable of simulating the
large strains anticipated for these subsidence problems. When localization occurs, a robust spatial
discretization scheme is needed to simulate the evolution of localization with least computational
cost.

The Material Point Method is a newly emerging numerical method which may by e!ective for
simulating certain geomechanical problems such as the response of a land"ll cover system that
involves a geomembrane to subsidence. The MPM utilizes two di!erent elements: material
elements (or points) and spatial elements. Material points carry all of the material speci"c
information such as mass, strain, velocity, acceleration, energy, and internal state variables. These
variables are updated as Lagrangian quantities which ensures that this approach has little
numerical dissipation. A "xed Eulerian grid which comprised spatial elements is used to
determine spatial gradients. Since the spatial grid is independent of the movement and deforma-
tion of the material, there is no mesh entanglement and no need to update the grid. The MPM has
successfully been applied to those problems such as penetration, impact and large rotation of
solid bodies,1,2,10 but has not yet been applied to geotechnical problems under quasi-static
loading conditions.

In this paper, the MPM is applied to the problem of subsidence of land"ll covers that include
geomembranes. A brief description of the MPM is given "rst, followed by a description of
modi"cations and additions necessary to simulate the subsidence problem. An example problem
is presented to compare simpli"ed analytical solutions with the numerical results using the MPM.
The paper concludes with a discussion and summary of the use of the MPM for geotechnical
problems.

2. MATERIAL POINT METHOD

The Material Point Method (MPM) is an extension of the particle-in-cell method in solid
mechanics. This method has initially been developed for and successfully applied to problems
with large deformations, large rotations, and large displacements such as collision, rebound, and
impact of solids; penetration, perforation, and crack propagation; forging, extrusion, metal
rolling, and cutting; and #uid}structure interaction. Since there are large deformations, rotations,
and displacements associated with land"lls, the MPM may be an appropriate numerical method
for simulating the structural response of materials in and surrounding land"lls. This section
provides a brief description on the MPM and its numerical implementations in which key points
that distinguish this approach from others are emphasized. A detailed description and discussion
of the MPM can be found in References 1 and 2.
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2.1. Introduction of the material point method

In the 1960s, the particle-in-cell method (PIC)11 was introduced for describing a highly
distorted #ow. The method is able to resolve a contact discontinuity because of the Lagrangian
representation of mass so that details of the deformation and movement of a body can be followed
during the entire loading process. PIC was not widely used because of its unacceptable numerical
dissipation caused by its partial Lagrangian scheme in that only mass and position are attributed
to each particle.

FLIP12 is a fully Lagrangian implicit particle method for #uid #ow. It improved PIC with the
use of a fully Lagrangian representation which eliminates the major source of numerical
dissipation while preserving the ability to resolve a contact discontinuity. Burgess et al.13 show
that FLIP attributes all of the properties, including momentum and energy of a #uid, to material
points so that di!usion of these variables is eliminated just as mass di!usion is eliminated in PIC
by making the mass a Lagrangian variable. To eliminate the multistreaming, FLIP calculates the
material point displacement by interpolating from the grid velocity "eld. FLIP has been shown to
have several desirable advantages, among them Galilean invariance, low dissipation, conserva-
tion of momentum and energy, and improved stability over the earlier PIC method. These
properties make FLIP an e!ective procedure for simulating a highly distorted #uid #ow and
resolving contact discontinuity in a wide range of problems, including hydrodynamic stability,
suspension #ows,14 strength of material problems, chemically reacting #ows, and magnetic
reconnection.

Sulsky et al.15,16 "rst extended FLIP to solid mechanics where it is referred to the
material point method or MPM for materials associated with history-dependent state vari-
ables. Recently, the MPM has been used to analyse the large deformation problems of
history-dependent materials,1,2 which circumvents some of the major obstacles encountered in
the pure Lagrangian or Eulerian methods, and traditional arbitrary Lagrangian and Eulerian
methods.

