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Comparison of the Baranyimodel
with themodi¢ed Gompertz equation

for modelling thermal inactivation
of Listeria monocytogenes Scott A

R. Xiong*, G. Xie, A. S. Edmondson,
R. H. Linton{ andM. A. Sheard

The Baranyi model was used to ¢t the four commonly observed survival curves: linear curves, those
with a lag phase, those with a tailing phase and sigmoidal curves. It was validated by using published
experimental data for thermal inactivation of Listeria monocytogenes Scott A heated in infant formula
and compared with the modi¢ed Gompertz equation. For the prediction performance, the Baranyi
model was better and more robust than the modi¢ed Gompertz equation. # 1999 Academic Press
Introduction

Thermal inactivation of micro-organisms has
commonly been modelled using the ¢rst order
kinetics. However, deviations from the ¢rst or-
der kinetics are often observed (Cerf 1977, Ka-
mau et al. 1990, Bhaduri et al. 1991, Linton et al.
1995, 1996, Adams and Moss 1997). Sometimes
these deviations can be rationalised on the ba-
sis of some special property of the organism
(Adams and Moss 1997). For example, the often
observed lag and tailing regions in survival
curves may re£ect the presence of clumps of
micro-organisms or a subpopulation of more
heat-resistant micro-organisms. These devia-
tions tend to be more common in the study of
thermal death of vegetative organisms, which
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may re£ect inadequacy of the logarithmic
death concept (Adams and Moss 1997).

To model such nonlinear survival curves for
vegetative organisms, several approaches have
been proposed (Table 1). In earlier studies, var-
ious logistic equations were used. Cerf (1977)
proposed a two-parallel-reactions model for de-
scribing biphasic curves. Kamau et al. (1990)
applied three di¡erent forms of logistic equa-
tion to ¢t various shaped survival curves for
Listeria monocytogenes heated in lactoperoxi-
dase system.Whiting and Buchanan (1992) de-
veloped a logistic equation for describing the
kinetics when there were signi¢cant shoulder
and tailing in survival curves. This model was
applied to non-thermal inactivation of L. mono-
cytogenes (Buchanan et al. 1994, Buchanan and
Golden 1995) and of Staphylococcus aureus
(Whiting et al. 1996). Assuming a distribution
of heat sensitivity within the population of
heated cells, Cole et al. (1993) have also devel-
oped a vitalistic model that has been applied
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Table 1. Models for survival curves

Model Mathematical Formula Reference

First-order kinetics N � N0eÿkt
or

log
N
N0
� ÿ t

D

Cerf
N
N0
� F1e ÿk1t � �1ÿ F1�eÿk2t Cerf (1977)

Kamau For linear survival curves Kamau et al. (1990)
N
N0
� 2

1� ebt

For survival curves with a lag phase

log
N
N0
� log�1� eÿbt1=2 ÿ log�1� eÿbt1=2�

For biphasic survival curves

log
N
N0
� log

2F1

1� eb1t
� 2�1ÿ F1�

1� eb2t

� �

Whiting and Buchanan log
N
N0
� log

F1�1� eÿb1tL�
1� eb1�t ÿ tL�

�
Whiting and

� �1ÿ F1��1� eÿb2tL�
1� eb2�t ÿ tL�

�
Buchanan (1992)

Cole log N � a� oÿ a
1� e4s�� ÿ log t�=�oÿs� Cole et al. (1993)

Gompertz Modi¢ed Gompertz equation

log N � Aÿ Ceÿe
ÿB�t ÿ M�

Bhaduri et al. (1991)
or

log
N
N0
� Ceÿe

BM ÿ Ceÿe
ÿB�tÿM�

Linton et al. (1995, 1996)

Membre log N � �1� log N0� ÿ ekt Membre et al. (1997)
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to thermal destruction kinetics of micro-organ-
isms like L. monocytogenes (Cole et al. 1993,
Stephens et al. 1994), Salmonella typhimurium
(Ellison et al. 1994) or Yersinia enterocolitica
(Little et al. 1994). Recently, Membre et al.
(1997) proposed a logistic function to model
the non-thermal inactivation of S. typhimurium
in reduced calorie mayonnaise.

