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Comparison of the Baranyi model
with the modified Gompertz equation
for modelling thermal inactivation

of Listeria monocytogenes Scott A

R. Xiong*, G. Xie, A. S. Edmondson,

R. H. Linton” and M. A. Sheard

The Baranyi model was used to fit the four commonly observed survival curves: linear curves, those
with a lag phase, those with a tailing phase and sigmoidal curves. It was validated by using published
experimental data for thermal inactivation of Listeria monocytogenes Scott A heated in infant formula
and compared with the modified Gompertz equation. For the prediction performance, the Baranyi

model was better and more robust than the modified Gompertz equation.

Introduction

Thermal inactivation of micro-organisms has
commonly been modelled using the first order
kinetics. However, deviations from the first or-
der kinetics are often observed (Cerf 1977, Ka-
mau et al. 1990, Bhaduri et al. 1991, Linton et al.
1995, 1996, Adams and Moss 1997). Sometimes
these deviations can be rationalised on the ba-
sis of some special property of the organism
(Adams and Moss 1997). For example, the often
observed lag and tailing regions in survival
curves may reflect the presence of clumps of
micro-organisms or a subpopulation of more
heat-resistant micro-organisms. These devia-
tions tend to be more common in the study of
thermal death of vegetative organisms, which
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may reflect inadequacy of the logarithmic
death concept (Adams and Moss 1997).

To model such nonlinear survival curves for
vegetative organisms, several approaches have
been proposed (Table 1). In earlier studies, var-
ious logistic equations were used. Cerf (1977)
proposed a two-parallel-reactions model for de-
scribing biphasic curves. Kamau et al. (1990)
applied three different forms of logistic equa-
tion to fit various shaped survival curves for
Listeria monocytogenes heated in lactoperoxi-
dase system. Whiting and Buchanan (1992) de-
veloped a logistic equation for describing the
kinetics when there were significant shoulder
and tailing in survival curves. This model was
applied to non-thermal inactivation of L. mono-
cytogenes (Buchanan et al. 1994, Buchanan and
Golden 1995) and of Staphylococcus aureus
(Whiting et al. 1996). Assuming a distribution
of heat sensitivity within the population of
heated cells, Cole et al. (1993) have also devel-
oped a vitalistic model that has been applied
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Table 1. Models for survival curves

Model Mathematical Formula Reference
First-order kinetics N = Nye *
or
lo N__t
®N D
N —Int —kat
Cerf N Fie ™ 4+ (1-Fp)e™ Cerf (1977)
0
Kamau For linear survival curves Kamau et al. (1990)
N 2
NO - 1+ ebt
For survival curves with a lag phase
N
log— = log(1 4 e Pz —log(1 + e Phr)
No
For biphasic survival curves
o N o 2F 21 — Fy)
SN B\T bt 1t eht
.. N F1(1+e_BltL) ..
Whiting and Buchanan log No log (m Whiting and
(1 — F)(1 + e Batr)
+ T ohl W Buchanan (1992)
Col log N = o-c Cole et al. (1993
ole 0g _O(+1+e40(7710gt)/(w70) olee a'( )
Gompertz Modified Gompertz equation
logN=A—Ce¢"™ " Bhaduri et al. (1991)
or
N _eBM _eBlt-M) .
log N Ce — Ce Linton et al. (1995, 1996)
0
Membre log N = (1 +log Np) — et Membre et al. (1997)

to thermal destruction kinetics of micro-organ-
isms like L. monocytogenes (Cole et al. 1993,
Stephens et al. 1994), Salmonella typhimurium
(Ellison et al. 1994) or Yersinia enterocolitica
(Lattle et al. 1994). Recently, Membre et al.
(1997) proposed a logistic function to model
the non-thermal inactivation of S. typhimurium
in reduced calorie mayonnaise.