2.2. Numerical implementation

As shown in Figure 1, two di!erent and independent elements are introduced in the MPM to
take advantage of both Eulerian and Lagrangian features: spatial elements represented by
rectangles, and material elements by dotted polygons identi"ed with material points (solid
circles). Material points represent di!erent materials and carry all the information such as mass,
strain, stress, velocity, acceleration, momentum, and energy. All these variables are updated as
Lagrangian quantities which ensures that this approach has little numerical dissipation. The
computational grid is constructed of spatial elements which are used to determine spatial
gradients and to interpret the interaction between material points using a "nite element frame-
work. Since the spatial grid is independent of the movement and deformation of the material,
there is no mesh entanglement and no need to update the grid. Additionally, since all the material
points are tracked for the entire loading process, the MPM can simulate path-dependent
responses without introducing errors. The convective phase of this method is carried out by the
movement between material points and computational grid.

The complete algorithm consists of the following steps: (1) a Lagrangian phase where the
equations of motion are solved in an updated Lagrangian frame on the grid; (2) a convective
phase where the particles are updated and the grid is rede"ned; (3) a transformation process in
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Figure 1. MPM method

which the information is mapped from the material points to a grid. These three steps are
described brie#y as follows.

In the MPM, the discrete momentum equation associated with the node is solved on the spatial
grid:
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is a lumped mass on the ith node, A
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the acceleration vector, and F*/5
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and external force vectors, respectively. The solution in a Lagrangian frame means that the
non-linear convective terms, that are troublesome in purely Eulerian calculations, do not appear
in the formulation. Once the accelerations at the grid nodes are determined, an explicit time
integration gives values for the nodal velocity vector, V

i
, as follows:
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where *t is the time increment, i.e. *t"tk!tk~1. The nodal position vector, X
i
, is given by
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The convection phase is performed by moving material points along with the grid and "xing
them at the new position while shifting the computational grid back to its original position.
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During the entire calculation cycle, however, equation (3) is never used since the computational
grid always keeps the same shape at the same position for convenience. Velocities and positions of
material points can be updated by
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is the mapping function associated with the ith node and evaluated at the position X
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and N is the number of nodes associated with that material point. Strain rate at a material point,
e5
p
, can be calculated based on its velocity gradients, and the corresponding stress rate, p5

p
, can be

obtained by applying constitutive equations to that material point. The total stress at the material
point can be updated by
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In order to solve the discrete momentum equation for next time step, information must be
transferred from the material points to the grid nodes. The equation to obtain the nodal mass
from material points is
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in which N
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is the number of material points associated with that grid node. Since there are
generally more material points than grid nodes, a weighted least-squares approach is used to
determine nodal velocities from the velocities at the material points to initialize next time step.
The weighting factor is the mass of the material point. The result is the following equation which
must be solved for the nodal velocities, V
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The internal force can be formed by
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in which GT
ip

is the gradient of mapping function associated with the ith node and evaluated at the
material point position X

p
. This completes the computational cycle. With the use of these

updated nodal values at the grid, a new cycle can begin.
In comparison with traditional "nite element methods, the MPM has the following essential

features:

(1) When the material points move, they transport material properties assigned to them
without error. The grid has no permanent information and can be chosen in any convenient
manner, for example, adaptive grids can be used to resolve sharp gradients or interfaces.
A particularly simple choice is the regular square mesh that is used in our numerical
examples.
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(2) Since nodal basis functions are used to map the nodal velocity continuously to the interior
of the spatial element, the position of the material points are updated by moving them in
a single-valued, continuous velocity "eld. Similarly, the velocity of a material point is
updated by mapping the nodal accelerations to the material point position. The single-
valued velocity "eld precludes interpenetration of material. This feature of the algorithm
allows simulation of land"ll problems with multiple layers with widely di!erent properties
without the need for a special contact algorithm.

3. MODIFICATIONS TO THE MPM

3.1. Partition method

The MPM is based on a dynamic framework. For quasi-static problems, a signi"cant unbal-
anced force "eld appear when material points cross spatial cell boundaries.10 Thus a modi"cation
to the MPM is needed for quasi-static problems.

Consider the two-dimensional problem shown in Figure 2. An elastic bar is "xed at one end
and uniaxial loading is applied quasi-statically at its free end. Figure 2(a) shows the initial
con"guration and Figure 2(b) is the deformed con"guration where two material points have
crossed the cell boundary. There is no external force at the internal node i if the gravity force is
ignored. The internal force at that node should be zero at the equilibrium state, and can be
calculated by equation (9).