Nonlinear survival curves have also been
modelled using the modi¢ed Gompertz
equation. The Gompertz equation and its
modi¢ed forms were used primarily in model-
ling the asymmetrical sigmoidal shape of
microbial growth curves (McMeekin et al.
1993, Linton et al. 1995). Bhaduri et al. (1991)
¢rst demonstrated that the modi¢ed Gompertz
equation can model the nonlinear survival
curves for L. monocytogenes heated in liver
sausage slurry, and that it is likely to provide
a more accurate estimate of a micro-organism's
thermal resistance than a ¢rst order kinetic
model when dealing with sigmoidal survival
curves. More recently, Linton et al. (1995,
1996) used the modi¢ed Gompertz equation to
¢t nonlinear survival curves for L. monocyto-
genes Scott A heated in infant formula and
found that it was e¡ective in modelling sigmoi-
dal survival curves. However, the parameters
of the modi¢ed Gompertz equation have not
been directly linked with microbial death
kinetics when using the logarithmic number
of cells.
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The purposes of this studyare to use the Bar-
anyi model for describing nonlinear survival
curves of micro-organisms and to compare it
with the modi¢ed Gompertz equation using es-
tablished inactivation data for L. monocyto-
genes Scott A.

Materials and Methods

The Baranyi model

The Baranyi model has been originally devel-
oped for growth curves (Baranyi et al. 1993,
Baranyi and Roberts 1994) and its goodness-
of-¢t is better than the modi¢ed Gompertz
equation (Buchanan et al. 1997). To model
sigmoidal survival curves such as curve SC4
in Fig. 1, it can be expressed as:

dN
dt
� ÿkmaxa�t�Nb�t� �N > 0; t � 0�

N�0� � N0 �N0 > 0; t � 0�

8<: �1�

whereNandN0 are the number of micro-organ-
isms present at time t and zero, respectively;
kmax is the maximum relative death rate; a�t�
is the shoulder adjustment function; b�t� is the
tailing adjustment function; minus sign means
the inactivation of micro-organisms.

Although the change of the relative death
rate �1=N��dN=dt� during the transitions
among the lag, linear (namely log linear) and
tailing phases is great, it is small and practi-
cally negligible during the linear phase. There-
fore, the maximum relative death rate kmax can
be thought of as the death rate constant for the
Figure 1. Graphic representations of four di¡er-
ent shapes of survival curves.
linear phase of a survival curve. The shoulder
adjustment function a�t� can take the following
forms:

��t� � 1ÿ eÿrt

��t� � 1ÿ rn

rn � tn

��t� � q0
q0 � eÿrt

��t� � 1ÿ eÿrt

1� eÿrt
�2�

where e is the Naperian base; r; q0 and n are
parameters. In this study it has been found that
a�t� � 1ÿ �rn=�rn � tn�� is the most suitable em-
pirical function to describe the lag phase for
the survival curves. The lag parameter r is the
time required for the relative death rate to
reach half of the maximum relative death rate
kmax. The parameter n is the curvatural para-
meter (Baranyi et al. 1993).

The original function b�t� in the Baranyi
model is designed for growth curves and not
suitable for survival curves. In this study it
has been found that the following empirical
function (Eqn (3)) can be used as the tailing ad-
justment function for describing the tailing
phase in survival curves such as curve SC3 or
SC4 in Fig. 1.

b�t� � 1ÿNmin

N
�3�

where Nmin is the minimum cell concentration
remained in the tailing phase.When Nmin � 0;
it means that there is no tailing phase, while
there is a tailing phase in a survival curve
when Nmin 6� 0: Although the tailing function
b�t� varies greatly during the transition from
the linear phase to the tailing phase, it is ap-
proximately equal to 1�0 during the lag and
linear phases because Nmin is usually much
smaller thanN.

After an integration, the solution of Eqn (1)
can be given by:

N � Nmin � �N0 ÿNmin�eÿkmax�tÿB�t�� �4�
where B�t� � R t0 �rn=�rn � sn��ds is the lag time
function. In this study it was found that the
shoulder adjustment function of n � 3 pro-
duces a satisfactory result in characterising
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the transition from the lag phase to the linear
phase.When n � 3;B�t� can be expressed by:

B�t� � r
3

1
2

ln
�r� t�2

r2 ÿ rt� t2

 

�
���
3
p

arctan
2tÿ r
r
���
3
p �

���
3
p

arctan
1���
3
p
�
: �5�

In terms of the base 10 logarithm, Eqn (4) can
be rewritten as:

log
N
N0
� log�qB � �1ÿ qB�eÿkmax�tÿB�t��� �6�

where qB � �Nmin=N0� is the tailing ratio. Like
Nmin; qB can be used to indicate whether or not
a tailing region exists. The bene¢t using the
tailing ratio qB is to avoid the direct use of the
initial number N0. In the case of multiple ex-
periments, the initial numbers are usually dif-
ferent (Linton et al. 1995, 1996) and Eqn (4) can
not be applied directly, although Eqn (6) can.