Nonlinear survival curves have also been
modelled using the modified Gompertz
equation. The Gompertz equation and its
modified forms were used primarily in model-
ling the asymmetrical sigmoidal shape of
microbial growth curves (McMeekin et al.
1993, Linton et al. 1995). Bhaduri et al. (1991)
first demonstrated that the modified Gompertz

equation can model the nonlinear survival
curves for L. monocytogenes heated in liver
sausage slurry, and that it is likely to provide
a more accurate estimate of a micro-organism’s
thermal resistance than a first order kinetic
model when dealing with sigmoidal survival
curves. More recently, Linton et al. (1995,
1996) used the modified Gompertz equation to
fit nonlinear survival curves for L. monocyto-
genes Scott A heated in infant formula and
found that it was effective in modelling sigmoi-
dal survival curves. However, the parameters
of the modified Gompertz equation have not
been directly linked with microbial death
kinetics when using the logarithmic number
of cells.



The purposes of this study are to use the Bar-
anyl model for describing nonlinear survival
curves of micro-organisms and to compare it
with the modified Gompertz equation using es-
tablished inactivation data for L. monocyto-
genes Scott A.

Materials and Methods

The Baranyi model

The Baranyi model has been originally devel-
oped for growth curves (Baranyi et al. 1993,
Baranyi and Roberts 1994) and its goodness-
of-fit is better than the modified Gompertz
equation (Buchanan et al. 1997). To model
sigmoidal survival curves such as curve SC4
in Fig. 1, it can be expressed as:

%kmmww)mbmam(n
N(0) = N (No > 0;2=0)

where Nand Ny are the number of micro-organ-
1sms present at time ¢ and zero, respectively;
Rmax 18 the maximum relative death rate; o(t)
is the shoulder adjustment function; B(¢) is the
tailing adjustment function; minus sign means
the inactivation of micro-organisms.

Although the change of the relative death
rate (1/N)(dN/dt) during the transitions
among the lag, linear (namely log linear) and
tailing phases is great, it is small and practi-
cally negligible during the linear phase. There-
fore, the maximum relative death rate k,,,, can
be thought of as the death rate constant for the
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Figure 1. Graphic representations of four differ-

ent shapes of survival curves.
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linear phase of a survival curve. The shoulder
adjustment function «(¢) can take the following
forms:

alt) =1-e¢"

at)=1- rnr: m

olt) =

o) =10 @)

where e is the Naperian base; r, gy and n are
parameters. In this study it has been found that
a(t) =1 —[r"/(r" +t")] is the most suitable em-
pirical function to describe the lag phase for
the survival curves. The lag parameter r is the
time required for the relative death rate to
reach half of the maximum relative death rate
Fnax. The parameter n is the curvatural para-
meter (Baranyi et al. 1993).

The original function B(¢) in the Baranyi
model is designed for growth curves and not
suitable for survival curves. In this study it
has been found that the following empirical
function (Eqn (3)) can be used as the tailing ad-
justment function for describing the tailing
phase in survival curves such as curve SC3 or
SC4 in Fig. 1.

N )

where N, 1s the minimum cell concentration
remained in the tailing phase. When N,;, = 0,
it means that there is no tailing phase, while
there i1s a tailing phase in a survival curve
when Ny, # 0. Although the tailing function
B(t) varies greatly during the transition from
the linear phase to the tailing phase, it is ap-
proximately equal to 1-0 during the lag and
linear phases because N, is usually much
smaller than V.

After an integration, the solution of Eqn (1)
can be given by:

N = Nyin + (Np — Nygn e omst=BO) ()

where B(t) = fot [r"/(r" 4+ s")]ds is the lag time
function. In this study it was found that the
shoulder adjustment function of n =3 pro-
duces a satisfactory result in characterising
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the transition from the lag phase to the linear
phase.When n = 3, B(¢) can be expressed by:

B(t):;"(;ln
2 —r 1

+V/3 arctan —— + /3 arcta —> 5

rctan e r n\/g (5)

In terms of the base 10 logarithm, Eqn (4) can
be rewritten as:

(r+1t)*
rZ —rt+ {2

N
log - = log(an + (1= gg)e ™= 2)  (5)

where gg = (Nuin/Np) is the tailing ratio. Like
Nuin, ¢ can be used to indicate whether or not
a tailing region exists. The benefit using the
tailing ratio ¢p is to avoid the direct use of the
initial number N,. In the case of multiple ex-
periments, the initial numbers are usually dif-
ferent (Linton et al. 1995, 1996) and Eqn (4) can
not be applied directly, although Eqn (6) can.