Figure 2. An elastic bar under uniaxial loading
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If the summation is performed in the manner of sweeping over element by element, equation (9)
can be written as
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in which the subscript denotes that a quantity is related to a cell. For an incompressible material
and with uni"ed mass setting for each material point, m
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is a constant. Under the assumption of

equilibrium in an elastic calculation, p4
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is also a constant so that equation (10) becomes
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By using a bilinear mapping function, the value of its gradient at a grid node will be
independent of the material point position in an element and may change its sign in
another element. For a symmetric problem under a uniaxial loading the above equation
reduces to
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where N
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are the number of material points in the left and right cell and c is the constant

associated with gradients. This result shows that the force "eld at the interior of the bar is zero
initially and it maintains zero under a static loading process until material points cross the cell
boundary (Figure 2). With a perfect square material point generation algorithm and under
a uniaxial loading, the di!erence, N
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Equation (13) can be also used as an absolute error measure since the internal force should be
zero for a static calculation. It also indicates that the solution will be improved with increasing the
number of material points per cell. Practically, a partition MPM algorithm (PMPM) proposed in
this paper views a material point as a "nite continuum when it crosses a cell boundary. In
PMPM, a material point maintains the original undeformed shape during its entire deformation
history. This treatment makes boundary crossing process in a gradual manner instead of
a suddenly movement from one cell to the another. The following "gure illustrates di!erent cases
of boundary crossing and the arrows show how a quantity is mapped from split material points to
grid nodes. With this modi"cation, the internal force and mass calculations at grid nodes take
following forms (derivations are given in Appendix I):
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Figure 3. Illustration of di!erent boundary crossing cases

For the problem, illustrated in Figure 2, the internal force can be written as follows:

F*/5
i
"!

Nc

+
c/1

Nq

+
q/1

Np

+
p/1

m
pqc

(GT
ipqc

p4
pqc

)S
ipqc

(16)

then, the assumptions of incompressible material, equilibrium state and elastic calculation give
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in which C
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denote the left spatial element and right spatial element, respectively. For

small deformations, the summations of mass on a grid node in equation (18) are the same, i.e.,
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. This leads to existence of the following limit with re"ning a mesh:
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is the number of spatial elements. The corresponding strain expression is as follows (its

derivation is given in Appendix II):
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The equations given in this section are similar in form to those given in Section 2 but with some
important di!erences in both physical concept and numerical results. In PMPM, the cell mass,
m

c
, which is the summation of total mass in a cell is almost unchanged. It e!ectively removes the

jump in both force and velocity "elds when a material point crosses a cell boundary. The
numerical algorithm is basically the same as the one discussed in Section 2 except using equations
14, 15 and 20 to calculate the internal force, mass, and strain.
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3.2. Interface algorithm

The MPM provides a natural no-slip and no-interpenetration contact algorithm. For many
geomechanical problems, frictional interfaces are required. Land"ll covers, for example, typically
have a number of discrete frictional interfaces such as geomembranes and adjacent soils.
A friction interface algorithm is proposed in this paper that provides an easy way to change the
boundary conditions of interfaces such as soil}geomembrane contact surfaces or interfaces. With
a geomembrane, slip is possible on both its upper and lower surfaces. No-slip and free-slip are
extreme conditions of friction. No-slip is perfect friction where a material layer adheres to another
material layer. Free-slip represents zero friction where the tangential motion of one material is
not a!ected by the other. Interface modelling is often a cumbersome task in "nite element codes.
In contrast, the MPM provides a readily accessible framework to model interface boundaries. In
the MPM, a no-interpenetration boundary condition is accomplished by moving material points
in an uni"ed velocity "eld. Since interpenetration has nothing to do with the tangential velocity
but friction force does on the interfaces, we can convert the friction force into tangential velocity
"eld and allow certain slip between di!erent material layers according to the friction criterion
applied on the interface. In the meantime, the normal velocity "eld remains the same for all
di!erent material layers. To implement the algorithm, it is necessary to "nd the unit normal to the
interface surfaces and at its external grid nodes, "nd the normal velocity and tangential velocity
on the interfaces, and keep the normal velocity unchanged and modify the tangential velocity to
meet the friction boundary conditions at external grid nodes.