Although Eqn (4) or Eqn (6) are derived from
the survival curves of curve SC4 (Fig. 1), it can
be used to model the survival curves of curves
SC1, SC2 and SC3 in Fig.1. For example, if there
is no tailing in the survival curves (namely
qB � 0�, Eqn (6) becomes:

log
N
N0
� ÿ tÿB�t�

Dmin
�7�

where Dmin � 2�303=kmax: Because kmax can be
treated approximately as the death rate con-
stant in the linear phase, the corresponding
decimal reduction time is called the minimum
decimal reduction timeDmin, which is themini-
mum time required for a one-log-cycle reduc-
tion of the micro-organism population at a
reference temperature. When the lag para-
meter r in B�t� � 0, Eqn (7) becomes the well-
known ¢rst order kinetic model (Eqn (8)) which
can describe survival curves of curve SC1
(Fig. 1).

log
N
N0
� ÿ t

D
�8�

where D � 2�303=k is the decimal reduction
time orD-value; k is the death rate constant.

The modi¢ed Gompertz equation

The modi¢ed Gompertz equation was also de-
veloped for growth curves (Gibson et al. 1988).
When it models sigmoidal survival curves
(curve SC4 in Fig.1), it can be expressed empiri-
cally by Eqn (9) (Bhaduri et al. 1991):

log N � Aÿ Ceÿe
ÿB�tÿM� �t � 0� �9�

whereA is the value of the upper asymptote; B
is the relative death rate at M; C is the di¡er-
ence invalue of the upper and lower asymptote;
M is the time at which the absolute death rate
is maximal; minus sign before C means the in-
activation of micro-organisms. The following
kinetic parameters can be derived from Eqn
(9) (McMeekin et al. 1993):
maximum (exponential) death rate mmax

mmax �
BC
e

�10a�

lag phase duration tlag

tlag �M ÿ 1
B
� log N0 ÿA

BC
e

�10b�

minimum cell concentration (the value of the
lower asymptote)Nmin

log Nmin � Aÿ C

� log N0 � Ceÿe
BM ÿ C �10c�

tailing ratio qG

log qG � log
Nmin

N0
� Ceÿe

BM ÿ C: �10d�

Toavoid the direct use of di¡erent initial num-
bers �N0� in the case of multiple experiments,
Eqn (9) can be rearranged to Eqn (11) (Linton
et al. 1995, 1996) as

log
N
N0
� Ceÿe

BM ÿ Ceÿe
ÿB�tÿM�

: �11�

Comparing the modi¢ed Gompertz equation
with the Baranyi model, it is interesting to ¢nd
that mmax; tlag and qB are equivalent to kmax; r
and qG respectively.

Two-step procedure of modelling
survival curves

To model survival curves, the widely-used two-
steps of analysis are individual model analysis
and full model analysis. Individual model
analysis is de¢ned as a process in which each
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individual survival curve is ¢tted by the pri-
mary model such as the modi¢ed Gompertz
equation (Eqn (11)) and the Baranyi model
(Eqn (6)). The purposes of this analysis are to
estimate the model parameters (such as r; kmax

and qB in Eqn (6), B;C and M in Eqn (11)) and
to test the ¢tness of a model to the individual
survival curves.

Full model analysis is de¢ned as a process in
which the model parameters from the indivi-
dual model analysis are related to the environ-
mental factors (such as temperature, pH,NaCl)
using the secondary model, and then each indi-
vidual survival curve is predicted by both the
primary model and the predicted model para-
meters from the secondary model.The purpose
of this analysis is to estimate the predicted
model parameters by the secondary model and
to test the prediction performance of a model.
In practice it is more valuable than the indivi-
dual model analysis.