Although Eqn (4) or Eqn (6) are derived from
the survival curves of curve SC4 (Fig. 1), it can
be used to model the survival curves of curves
SC1, SC2 and SC3 in Fig. 1. For example, if there
is no tailing in the survival curves (namely
gs = 0), Eqn (6) becomes:

N t— B¢
IOgﬁO:_ D () (7)

where D, = 2-303/ky.x. Because k. can be
treated approximately as the death rate con-
stant in the linear phase, the corresponding
decimal reduction time is called the minimum
decimal reduction time D,;,, which is the mini-
mum time required for a one-log-cycle reduc-
tion of the micro-organism population at a
reference temperature. When the lag para-
meter r in B(t) = 0, Eqn (7) becomes the well-
known first order kinetic model (Eqn (8)) which
can describe survival curves of curve SC1
(Fig. 1).

N t
log—=——
BN= D (8)
where D = 2-303/k is the decimal reduction
time or D-value; & 1s the death rate constant.

The modified Gompertz equation

The modified Gompertz equation was also de-
veloped for growth curves (Gibson et al. 1988).

When it models sigmoidal survival curves
(curve SC4 1n Fig. 1), it can be expressed empiri-
cally by Eqn (9) (Bhaduri et al. 1991):

B(t—M)

log N=A—Ce "™ (t>0) 9)

where A is the value of the upper asymptote; B
is the relative death rate at M; C is the differ-
ence in value of the upper and lower asymptote;
M is the time at which the absolute death rate
is maximal; minus sign before C means the in-
activation of micro-organisms. The following
kinetic parameters can be derived from Eqn
(9) McMeekin et al. 1993):

maximum (exponential) death rate .,

BC

=— 10
IJ’IHELX e ( a)
lag phase duration fj,,
B 1 logNy—A
tlag =M - E + T (IOb)
e

minimum cell concentration (the value of the
lower asymptote) Ny,

lOg Nmin =A-C

=log Ny + Ce ™ —C
tailing ratio g¢g

(10c¢)

Nuin _ gpe™ _ .

N (10d)

log g¢ = log

To avoid the direct use of different initial num-

bers (Np) in the case of multiple experiments,

Eqgn (9) can be rearranged to Eqn (11) (Linton
et al. 1995, 1996) as

BM _e—Bl-M)

Ce® —Ce (11)

1 _— =
0g Ny
Comparing the modified Gompertz equation
with the Baranyi model, it is interesting to find
that |, tae and gp are equivalent to Ry, r
and gg respectively.

Two-step procedure of modelling
survival curves

To model survival curves, the widely-used two-
steps of analysis are individual model analysis
and full model analysis. Individual model
analysis is defined as a process in which each



individual survival curve is fitted by the pri-
mary model such as the modified Gompertz
equation (Eqn (11)) and the Baranyi model
(Eqn (6)). The purposes of this analysis are to
estimate the model parameters (such as r, k.
and g in Eqn (6), B, C and M in Eqn (11)) and
to test the fitness of a model to the individual
survival curves.

Full model analysis is defined as a process in
which the model parameters from the indivi-
dual model analysis are related to the environ-
mental factors (such as temperature, pH, NaCl)
using the secondary model, and then each indi-
vidual survival curve is predicted by both the
primary model and the predicted model para-
meters from the secondary model. The purpose
of this analysis is to estimate the predicted
model parameters by the secondary model and
to test the prediction performance of a model.
In practice it is more valuable than the indivi-
dual model analysis.

In this study, the Response Surface Method
(Eqn (12)) (Buchanan and Philips 1990) was
used as the secondary model to relate the
model parameters to the environmental
factors.

y=ao+ 0 %+ a; % xj
i

+3a; % (12)

where y is a model parameter (e.g. r, kyax OF @B
in Eqn (6); B, C or M in Eqgn (11)); x; and x; are
the ith and jth environmental factors (tempera-
ture, pH or NaCl concentration), respectively;
ao a; a;; o, are coefficients estimated from the
experimental data.