The appropriate grid nodes at which to apply the friction interface boundary conditions are
determined with the deformation history during the MPM calculation. To simplify the deter-
minations of the nearest external grid nodes and the tangential and normal directions at those
nodes, a single layer of material points was used to represent a geomembrane layer. It is easy to
label external nodes by sweeping the single layer material points. The unit tangential and normal
vectors can be determined based on the position vectors of the adjacent material points. The
tangential and normal directions on the upper and lower interfaces of the geomembrane are in the
opposite direction. The e!ect of the friction conditions was modelled by adjusting the force "eld
at the selected external grid nodes.

To allow more complexity of the deformed shape of a geomembrane, a general scheme of
determining external grid nodes and outward surface unit normal are proposed by Reference 2.
The scheme begins by tagging material points comprising the geomembrane with a &colour' of
one, while the material points comprising other materials are given a &colour' of zero. Only the
non-zero color will contribute to selection of external grid points and unit normal. The colour of
each material points in a cell is summed up and the number of points in each cell is also summed.
Every points is counted independently of its assigned colour. The total colour of the cell is then
divided by the number of points in that cell, allowing for &mixed' cells containing points from
multiple materials where some points contribute to the total colour and others do not. Cells
containing points from multiple materials have an average colour of less than one. The average
colour is understood to be assigned at the centre of the cell. A mapping of the gradient of the
average colour is made from the centre of the cell to the cell grid nodes. The gradient mapping
scheme is equivalent to "nding a central di!erence of the average colour between the centre of
each cell in the x- as well as in the y-direction. The x and y components of the gradient of colour
are zero at grid nodes internal to the material where no gradient exists, and non-zero at grid
nodes in a surface region external to a material where gradients of colour do exist. All the grid
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Figure 4. Flow diagram for Coulomb friction-slip cover subsidence algorithm

nodes associated with non-zero normal are tagged as the external grid nodes where Coulomb
friction-slip is enforced to establish the desired interface between materials.

The algorithmic representation of Coulomb friction-slip enforces interface conditions on both
the forces and velocities at selected external grid nodes on the geomembrane interfaces. To
illustrate the logic of a Coulomb friction-slip contact algorithm, the interface conditions of
Coulomb friction-slip in terms of force "eld are shown as a #ow diagram in Figure 4, in which
F
$*&&

is the adjustment on tangential force component, F and F
&*/!-

are the total force before and
after adjustment, respectively. This approach is di$cult to be implemented since there is no force
"eld directly related to the material points in a MPM calculation. The key to implement the
interface algorithm is to work with the velocity variables at the material points rather than the
force "eld variables at the spatial nodes, thus avoiding inconsistent friction conditions at di!erent
associated grid nodes for a interface material point. The #ow diagram of the modi"ed algorithm
representation is shown in Figure 5. The formulations in velocity form are obtained by simply
applying F*t"*Vm to the one in force form.

The friction velocity is de"ned as the normal velocity times a friction factor, k<
n
. Having

obtained the tangential and normal velocities, the modi"ed algorithm tests for velocity at
a interface material point by whether or not the tangential velocity on the interface under the
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Figure 5. Flow diagram for modi"ed algorithm

assumption of no-slip condition is greater than the friction velocity. If this condition fails,
interface treatment is not active, assuming that the friction force on the interface material point
has not increased to a su$cient value to cause friction-slip. If the condition is satis"ed, the
algorithm will adjust the velocity to be consistent with the slippage associated with friction force
by subtracting the di!erence between the no-slip tangential velocity and the friction velocity.
A sign function is employed for when the inner product of the velocity and tangential is greater or
less than zero. Slippage occurs because adhering to adjacent material is not enforced by
permitting the geomembrane to have a tangential velocity that di!ers from that of the adjacent
material. No-interpenetration is retained since the normal velocity of a interface material point
remains the same.

4. ANALYSIS OF GEOMEMBRANE RESPONSE TO LANDFILL SUBSIDENCE

In this section, an example problem is considered to simulate the subsidence of a land"ll cover.
The land"ll cover consists of a cover soil overlying a geomembrane and the waste underneath.
The simplicity of the design belies the complicated behaviour that occurs due to the di!erences in
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material properties between the soil and the geomembrane. If possible, it is useful to compare the
simulation results to an analytical solution. With certain assumptions, an analytical solution
exists for the stress and strain in a geomembrane that develops in a soil}geomembrane system
overlying a void. Thus, the numerical simulations will focus on the stress and strain that develop
in a geomembrane in response to subsidence from below, in order to compare them to an
analytical solution.