In this study, the Response Surface Method
(Eqn (12)) (Buchanan and Philips 1990) was
used as the secondary model to relate the
model parameters to the environmental
factors.

y � a0 �
P

ai xi �
P
i 6�j

aij xi xj

�Pa0i x
2
i �12�

where y is a model parameter (e.g. r; kmax or qB
in Eqn (6); B;C or M in Eqn (11)); xi and xj are
the ith and jth environmental factors (tempera-
ture, pH or NaCl concentration), respectively;
a0 ai aij a0i are coe¤cients estimated from the
experimental data.

In order to stabilize the variance of the data,
the natural logarithmic (ln) transformation of
model parameters was used (Gibson et al.
1988, Buchanan and Philips 1990). Because the
tailing ratio qB equals zero in some cases, the
ln transformation is no longer valid. After sev-
eral transformations were evaluated it was
found that the transformation

������
qB4
p

was the
most e¡ective to reduce the variance.

Experimental data and data analysis

The tested organism was L. monocytogenes
Scott A (Linton et al. 1996). The experimental
data consist of 59 di¡erent treatments, of
which 27 and 32 treatments were used as model
generation data and model validation data re-
spectively (Linton et al. 1996).

To compare the performance of di¡erent
models the correlation coe¤cient (R2) and
root mean square error (RMSE) between
experimental data and those predicted using
di¡erent models were applied. SPSS package
(Release 6.1.2), MINITAB package (Release
11.11) and Microsoft Excel (version 5.0a) were
employed in data analysis. For nonlinear re-
gression, the estimation method of Sequential
Quadratic Programming in SPSS package was
used.

Results and Discussion

Individual model analysis

In individual model analysis it was found that
both the Baranyi model (Eqn (6)) and the mod-
i¢ed Gompertz equation (Eqn (11)) are e¡ective
in modelling curves with di¡erent shapes,
including linear curves, curves with a shoulder
or a tailing and sigmoidal curves, but neither
of them consistently produces the best ¢t to
all the survival curves. Overall, in terms of the
RMSE and R2 values listed in Table 2, the
modi¢ed Gompertz equation ¢ts better 2/3 of
the total 27 survival curves from the model gen-
eration data, while the Baranyi model does bet-
ter in 1/3 of the curves. However, it is also found
that the Baranyi model produces better ¢t than
the modi¢ed Gompertz equation when using
the model validation data (see validation analy-
sis below). By considering the set of model gen-
eration data as awhole, the performance of the
modi¢ed Gompertz equation (RMSE=0�1741,
R2 = 0�9918) is slightly better than the Baranyi
model (RMSE=0�1916, R2 = 0�9903).

Although both models give similar ¢tting to
the survival curves, there are signi¢cant di¡er-
ences between them. The ¢rst order kinetics
model can be derived from the Baranyi model,
but not from the modi¢ed Gompertz equation.
The Baranyi model produces a practically
straight line in the linear phase (Fig. 2(b)) but
the modi¢ed Gompertz equation does not (Fig.
2(c)) because it does not assume a constant
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Figure 2. Survival curve ¢ttings for Listeria monocytogenes Scott A following a treatment at tempera-
ture of 508C, pH of 5 and NaCl of 4%: experimental data ( ), individual model ¢tting (ÐÐ) and full model
¢tting (- - - - -).The Baranyi model (Eqn (6) (a) becomes Eqn (7) (b) when the tailing ratio qB is set to zero and
the modi¢ed Gompertz equation (Eqn (11)) (c).
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death rate (Linton et al. 1995). The modi¢ed
Gompertz equation always uses three para-
meters to ¢t the four commonly observed types
of survival curves (curves SC1, SC2, SC3 and
SC4 in Fig. 1), while the Baranyi model can use
three or less number of parameters to ¢t the
same types of the curves. For example, if all
the survival curves investigated are ones with
a shoulder or a tailing, the Baranyi model ¢ts
the curves by using two parameters kmax and r
or qB; if all the survival curves investigated are
linear, the Baranyi model becomes the ¢rst or-
der kinetic model (Eqn (8)) and ¢ts the curves
using one single parameter k. It is obviously un-
necessary to use the modi¢ed Gompertz equa-
tion for ¢tting the linear curves and maybe
the curves with a shoulder or a tailing.