In order to stabilize the variance of the data,
the natural logarithmic (In) transformation of
model parameters was used (Gibson et al.
1988, Buchanan and Philips 1990). Because the
tailing ratio gp equals zero in some cases, the
In transformation is no longer valid. After sev-
eral transformations were evaluated it was
found that the transformation /gp was the
most effective to reduce the variance.

Experimental data and data analysis

The tested organism was L. monocytogenes
Scott A (Linton et al. 1996). The experimental
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data consist of 59 different treatments, of
which 27 and 32 treatments were used as model
generation data and model validation data re-
spectively (Linton et al. 1996).

To compare the performance of different
models the correlation coefficient (R?) and
root mean square error (RMSE) between
experimental data and those predicted using
different models were applied. SPSS package
(Release 6.1.2), MINITAB package (Release
11.11) and Microsoft Excel (version 5.0a) were
employed in data analysis. For nonlinear re-
gression, the estimation method of Sequential
Quadratic Programming in SPSS package was
used.

Results and Discussion

Individual model analysis

In individual model analysis it was found that
both the Baranyi model (Eqn (6)) and the mod-
ified Gompertz equation (Eqn (11)) are effective
in modelling curves with different shapes,
including linear curves, curves with a shoulder
or a tailing and sigmoidal curves, but neither
of them consistently produces the best fit to
all the survival curves. Overall, in terms of the
RMSE and R? values listed in Table 2, the
modified Gompertz equation fits better 2/3 of
the total 27 survival curves from the model gen-
eration data, while the Baranyi model does bet-
ter in 1/3 of the curves. However, it is also found
that the Baranyi model produces better fit than
the modified Gompertz equation when using
the model validation data (see validation analy-
sis below). By considering the set of model gen-
eration data as a whole, the performance of the
modified Gompertz equation (RMSE =0-1741,
R?=0-9918) is slightly better than the Baranyi
model (RMSE =0-1916, R? =0-9903).

Although both models give similar fitting to
the survival curves, there are significant differ-
ences between them. The first order kinetics
model can be derived from the Baranyi model,
but not from the modified Gompertz equation.
The Baranyi model produces a practically
straight line in the linear phase (Fig. 2(b)) but
the modified Gompertz equation does not (Fig.
2(c)) because it does not assume a constant
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(a) Fitted by Eqn (7)

(b) Fitted by Eqn (6)
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(c) Fitted by Eqn (11)
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Figure 2. Survival curve fittings for Listeria monocytogenes Scott A following a treatment at tempera-

ture of 50°C, pH of 5 and NaCl of 4%: experimental data (m), individual model fitting (

) and full model

fitting (- - - - - ). The Baranyi model (Eqn (6) (a) becomes Eqn (7) (b) when the tailing ratio g is set to zero and

the modified Gompertz equation (Eqn (11)) (c).

death rate (Linton et al. 1995). The modified
Gompertz equation always uses three para-
meters to fit the four commonly observed types
of survival curves (curves SC1, SC2, SC3 and
SC4 in Fig. 1), while the Baranyi model can use
three or less number of parameters to fit the
same types of the curves. For example, if all
the survival curves investigated are ones with
a shoulder or a tailing, the Baranyi model fits
the curves by using two parameters k., and r
or gp; if all the survival curves investigated are
linear, the Baranyi model becomes the first or-
der kinetic model (Eqn (8)) and fits the curves
using one single parameter k. It is obviously un-
necessary to use the modified Gompertz equa-
tion for fitting the linear curves and maybe
the curves with a shoulder or a tailing.