4.1. Numerical simulations

The problem con"guration is shown in Figure 6. To demonstrate the proposed procedure, the
height of the soil, geomembrane and waste are 8, 1 and 30 mm, respectively. To induce subsid-
ence, a very soft material of 6 mm diameter is introduced immediately below the geomembrane.
Because the cover soil is essentially just a load to this boundary value problem, a soil density is
chosen for the current soil dimension so that the resulting soil unit weight on the geomembrane is
the same as that in the real cases. We apply di!erent soil unit weights by simply changing soil
densities as shown in Table I. The external load on the geomembrane is due to the soil weight in
this quasi-static case. Soils and waste are modelled as Drucker}Prager elastoplastic materials,
and the geomembrane is assumed to be von Mises elastoplastic. To compare numerical solutions
with analytical solutions, only the elastic response is considered here with elastic properties and
unit weights for the materials being given in Table I, and perfect bonding is assumed between
di!erent material layers so no friction occurs along the interface.

The simulated deformations for load I are shown in Figure 7. At the centre of the subsided
zone, the geomembrane deforms 1 mm. For load II, the maximum geomembrane deformation

Figure 6. Geometry of a land"ll problem
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Table I. Material properties

Young's Poisson's ratio Unit weight I Unit weight II
modulus (kg/m3) (kg/m3)
(GPa)

Soil 0)1317 0)25 7,500,000,000 1,500,000,000
Geomembrane 0)2070 0)40 5,000,000 9,550,000
Waste 0)1317 0)20 1,000,000 2,000,000
Soft material 0)0034 0)30 1,000 2,000

Figure 7. Deformation contour plot

increases to 2 mm. The geomembrane deforms outside the boundary of the subsided zone, as does
the overlying soil. In Figure 8, the axial strain in the geomembrane is given with the centre of soft
material (6 mm diameter) being at X"15 mm, revealing a maximum axial strain of about 6 and
12 per cent for the load levels I and II, respectively. The strain level dissipates rapidly because the
strain is transferred rapidly across the interface from the geomembrane to the adjacent relatively
sti! soil.

It is interesting to compare the results from the simulations with an analytical solution for the
stress and strain that develops in a geomembrane which overlies a void.17 The void is intended to
represent sinkholes, cavities, and depressions in soils due to di!erential settlements or localized
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Figure 8. Axial strain in geomembrane

subsidence. The solution was developed by combining tensioned membrane theory for the
geomembrane with arching theory for the overlying soil. Arching theory is "rst used to calculate
the pressure p on the geomembrane over the void, which yields

p"2c b (1!e0>5]H/b )#qe~0>5]H/b (21)

where c is the unit weight of the soil, b is the width of the void, H is the height of the overlying soil,
and q is a surface load. This equation assumes a constant lateral earth pressure in the soil zone
where the arching develops. Tensioned membrane theory is used to determine the stress and
strain of the geomembrane due to the pressure from the overlying soil. The axial stress p in the
geomembrane is given by

p"
pb)

t
(22)

where t is the thickness of the geomembrane and ) is a dimensionless factor de"ned by

)"

1

4
]A

2y

b
#

b

2yB (23)

where y is the deformation of the geomembrane over the middle of the void. The strain e in the
geomembrane is

e"2) sin~1A
1

2)B!1 (24)

1990 S. ZHOU E¹ A¸.

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 1977}1994 (1999)



Figure 9. Axial stress in geomembrane

The above solution is developed assuming that the strain in the geomembrane immediately
overlying the void is uniform and the strain is zero outside the void area.

For the material properties and geometry used for the numerical simulations with the
assumption that the very soft material is equivalent to a void, the calculated constant strain and
stress in the geomembrane in response to the load level II are 27 per cent and 28)5 MPa,
respectively. The much greater strain predicted by the analytical solution is a consequence of the
assumption that the geomembrane does not deform outside the boundaries of the void. In
contrast, the numerical simulation indicates that the geomembrane experiences strain well away
from the void as shown in Figure 8, consistent with one's expectations. The stress that is predicted
by the analytical solution, is closer to the numerical simulation which might be due to the
assumed shape of the deformation, or the load p acting on the geomembrane from the overlying
soil being similar to that calculated numerically.