It is found that the estimates of t lag; mmax and
qG are similar to those of r; kmax and qB (data
not shown). For example, for the treatment of
508C, pH 5 and 4% NaCl (Fig. 2), the estimates
for Eqn (6) are r � 75�85 min; kmax � 0�0627
(log cfu ml71) min71, qB � 4�53� 10ÿ6, and
those for Eqn (11) are t lag � 79�43 min; mmax �
0�0276 (log cfu ml71) min71 and qG � 6� 10ÿ7

respectively. However, the di¡erences are also
observed. The estimated kmax and qB values
are greater than the mmax and qG values for
98�31% and 66�10% of the 59 treatments (in-
cluding both model generation and validation
data) respectively and the estimated r values
are smaller than the tlag values for 86�44% of
the 59 treatments. In the Baranyi model,
32�20% of the estimated qB values are zero but
none of the qG values in the modi¢ed Gompertz
equation are estimated to be zero.
The R2 and RMSE values for Eqn (7) which
is derived from Eqn (6) by setting qB to be
zero, are also listed in Tables 2 and 3. By
comparing the di¡erence in R2 value between
Eqn (6) and Eqn (7), the Baranyi model can in-
dicate in some extentwhether or not the tailing
phase in a survival curve is signi¢cant, but the
modi¢ed Gompertz equation cannot. In terms
of the RMSE values Eqn (6) produces the same
or better ¢tting than Eqn (7), which indicates
that the better ¢tting survival curves have a
tailing phase. However, the di¡erence in R2

values between Eqn (6) and Eqn (7) are usually
very small, which suggests that the tailing
phases may be not signi¢cant and may be
caused by the variation of experimental data
or model over¢tting. An example is presented
in Fig. 2.

Full model analysis

The R2 and RMSE values for the two models
(Eqn (6) and Eqn (11)) in the full model analysis
are also listed inTable 2. It is found that the ¢t-
ness of the models varies and neither of them
can consistently produce the best ¢t to all the
survival curves. Overall, the Baranyi model
(Eqn (6)) ¢ts better more than 2/3 of the total
27 survival curves from the model generation
data and the modi¢ed Gompertz equation
(Eqn (11)) does better in less than 1/3 of all the
curves. Byconsidering the set of the model gen-
eration data as awhole, the performance of the
Baranyi model (RMSE=0�430, R2 � 0�964) is
signi¢cantly better than the modi¢ed Gom-
pertz equation (RMSE=0�613, R2 � 0�940).



Ta
b
le

3.
R
es
ul
ts

of
th
e
va

li
da

ti
on

of
th
e
m
od

el
s
us

in
g
m
od

el
va

li
da

ti
on

da
ta

In
di
vi
du

al
m
od

el
an

al
ys
is

F
ul
lm

od
el

an
al
ys
is

Te
m
pe

ra
tu
re

(8
C
)^

E
qn

(7
)a

E
qn

(6
)a

E
qn

(1
1)

b
E
qn

(7
)

E
qn

(6
)

E
qn

(1
1)

E
xp

er
im

en
t
N
o.

pH
^N

aC
l(
%
)