It is found that the estimates of ¢},g, 1 110 and
gg are similar to those of r, k.. and g (data
not shown). For example, for the treatment of
50°C, pH 5 and 4% NaCl (Fig. 2), the estimates
for Eqn (6) are r = 75-85 min, k. = 0-0627
(logcfuml Hmin~', gp=1453x10"% and
those for Eqn (11) are {1,y = 79-43 min, p ., =
0-0276 (log cfuml™ ) min~! and g5 =6 x 1077
respectively. However, the differences are also
observed. The estimated k... and gp values
are greater than the p, . and gg values for
98-31% and 66-10% of the 59 treatments (in-
cluding both model generation and validation
data) respectively and the estimated r values
are smaller than the ¢,, values for 86-44% of
the 59 treatments. In the Baranyi model,
32-20% of the estimated gp values are zero but
none of the g values in the modified Gompertz
equation are estimated to be zero.

The R? and RMSE values for Eqn (7) which
is derived from Eqn (6) by setting gg to be
zero, are also listed in Tables 2 and 3. By
comparing the difference in R? value between
Eqgn (6) and Eqn (7), the Baranyi model can in-
dicate in some extent whether or not the tailing
phase in a survival curve is significant, but the
modified Gompertz equation cannot. In terms
of the RMSE values Eqn (6) produces the same
or better fitting than Eqn (7), which indicates
that the better fitting survival curves have a
tailing phase. However, the difference in R?
values between Eqn (6) and Eqn (7) are usually
very small, which suggests that the tailing
phases may be not significant and may be
caused by the variation of experimental data
or model overfitting. An example is presented
in Fig. 2.

Full model analysis

The R? and RMSE values for the two models
(Egn (6) and Eqn (11)) in the full model analysis
are also listed in Table 2. It is found that the fit-
ness of the models varies and neither of them
can consistently produce the best fit to all the
survival curves. Overall, the Baranyi model
(Eqn (6)) fits better more than 2/3 of the total
27 survival curves from the model generation
data and the modified Gompertz equation
(Eqn (11)) does better in less than 1/3 of all the
curves. By considering the set of the model gen-
eration data as a whole, the performance of the
Baranyi model (RMSE =0-430, R? = 0-964) is
significantly better than the modified Gom-
pertz equation (RMSE = 0-613, R? = 0-940).
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In addition, comparing the difference in
RMSE or R? value between both the full-model
analysis and the individual-model analysis, the
Baranyi model seems more ‘robust’ than the
modified Gompertz equation. The first reason
for this is due to the structure of the models.
Although both models can be used to fit sigmoi-
dal survival curves, the structure of the Bara-
nyl model is much more loose than that of the
modified Gompertz equation. In the Baranyi
model only one key parameter which cannot
be equal to zero is the maximum relative death
rate Rpy.y, while the modified Gompertz equa-
tion has two key parameters B and C. The
parameters r, k. and gp in the Baranyi model
can describe the lag, linear and tailing phases
in a direct way respectively, while the modified
Gompertz equation describes these phases in a
more complex way (Eqn (10)). For example, the
Baranyi model uses k., to describe the linear
phase and gives a practical straight line, by
contrast the modified Gompertz equation em-
ploys both B and C to describe the linear phase
and gives a nonlinear curve.The second reason
1s that the Baranyi model and the modified
Gompertz equation have different sensitivities
to the changes of their parameters. By varying
one parameter and holding other parameters
constant for a model, a series of RMSE values
can be calculated. This process is repeated un-
til the RMSE values of all parameters involved
are obtained. These RMSE values can then be
used to compare the sensitivity of each para-
meter on the model. In terms of the same
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percentage variation, the parameters can be or-
dered from the most sensitive one to the least
sensitive one. Among the three parameters of
r, knax and gp in the Baranyi model, it is found
that k.« 1s the most sensitive one followed by r
and ¢p, which matched the order of the R?
values for the three parameters (Table 4).
Although the R? value for the tailing ratio gp
is lower (0-697), ¢ has a relatively small influ-
ence on the RMSE value because the Baranyi
model 1s not very sensitive to it. By contrast,
for the modified Gompertz equation the para-
meter C is the most sensitive one followed by
M and B is the least sensitive one. A small
change in the values of parameters C and M re-
sults in a large variation in RMSE value. The
big RMSE value and small R? value for the
modified Gompertz equation in the full model
analysis may be caused in part by the para-
meter C due to its small R? value (0-700)
(Table 4).