5. CONCLUSION

In the paper, a spatial discretization method, that was newly developed for penetration and
perforation problems, has been modi"ed for geomechanical problems that involve large deforma-
tions and frictional interfaces. The proposed numerical procedure has been compared with
analytical solutions, where perfect bonding is assumed without friction along the interface, for the
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subsidence of a land"ll cover. The results appear to be reasonable in an engineering sense. To
quantitatively verify the proposed procedure, well-designed experiments are required to measure
the real-time evolution of deformation patterns including friction under external load. When the
experimental data become available, advanced constitutive models will be developed to predict
the inelastic response including material and interface failure.

APPENDIX I

Consider the equation of motion

(op4) )+#oB"oA (25)

in which the gradient operator is with respect to the current con"guration, p4 denotes the speci"c
stress which is de"ned to be the Cauchy stress divided by the mass density. The speci"c body force
is B and the acceleration is A. Apply a weighting function, W, to equation (25) and integrate over
the current con"guration, ). After the use of the divergence theorem, the weak form of the
equation of motion can be written as

P)
op4 : W+dl#P oW )B dl#PL)

W ) Sds"P)
oW )A dl (26)

Introduce the Dirac delta function to discrete mass density

o"
Nq

+
q/1

Np

+
p/1

m
pq

d [X!X
pq

] (27)

and nodal basis functions to represent the continuous variables

W
ipq

"

N
+
i/1

W
i
N

i
(X

pq
)

(28)

A
ipq

"

N
+
i/1

A
i
(t)N

i
(X

pq
)

Thus, the terms in equation (26) can be written as

P)
op4 :W+dl"!

N
+
i/1

W
ipq

)
Nq

+
q/1

Np

+
p/1

m
pq

p4
pq
)+NT

i
(X

pq
)

P)
oW )B dl"

N
+
i/1

W
ipq

)
Nq

+
q/1

Np

+
p/1

m
pq

N
i
(X

pq
)B

pq
(29)

PL)
W )Sds"

N
+
i/1

W
ipq

) PL)
N
i
(X

pq
)S ds

P)
oW )A dl"

N
+
i/1

W
ipq

)
Nq

+
q/1

Np

+
p/1

m
pq

NT
i
(X

pq
)N

j
(X

pq
)A

jpq

Denote

S
ipq

"N
i
(X

pq
) GT

ipq
"+NT

i
(X

pq
) (30)
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and
Nq

+
q/1

Np

+
p/1

m
pq

p4
pq
)GT

ipq
"F*/5

Nq

+
q/1

Np

+
p/1

m
pq

S
ipq

B
pq
#PL)

S
ipq

Sds"F%95 (31)

Nq

+
q/1

Np

+
p/1

m
pq

NT
i
(X

pq
)N

j
(X

pq
)"m

ij

with the argument of components of W are arbitrary except for those points where components of
the displacement are prescribed and the understanding that the constraints on the displacement
"eld are invoked, the weak form of the equation of motion yields

N
+
j/1

m
ij
A

j
"F*/5

i
#F%95

i
i"1,2,2,N (32)

in which

F*/5
i
"!

Nq

+
q/1

Np

+
p/1

m
pq

(GT
ipq

p4
pq

)S
ipq

(33)

and

m
ij
"

Nq

+
q/1

Np

+
p/1

m
pq

(ST
ipq

S
pqj

) (34)

APPENDIX II

Strain expression can be directly derived from energy conservation law. Denote the kinematic
energy as K and potential energy as P. With the assumption of no thermal e!ect, the sum of
kinematic energy rate and potential energy rate should be zero, i.e.

KQ "!PQ (35)

Since

KQ "V )F (36)

hence

PQ "!V )F (37)

substitute equation (14) into above equation

PQ "!

N
+
i/1

V
i
)F

i
"

N
+
i/1

V
i
)

Nq

+
q/1

Np

+
p/1

m
pq

(GT
ipq

p4
pq

)S
ipq

"

Nq

+
q/1

Np

+
p/1

m
pq

p4
pq

:
N
+
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V
i
? GT

ipq
S
ipq

(38)
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+
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m
pq

p4
pq

: e
pq
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where

e
pq
"

N
+
i/1

V
i
?GT

ipq
S
ipq

(39)
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