R
2

R
M
SE

R
2

R
M
SE

R
2

R
M
SE

R
2

R
M
SE

R
2

R
M
SE

R
2

R
M
SE

1
51
-5
�8-

3�6
0�9

97
0�0

90
0�9

97
0�0

90
0�9

96
0�1

10
0�9

97
0�3

54
0�9

97
0�2

88
0�9

87
0�5

66
2

51
-6
�2-

1�5
0�9

97
0�0

79
0�9

97
0�0

79
0�9

96
0�0

97
0�9

93
0�9

58
0�9

96
0�8

79
0�9

87
1�1

54
3

51
-5
�5-

0�8
0�9

81
0�1

78
0�9

81
0�1

78
0�9

97
0�0

69
0�9

89
0�2

58
0�9

89
0�2

96
0�9

96
0�2

90
4

51
-7
�0-

0�0
0�9

92
0�1

88
0�9

96
0�1

35
0�9

98
0�0

95
0�9

90
1�3

07
0�9

87
0�8

86
0�9

73
1�9

76
5

52
-5
�3-

2�9
0�9

99
0�0

54
1�0

00
0�0

37
0�9

98
0�0

75
0�9

99
0�2

25
0�9

99
0�4

29
0�9

97
0�4

69
6

52
-6
�8-

3�4
0�9

97
0�0

77
0�9

98
0�0

62
0�9

98
0�0

73
0�9

96
0�1

79
0�9

96
0�1

88
0�9

85
0�2

57
7

52
-6
�9-

2�4
0�9

99
0�0

55
0�9

99
0�0

55
0�9

97
0�0

85
0�9

99
0�0

61
0�9

99
0�0

62
0�9

95
0�1

30
8

52
-7
�0-

0�0
0�9

98
0�1

02
0�9

99
0�0

61
0�9

98
0�0

96
0�9

98
1�0

59
0�9

76
0�8

15
0�9

93
1�8

10
9

53
-6
�2-

1�9
0�9

98
0�0

79
0�9

99
0�0

67
1�0

00
0�0

41
0�9

93
0�2

54
0�9

95
0�2

34
0�9

86
0�3

21
10

53
-5
�6-

1�2
0�9

96
0�1

28
0�9

96
0�1

27
0�9

96
0�1

30
0�9

96
0�1

72
0�9

95
0�1

95
0�9

90
0�3

65
11

53
-6
�8-

2�6
0�9

95
0�1

08
0�9

95
0�1

08
1�0

00
0�0

22
0�9

97
0�1

15
0�9

97
0�1

15
1�0

00
0�0

65
12

53
-7
�0-

0�0
0�9

99
0�0

86
0�9

99
0�0

81
0�9

98
0�1

07
0�9

98
0�6

65
0�9

83
0�7

03
0�9

97
1�3

43
13

54
-5
�7-
1�4

0�9
70

0�3
76

0�9
96

0�1
45

0�9
95

0�1
48

0�9
54

0�9
99

0�9
51

0�9
69

0�9
17

0�9
60

14
54

-6
�3-

1�0
0�9

69
0�3

26
0�9

97
0�1

09
0�9

96
0�1

21
0�9

52
0�7

69
0�9

51
0�8

00
0�9

23
0�7

41
15

54
-5
�5-

3�0
0�9

55
0�4

90
0�9

68
0�4

12
0�9

77
0�3

48
0�9

43
0�6

63
0�9

35
0�6

80
0�9

30
0�7

12
16

54
-7
�0-

0�0
0�9

59
0�3

84
0�9

93
0�1

63
0�9

90
0�1

93
0�9

58
0�4

93
0�9

54
0�4

35
0�9

31
0�5

33
17

56
-6
�1-

3�1
0�9

96
0�1

31
0�9

98
0�0

77
0�9

98
0�0

90
0�9

84
0�5

38
0�9

83
0�4

93
0�9

65
0�4

82
18

56
-5
�8-

0�1
0�9

95
0�1

15
0�9

97
0�0

85
0�9

98
0�0

66
0�9

95
0�1

66
0�9

95
0�1

44
0�9

82
0�3

01
19

56
-5
�9-

1�1
0�9

98
0�0

89
0�9

99
0�0

61
0�9

97
0�1

02
0�9

95
0�2

85
0�9

93
0�2

75
0�9

85
0�2

99
20

56
-7
�0-

0�0
0�9

99
0�0

63
1�0

00
0�0

41
0�9

98
0�0

82
0�9

98
0�1

11
0�9

99
0�2

63
0�9

98
0�3

81
21

57
-6
�4-

3�6
1�0

00
0�0

35
1�0

00
0�0

35
0�9

98
0�0

80
0�9

99
0�0

62
0�9

99
0�1

14
0�9

89
0�2

39
22

57
-6
�4-

0�4
1�0

00
0�0

27
1�0

00
0�0

23
0�9

99
0�0

60
0�9

99
1�6

40
0�9

94
1�5

00
0�9

97
1�8

60
23

57
-5
�6-

1�5
0�9

96
0�1

34
0�9

96
0�1

33
0�9

94
0�1

70
0�9

92
0�3

71
0�9

90
0�3

21
0�9

83
0�4

11
24

57
-7
�0-

0�0
0�9

96
0�1

28
0�9

96
0�1

27
0�9

93
0�1

62
0�9

96
0�1

59
0�9

95
0�1

99
0�9

91
0�2

77
25

58
-5
�9-

2�5
0�9

99
0�0

45
1�0

00
0�0

40
0�9

99
0�0