Validation analysis

Model validation provides information which
shows the performance of a model perfor-
mances in practice. In this study the model va-
lidation data consists of 32 different treatments
which are different from the model generation
data but use the environmental factors that are
within the region for the full model analysis.
The validation results are listed in Table 3.
From Table 3, it is interesting to note that the
overall performance of the Baranyi model

Table 4. Estimates for the coefficients of the model parameters

Egn (7) Eqn (6)* Egn (11)°

Effect terms In(kmax) In(r) In(Rmax) In(r) q Bl/ 4 In(B) In(C) In(M)
Intercept 22-5478  36-1419 23-2592  33-3836 17302 56125 4-6709 0-3057
Temperature —1.2611 —17567 —1.0394 —1-3189 —0-0486 00537 —07894 —0-2127
pH 0-8592 90769 —1-4070 57739 —0-1797 —171579 76188 6-9924
NaCl —0-6303 —1-6457 —0-7706 —1-2601 0-0677 10274 —1-9435 —1-2194
Temperature? 0-0150 0-0136 00136 0-0104 0-0006 0-0043 00061 —0-0019
pH2 —0-0489 —0-5516 01777 —0-2432 0-0260 0-6080 —0-6045 —0-5178
NaCl? 00112 —0:0562 00275 —00242 —0-0005 —0-0232 0-0797 0-0208
Temperature x pH —0:0097 —0-0405 —0-0196 —0-0488 —0-0025 —0-0120 —0-0029 —0-0070
Temperature x NaCl 0-0087 0-0299 00126 00259 —0-0008 —0-0117 0-0264 0-0179
pH x NaCl —0:0092 00655 —0-0315 00154 —0-0039 —0-0669 00216 0-0480
R? 0-984 0-967 0964 0-949 0-679 0-972 0700 0-982

2The Baranyi model (Eqn (6) and Eqn (7). Eqn (6) becomes Eqn (7) when the tailing ratio g is set to zero).

®The modified Gompertz equation (Eqn (11)).



278 R. Xiong et al.

(Eqn (6)) was better than that of the modified
Gompertz equation (Eqn (11)) for both indivi-
dual model analysis and full model analysis,
i.e. the Baranyi model consistently produced
better fit to more than 2/3 of the total 32 survi-
val curves, while the modified Gompertz equa-
tion gave better fitness to less than 1/3 of the
total curves validated. By considering the set
of the model validation data as a whole, the
RMSE and R? values for both the Baranyi
model (RMSE=0-116, R?>=0-997) and the
modified Gompertz equation (RMSE=0-112,
R?=0-997) were almost same for individual
model analysis, but those for both the Baranyi
model (RMSE=0-595, R?2=0.928) and the
modified Gompertz equation (RMSE =0-818,
R? = 0-900) were significantly different for full
model analysis.

Conclusion

Although the Baranyi model is empirical when
it is used for survival curves, it can model the
four commonly observed survival curves:
linear curves, curves with a lag phase, curves
with a tailing phase and sigmoidal curves. For
the prediction performance, the Baranyi model
was better and more robust than the modified
Gompertz equation.
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Appendix

Nomenclatures

N number of micro-organisms, cfu ml ~*

Ny initial number of microorganisms,
cfuml™!

t time, min

k death rate constant,

(log cfu ml ™) min ~*

maximum relative death rate,
(log cfu ml ™) min "

kmax

“max

ttag
9
o(?)

B@®)
B()
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decimal reduction time, min
minimum decimal reduction time, min
lag parameter, min
tailing ratio in the Baranyi model
curvatural parameter
minimum cell concentration, cfu ml !
lower asymptote, log cfu ml1~*
relative death rate at M,
(log cfu ml™Y) min~—!
difference in value of the upper and
lowerasymptote, log cfu ml~*
time at which the absolute death rate
1s maximal, min
maximum exponential death rate,
(log cfu ml ™) min !
lag phase duration, min
tailing ratio
the adjustment function or shoulder
adjustment function
the tailing adjustment function
the lag time function, min
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