55
0�9

94
0�2

35
0�9

96
0�1

53
0�9

98
0�1

26
26

58
-5
�3-

3�9
1�0

00
0�0

35
1�0

00
0�0

33
0�9

99
0�0

40
0�9

82
0�4

15
0�9

65
0�6

49
0�9

88
0�8

03
27

58
-5
�4-

1�2
0�9

99
0�0

74
1�0

00
0�0

39
0�9

99
0�0

50
0�9

85
0�9

35
0�9

06
0�8

95
0�9

46
0�7

15
28

58
-7
�0-

0�0
0�9

99
0�0

70
1�0

00
0�0

26
1�0

00
0�0

25
0�9

67
0�6

29
0�9

49
0�7

34
0�9

62
0�7

16
29

59
-6
�2-

3�1
0�9

99
0�0

68
0�9

99
0�0

63
0�9

99
0�0

66
0�9

99
0�2

09
0�9

99
0�3

59
0�9

99
0�3

91
30

59
-6
�5-

1�0
0�9

98
0�0

78
0�9

99
0�0

74
1�0

00
0�0

38
0�9

89
0�3

86
0�9

89
0�3

46
0�9

91
0�3

20
31

59
-6
�6-

3�9
0�9

99
0�0

49
0�9

99
0�0

49
1�0

00
0�0

22
0�9

98
0�3

28
0�9

99
0�5

49
0�9

99
0�5

30
32

59
-7
�0-

0�0
0�9

98
0�0

85
0�9

98
0�0

84
1�0

00
0�0

41
0�9

79
0�5

85
0�9

22
0�7

21
0�9

54
0�6

16

W
ho

le
da

ta
0�9

93
0�1

66
0�9

97
0�1

16
0�9

97
0�1

12
0�9

18
0�6

29
0�9

28
0�5

95
0�9

00
0�8

18
a
T
he

B
ar
an

yi
m
od

el
(E

qn
(6
)a

nd
E
qn

(7
).
E
qn

(6
)b

ec
om

es
E
qn

(7
)w

he
n
th
e
ta
il
in
g
ra
ti
o
q B

is
se
t
to

be
ze
ro
).

b
T
he

m
od

i¢
ed

G
om

pe
rt
z
eq

ua
ti
on

(E
qn

(1
1)
).

276 R. Xiong et al.



Model for thermal inactivation of bacteria 277
In addition, comparing the di¡erence in
RMSE orR2 value between both the full-model
analysis and the individual-model analysis, the
Baranyi model seems more `robust' than the
modi¢ed Gompertz equation. The ¢rst reason
for this is due to the structure of the models.
Although both models can be used to ¢t sigmoi-
dal survival curves, the structure of the Bara-
nyi model is much more loose than that of the
modi¢ed Gompertz equation. In the Baranyi
model only one key parameter which cannot
be equal to zero is the maximum relative death
rate kmax, while the modi¢ed Gompertz equa-
tion has two key parameters B and C. The
parameters r; kmax and qB in the Baranyi model
can describe the lag, linear and tailing phases
in a direct way respectively, while the modi¢ed
Gompertz equation describes these phases in a
more complex way (Eqn (10)). For example, the
Baranyi model uses kmax to describe the linear
phase and gives a practical straight line, by
contrast the modi¢ed Gompertz equation em-
ploys bothB and C to describe the linear phase
and gives a nonlinear curve.The second reason
is that the Baranyi model and the modi¢ed
Gompertz equation have di¡erent sensitivities
to the changes of their parameters. By varying
one parameter and holding other parameters
constant for a model, a series of RMSE values
can be calculated.This process is repeated un-
til the RMSE values of all parameters involved
are obtained. These RMSE values can then be
used to compare the sensitivity of each para-
meter on the model. In terms of the same
Table 4. Estimates for the coe¤cients of the model

Eqn (7)a

E¡ect terms ln(kmax) ln(r) ln(kmax)

Intercept 22�5478 36�1419 23�2592
Temperature 71�2611 71�7567 71�0394
pH 0�8592 9�0769 71�4070
NaCl 70�6303 71�6457 70�7706
Temperature2 0�0150 0�0136 0�0136
pH2 70�0489 70�5516 0�1777
NaCl2 0�0112 70�0562 0�0275
Temperature6pH 70�0097 70�0405 70�0196
Temperature6NaCl 0�0087 0�0299 0�0126
pH6NaCl 70�0092 0�0655 70�0315
R2 0�984 0�967 0�964
aThe Baranyi model (Eqn (6) and Eqn (7). Eqn (6) becom
bThe modi¢ed Gompertz equation (Eqn (11)).
percentage variation, the parameters can be or-
dered from the most sensitive one to the least
sensitive one. Among the three parameters of
r; kmax and qB in the Baranyi model, it is found
that kmax is the most sensitive one followed by r
and qB, which matched the order of the R2

values for the three parameters (Table 4).
Although the R2 value for the tailing ratio qB
is lower (0�697), qB has a relatively small in£u-
ence on the RMSE value because the Baranyi
model is not very sensitive to it. By contrast,
for the modi¢ed Gompertz equation the para-
meter C is the most sensitive one followed by
M and B is the least sensitive one. A small
change in the values of parametersC andM re-
sults in a large variation in RMSE value. The
big RMSE value and small R2 value for the
modi¢ed Gompertz equation in the full model
analysis may be caused in part by the para-
meter C due to its small R2 value (0�700)
(Table 4).

Validation analysis

Model validation provides information which
shows the performance of a model perfor-
mances in practice. In this study the model va-
lidation data consists of 32 di¡erent treatments
which are di¡erent from the model generation
databut use the environmental factors that are
within the region for the full model analysis.
The validation results are listed in Table 3.
From Table 3, it is interesting to note that the
overall performance of the Baranyi model
parameters

Eqn (6)a Eqn (11)b

ln(r) qB1/4 ln(B) ln(C ) ln(M )

33�3836 1�7302 5�6125 4�6709 0�3057
71�3189 70�0486 0�0537 70�7894 70�2127

5�7739 70�1797 77�1579 7�6188 6�9924
71�2601 0�0677 1�0274 71�9435 71�2194

0�0104 0�0006 0�0043 0�0061 70�0019
70�2432 0�0260 0�6080 70�6045 70�5178
70�0242 70�0005 70�0232 0�0797 0�0208
70�0488 70�0025 70�0120 70�0029 70�0070

0�0259 70�0008 70�0117 0�0264 0�0179
0�0154 70�0039 70�0669 0�0216 0�0480
0�949 0�679 0�972 0�700 0�982
es Eqn (7) when the tailing ratio qB is set to zero).
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(Eqn (6)) was better than that of the modi¢ed
Gompertz equation (Eqn (11)) for both indivi-
dual model analysis and full model analysis,
i.e. the Baranyi model consistently produced
better ¢t to more than 2/3 of the total 32 survi-
val curves, while the modi¢ed Gompertz equa-
tion gave better ¢tness to less than 1/3 of the
total curves validated. By considering the set
of the model validation data as a whole, the
RMSE and R2 values for both the Baranyi
model (RMSE=0�116, R2 = 0�997) and the
modi¢ed Gompertz equation (RMSE=0�112,
R2 = 0�997) were almost same for individual
model analysis, but those for both the Baranyi
model (RMSE=0�595, R2 = 0 �928) and the
modi¢ed Gompertz equation (RMSE=0�818;
R2 � 0�900� were signi¢cantly di¡erent for full
model analysis.

Conclusion

Although the Baranyi model is empirical when
it is used for survival curves, it can model the
four commonly observed survival curves:
linear curves, curves with a lag phase, curves
with a tailing phase and sigmoidal curves. For
the prediction performance, the Baranyi model
was better and more robust than the modi¢ed
Gompertz equation.
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Appendix

Nomenclatures

N number of micro-organisms, cfu ml71

N0 initial number of microorganisms,
cfu ml71

t time, min
k death rate constant,

(log cfu ml71)min71

kmax maximum relative death rate,
(log cfu ml71)min71
D decimal reduction time, min
Dmin minimum decimal reduction time, min
r lag parameter, min
qB tailing ratio in the Baranyi model
n curvatural parameter
Nmin minimum cell concentration, cfu ml71

A lower asymptote, log cfu ml71

B relative death rate atM,
(log cfu ml71) min71

C di¡erence in value of the upper and
lowerasymptote, log cfu ml71

M time at which the absolute death rate
is maximal, min

mmax maximum exponential death rate,
(log cfu ml71)min71

ttag lag phase duration, min
qG tailing ratio
a(t) the adjustment function or shoulder

adjustment function
b(t) the tailing adjustment function
B(t) the lag time function, min
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